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Abstract: Alzheimer’s disease (AD) is the prime cause of 65–80% of dementia cases and is caused
by plaque and tangle deposition in the brain neurons leading to brain cell degeneration. β-secretase
(BACE-1) is a key enzyme responsible for depositing extracellular plaques made of β-amyloid protein.
Therefore, efforts are being applied to develop novel BACE-1 enzyme inhibitors to halt plaque build-
up. In our study, we analyzed some Elenbecestat analogues (a BACE-1 inhibitor currently in clinical
trials) using a structure-based drug design and scaffold morphing approach to achieve a superior
therapeutic profile, followed by in silico studies, including molecular docking and pharmacokinetics
methodologies. Among all the designed compounds, SB306 and SB12 showed good interactions with
the catalytic dyad motifs (Asp228 and Asp32) of the BACE-1 enzyme with drug-likeliness properties
and a high degree of thermodynamic stability confirmed by the molecular dynamic and stability of
the simulated system indicating the inhibitory nature of the SB306 and SB12 on BACE 1.

Keywords: Alzheimer’s disease; β-secretase; β-amyloid; BACE-1; dementia; elenbecestat

1. Introduction

According to the World Health Organization, they estimate that in 2022, Alzheimer’s
disease and associated dementias will be the seventh major cause of death globally. It
is currently the paramount reason for the suffering of about 50 million patients (https://
www.who.int/ (accessed on 6 June 2023)). The estimates point towards the probable
increase in cases to around 13.8 million by 2060 [1,2]. The disease is disastrous in terms
of mortality and morbidity and is characterized by deficits in the cognitive and motor
abilities of the patients and dementia. It results due to neuron degeneration in the cortical
and hippocampal regions of the brain, which control learning, memory, and cognitive
abilities [3]. Alzheimer’s disease (AD) is associated with the formation of senile plaques
and neurofibrillary tangles in the brain, which causes dementia and memory loss [4–6].
The primary hallmark of Alzheimer’s disease is the accumulation of β-amyloid proteins in
the synapses of the cortical neurons and the formation of tau tangles inside the neurons
due to the twisting of tau protein fibers. These accumulations lead to the neurons’ death
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by hampering the transfer of signals among the neurons [7,8]. The accumulation of β-
amyloid proteins between the synaptic spaces results from the action of the BACE-1 (β-site
amyloid precursor protein cleaving enzyme 1) enzyme. The enzyme catalyzes the reaction’s
rate-determining step, producing toxic Aβ by cleaving the extracellular domain of the
amyloid precursor protein (APP) [9]. It generates Aβ under stressful conditions triggering
glial activation, the sequential proteolysis of type 1 membrane protein APP. The process
of formation of Aβ from APP comprises the first step of cleavage of APP by the BACE-1
enzyme leading to the generation of a C99 fragment (a membrane-bound C-terminal) [10],
followed by the splitting of C99, leading to the liberation of Aβ by γ-secretase enzyme
comprised four transmembrane proteins (presenilin, nicastrin, Pen2, and Aph1). Another
enzyme, α-secretase, can also cleave APP at a position within Aβ, blocking the formation
of Aβ [10,11]. Since the BACE-1 enzyme is involved in the first step, the rate-determining
step in producing Aβ, it is viewed as a viable target for anti-Alzheimer’s treatments. No
BACE-1 inhibitor is commercially available for anti-AD treatment, but many of these have
entered human clinical trials [12,13].

The BACE-1 enzyme is a 21 amino acid long peptide with a NH2 terminal followed
by a pro-protein of 22–45 amino acid residues [14]. The catalytic domain of the BACE-1
enzyme comprises 46–460 amino acids residue. The enzyme’s active/catalytic site, known
as the catalytic dyad, has two aspartic acid remains (Asp32 and Asp228), responsible
for the catalytic action and form the prime interactive sites for all the potential BACE-1
inhibitors [15]. Other important residues comprising the active binding site of the BACE-1
enzyme are Thr329, Gly34, Arg235, Tyr71, Lys224, Trp115, Arg128, Gly230, Val332, Thr231,
and Thr232. Targeting the catalytic dyad residues has been a major focus for designing the
drug targeting BACE-1 inhibition [15,16].

It has been hypothesized that existing drugs can quickly be an alternative source for de-
veloping newer therapies by exploring other therapeutic roles. In this study, we screened the
small molecular BACE-1 inhibitors in clinical trials and chose one of these molecules, elen-
becestat, which is a small molecule inhibitor [N-[3-[(4aS, 5R, 7aS)-2-Amino-5-methyl-4,4a,
5,7-tetrahydrofuran [3,4-d][1,3]thiazin-7a-yl]-4-fluorophenyl]-5-(difluoromethyl)pyrazine-
2-carboxamide] currently undergoing phase 3 clinical trials with significant efficacy in
reducing Aβ levels in plasma and (cerebrospinal fluid) CSF. The subjects administered
elenbecestat demonstrated fewer declines in functional cognition. But, the treatment also
showed side effects like contact dermatitis, respiratory tract infections, nightmares and
abnormal dreams, headaches, falls, diarrhea, etc. In the current study, we report some
analogues of elenbecestat, designed using scaffold morphing and (structure-based drug
design) SBDD approaches.

Scaffold morphing is a distinctive medicinal chemistry tool used for the lucid design of
drugs via gradual modification in the parent compound to develop varied, novel molecules
with better therapeutic potential [17]. The scaffold morphing techniques were applied to
generate various structural analogues of elenbecestat with a good synthetic accessibility
index, and then these were subjected to in silico pharmacokinetic studies to determine
their drug-likeliness properties along with their potential to penetrate the (blood–brain
barrier) BBB. After the molecular docking, on the basis of their binding interaction with
BACE-1, two potential and promising candidates were found for future drug development
into BACE-1 inhibitors. Finally, to validate the docking studies, molecular dynamic (MD)
simulations were also performed to explore the interactions of the target-ligand complex in
dynamic motion to evaluate the thermodynamic firmness and persuaded conformational
changes at the BACE-1 gorge.

2. Results and Discussion
2.1. Scaffold Morphing through Bioisosteric Replacement

The chemical structure of elenbecestat was analyzed, and keeping the nucleus of
the molecule pyrazine-2-carboxamide constant, multiple sites were switched using their
bioisosteres by using the MolOpt web server (Table 1) [18]. The molecule elenbecestat
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was drawn in the software search bar, and analogues were developed using the four
inbuilt protocols in the software. The analogues possessing improved pharmacokinetic,
physicochemical, and pharmacodynamic properties were developed and sorted in the
increasing order of their synthetic accessibility. After sorting out, 2003 molecules were
found to possess a score ≤ 4.5; after further eliminating analogues with similar structures
and properties, 1880 proceeded for further in silico (absorption, distribution, metabolism,
excretion) ADME evaluation.

Table 1. Structures of designed top 50 analogues.

S. No. Compound ID Structure S. No. Compound ID Structure

1. SB6
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Table 1. Cont.

S. No. Compound ID Structure S. No. Compound ID Structure
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2.2. In Silico Pharmacokinetic Studies

The ADME properties of 1880 molecules were evaluated in this step to assess their
drug-likeliness and pharmacokinetic properties. The drug-likeliness properties of the ana-
logues were assessed by their conformation to Lipinski’s rule of five (molecular weight < 500;
QPlogPo/w < 5, H-B donors ≤ 5, and H-bond acceptors ≤ 10). Since the drug targets
Alzheimer’s disease and would work as a BACE-1 inhibitor, the analogues were filtered
for BBB permeability. Of all the analogues evaluated, only 50 molecules were selected
as they possessed both drug-likeliness properties and BBB permeability (Table 2). These
50 compounds exhibited an acceptable range of physicochemical and pharmacokinetic
parameters and high GI absorption. Hence, the predicted ADME properties illustrated
all the sorted analogues as good drug candidates, which proceeded further for molecular
docking analysis.

Table 2. Predicted ADME properties of designed top 50 analogues.

S. No. Compound
ID MW HBA HBD TPSA

(Å)
Consensus

Log P
Ali Log

S
Lipinski

Violations
BBB Per-

meant
GI Ab-

sorption

1 [SB6] 344.29 7 1 67.77 2.85 −3.32 0 Yes High

2 [SB12] 378.35 7 1 75.19 2.47 −2.78 0 Yes High

3 [SB19] 325.29 7 2 75.11 2.37 −2.83 0 Yes High

4 [SB20] 311.26 7 2 75.11 2.01 −2.46 0 Yes High

5 [SB21] 406.4 7 1 75.19 3 −3.45 0 Yes High

6 [SB22] 358.32 7 1 67.77 3.09 −3.66 0 Yes High

7 [SB35] 351.32 7 1 71.95 2.99 −3.29 0 Yes High

8 [SB37] 337.3 7 1 71.95 2.71 −2.93 0 Yes High

9 [SB38] 347.29 7 1 72.7 2.35 −2.75 0 Yes High

10 [SB41] 360.29 7 1 76.88 2.44 −2.96 0 Yes High

11 [SB42] 398.34 7 1 75.19 2.82 −3.52 0 Yes High

12 [SB63] 350.34 7 2 66.91 2.57 −2.84 0 Yes High

13 [SB92] 375.35 7 1 72.7 2.73 −3.22 0 Yes High

14 [SB139] 348.32 7 2 66.91 2.47 −2.46 0 Yes High

15 [SB153] 351.32 7 1 64.11 3 −3.27 0 Yes High
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Table 2. Cont.

S. No. Compound
ID MW HBA HBD TPSA

(Å)
Consensus

Log P
Ali Log

S
Lipinski

Violations
BBB Per-

meant
GI Ab-

sorption

16 [SB171] 349.31 7 1 64.11 2.81 −2.69 0 Yes High

17 [SB195] 348.32 7 2 66.91 2.45 −2.28 0 Yes High

18 [SB196] 366.31 8 2 66.91 2.66 −2.27 0 Yes High

19 [SB203] 360.33 6 1 58.12 2.67 −3.1 0 Yes High

20 [SB204] 351.32 7 1 64.11 2.99 −3.36 0 Yes High

21 [SB205] 337.3 7 1 64.11 2.7 −2.99 0 Yes High

22 [SB206] 392.37 7 1 75.19 2.72 −3.21 0 Yes High

23 [SB208] 346.31 6 2 66.91 2.54 −3.14 0 Yes High

24 [SB209] 348.32 6 2 66.91 2.63 −3.1 0 Yes High

25 [SB210] 351.32 7 1 64.11 3.08 −3.08 0 Yes High

26 [SB213] 337.3 7 1 64.11 2.71 −2.7 0 Yes High

27 [SB220] 350.34 7 2 66.91 2.59 −2.96 0 Yes High

28 [SB234] 353.3 8 1 73.34 2.08 −2.15 0 Yes High

29 [SB242] 378.35 7 1 75.19 2.39 −2.66 0 Yes High

30 [SB247] 380.36 8 1 67.35 2.34 −2.59 0 Yes High

31 [SB262] 350.3 8 1 76.47 2.6 −3.23 0 Yes High

32 [SB282] 390.4 7 1 58.12 3.28 −3.72 0 Yes High

33 [SB283] 426.43 7 2 66.91 3.73 −4.29 0 Yes High

34 [SB306] 390.4 7 1 58.12 3.26 −3.83 0 Yes High

35 [SB335] 368.33 8 2 66.91 2.72 −2.9 0 Yes High

36 [SB339] 376.38 7 1 58.12 2.95 −3.28 0 Yes High

37 [SB340] 379.38 7 1 64.11 3.53 −4.09 0 Yes High

38 [SB342] 392.37 7 1 75.19 2.68 −3.24 0 Yes High

39 [SB353] 348.32 7 2 66.91 2.3 −2.4 0 Yes High

40 [SB357] 391.39 7 1 64.11 3.56 −4.11 0 Yes High

41 [SB362] 406.4 8 2 78.35 2.62 −3.13 0 Yes High

42 [SB363] 377.36 7 1 64.11 3.41 −3.54 0 Yes High

43 [SB364] 376.38 7 2 66.91 2.93 −3.31 0 Yes High

44 [SB367] 379.33 8 1 73.34 2.55 −2.95 0 Yes High

45 [SB375] 390.4 7 2 66.91 3.24 −3.8 0 Yes High

46 [SB381] 379.33 8 1 73.34 2.61 −2.65 0 Yes High

47 [SB382] 393.36 8 1 73.34 2.78 −3.14 0 Yes High

48 [SB395] 404.43 7 2 66.91 3.62 −4.16 0 Yes High

49 [SB523] 390.4 7 1 58.12 3.26 −3.54 0 Yes High

50 [SB856] 376.38 7 2 66.91 3.01 −3.49 0 Yes High

2.3. Molecular Docking

Analysis of molecular docking interactions of the selected analogues is given in Table 3.
Out of the 51 molecules docked (50 analogues and elenbecestat), most of the formulated
analogues showed interactions with both of the catalytic dyad residues (Asp32 and Asp228)
of the BACE-1 protein via van der Waal interactions, pi-anion, halogen fluorine interactions,
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or carbon–hydrogen bonding. These molecules also showed significant interaction with
other important amino acid residues of the BACE-1 protein like Trp115, Gly34, Gly230,
Thr231, Thr232, Val332, Lys224, Arg235, and Tyr71.

Table 3. Docking score and key interactions of designed elenbecestat analogs with BACE-1.

S. No. Compound ID Docking Score
(kcal/mol) Interactions

1 Elenbecestat −42.82 Asp32, Asp228, Ser35, Ile 118, Leu30, Gly13, Tyr14, Gly34, Ser229, Thr232

2 SB6 −33.54 Asp32, Tyr71, Gly230, Val166, Trp115, Thr231, Thr232, Arg235

3 SB12 −43.35 Asp32, Asp228, Thr329, Arg235, Gly230, Thr232, Val166, Thr231, Trp115, Gly34,
Lys224, Thr329, Tyr198, Val332, Leu30, Ile226

4 SB19 −37.70 Asp32, Asp228, Thr232, Arg235, Gly34, Gly230, Thr231, Val166,

5 SB20 −34.53 Asp32, Asp228, Gly34, Gly230, Thr231, Arg235, Thr232, Val166,

6 SB21 −43.06 Asp32, Asp228, Arg235, Val332, Gly230, Gly34, Thr329, Lys224, Thr231, Val166,
Thr232

7 SB22 −38.46 Asp32, Asp228, Gly34, Tyr71, Trp115, Gly230, Thr231, Thr232, Val166

8 SB35 −41.27 Asp32, Asp228, Thr232, Thr231, Gly230, Val332, Arg235, Gly34, Trp115, Val166

9 SB37 −38.47 Asp32, Asp228, Gly34, Arg235, Thr232, Thr231, Gly230, Val166

10 SB38 −38.04 Asp32, Asp228, Val166, Gly34, Tyr71, Trp115, Gly230, Thr231, Thr232

11 SB41 −37.06 Asp32, Val166, Thr232, Thr231, Tyr71

12 SB42 −35.51 Asp32, Asp228, Tyr71, Gly34, Gly230, Lys224, Val332, Trp115, Val166, Thr329,
Thr231, Thr232

13 SB63 −41.42 Asp32, Asp228, Gly34, Trp115, Gly230, Val166, Thr231, Thr232

14 SB92 −43.31 Asp32, Asp228, Gly34, Arg235, Thr232, Thr231, Gly230, Val166, Trp115

15 SB139 −36.55 Asp32, Asp228, Tyr71, Gly34, Gly230, Val332, Trp115, Val166, Thr231, Thr232

16 SB153 −32.568 Asp32, Asp228, Gly230, Thr231, Thr232, Trp115, Tyr71, Val332, Lys224, Thr329,
Arg235

17 SB171 −33.11 Asp32, Asp228, Trp115, Tyr71, Thr231, Thr232, Gly230, Gly34

18 SB195 −41.40 Asp32, Asp228, Gly34, Gly230, Thr231, Arg235, Thr232, Val166, Trp115, Tyr71

19 SB196 −37.88 Asp32, Asp228, Gly34, Trp115, Gly230, Val166, Thr231, Thr232

20 SB203 −38.86 Asp32, Gly34, Tyr71, Trp115, Gly230, Thr231, Thr232, Val166

21 SB204 −42.01 Asp32, Asp228, Gly34, Gly230, Thr231, Thr232, Val166, Trp115

22 SB205 −34.14 Asp32, Asp228, Gly34, Val332, Thr231, Thr232, Gly230, Trp115, Tyr71, Val166

23 SB206 −37.43 Asp32, Asp228, Gly34, Gly230, Thr231, Thr232, Thr329, Trp115, Lys224, Val332,
Arg235

24 SB208 −30.56 Asp32, Asp228, Gly34, Gly230, Thr231, Tyr71

25 SB209 −31.31 Asp32, Asp228, Tyr71, Gly34, Trp115, Gly230, Val166, Thr232, Thr231

26 SB210 −40.6 Asp32, Trp115, Thr231, Thr232, Val166, Gly34, Tyr71, Gly230

27 SB213 −33.89 Asp32, Asp228, Tyr71, Gly34, Val332, Thr231, Thr232, Gly230, Trp115

28 SB220 −40.46 Asp32, Asp228, Gly34, Gly230, Tyr71, Trp115, Val166, Thr232, Thr231

29 SB234 −33.02 Asp32, Asp228, Tyr71, Gly34, Gly230, Thr231, Thr232, Trp115

30 SB242 −37.75 Asp32, Arg235, Tyr71, Gly230, Thr231, Thr232, Val166, Trp115

31 SB247 −36.85 Asp228, Gly230, Val166, Trp115, Thr231, Thr232, Thr329, Arg235, Val332
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Table 3. Cont.

S. No. Compound ID Docking Score
(kcal/mol) Interactions

32 SB262 −40.15 Asp32, Trp115, Thr231, Thr232, Val166, Gly34, Tyr71, Gly230

33 SB283 −43.30 Asp32, Asp228, Trp115, Tyr71, Thr231, Thr232, Gly230, Gly34, Val166

34 SB306 −44.35 Asp32, Asp228, Gly34, Tyr71, Trp115, Gly230, Thr231, Thr232, Val166

35 SB335 −33.29 Asp32, Asp228, Gly34, Gly230, Val332, Arg235, Lys224, Thr329, Thr231, Thr232,
Trp115, Tyr71

36 SB339 −41.84 Asp32, Asp228, Gly34, Tyr71, Trp115, Gly230, Val166, Thr231, Thr232

37 SB340 −39.28 Asp32, Asp228, Tyr71, Gly34, Gly230, Thr231, Thr232, Trp115, Val166

38 SB342 −38.96 Asp32, Asp228, Val166, Gly34, Tyr71, Trp115, Gly230, Thr231, Thr232, Arg235,
Thr329 Lys224, Val332

39 SB353 −39.54 Asp32, Asp228, Trp115, Gly34, Gly230, Tyr71, Val166, Thr231, Thr232

40 SB357 −39.79 Asp32, Asp228, Val166, Gly34, Gly230, Tyr71, Trp115

41 SB362 −41.43 Asp32, Asp228, Thr329, Thr231, Thr232, Lys224, Val332, Gly34, Gly230, Tyr71

42 SB363 −42.46 Asp32, Asp228, Val332, Thr231, Thr232, Thr329, Lys224, Gly230, Gly34, Tyr71

43 SB364 −35.77 Asp32, Asp228, Thr231, Thr232, Gly34, Gly230, Val332, Tyr71, Thr329, Lys224

44 SB367 −41.62 Asp32, Asp228, Gly34, Tyr71, Thr231, Gly230, Thr232, Val332, Lys224, Thr329

45 SB375 −38.84 Asp32, Asp228, Gly34, Gly230, Thr231, Thr329, Tyr71, Val332, Lys224

46 SB381 −41.17 Asp32, Asp228, Gly34, Gly230, Tyr71, Thr231, Val332, Thr329, Lys224

47 SB382 −39.06 Asp32, Asp228, Lys224, Thr329, Val332, Gly34, Gly230, Thr231, Tyr71

48 SB395 −33.28 Asp32, Asp228, Val332, Gly230, Gly34, Thr231, Tyr71, Thr329, Lys224

49 SB523 −40.50 Asp32, Asp228, Gly34, Gly230, Lys224, Thr329, Val332, Thr231, Tyr71

50 SB856 −40.44 Asp32, Asp228, Lys224, Thr329, Val332, Gly34, Gly230, Thr231, Tyr71

Only one molecule out of all these SB282 showed no interactions with any of the
catalytic dyad residues. Of all the docked molecules, the top two molecules with the
maximum docking score or minimum binding energy were SB306 and SB12 (Figure 1).
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The SB306 has the most efficient binding with the BACE-1 protein with CDOCKER in-
teraction energy (−44.3515 kcal/mol). The SB306 analogue had a Hexahydro-1H-pyrrolizine
ring substituent in place of a 5-Methyl-4a,5,7,7a-tetrahydro-4H-furo [3,4-d][1,3] thiazine-2-
amine ring at the fluorophenyl ring in elenbecestat, the rest of the structure was similar. The
SB306 analogue showed carbon–hydrogen bond interaction with the ASP32 residue through
the hydrogen of the pyrrolizine ring and van der Waals interaction with the ASP228. The
fluorine atoms in the structure show maximum interactions with the amino acid residues
of the binding site. The two fluorine atoms of the difluoromethyl substitution at the
pyrazine ring showed halogen fluorine bonding with the THR231, SER229, and GLY230
and carbon-hydrogen bonding with the GLY13. The methyl group showed alkyl interac-
tion with VAL166 and ALA335. The pyrazine ring showed amide-pi stacked interaction
with the GLN12 and pi-alkyl interaction with LEU30. The hydrogen of the pyrazine ring
shows carbon–hydrogen bonding with SER229. Another selected analogue SB12 had the
second-best docking score, with CDOCKER interaction energy being −43.3585 kcal/mol.
The analogue had a 2-oxo-2-pyrrolidin-1-yl ethyl ring substituent in place of the 5-Methyl-
4a,5,7,7a-tetrahydro-4H-furo [3,4-d][1,3]thiazine-2-amine ring at the fluorophenyl ring in
elenbecestat. It showed van der Waals interaction with ASP32, conventional hydrogen
bonding, and carbon–hydrogen bond interaction with ASP228. The ASP228 had conven-
tional hydrogen bonding interaction with the amide substituent of the carboxamide moiety
and carbon–hydrogen bond interaction with the hydrogen of the pyrazine ring. The hydro-
gens of the pyrrolidine ring formed carbon–hydrogen bonding with GLY230 residue, and
the two fluorine atoms of the difluoromethyl substitution showed a significant number of
interactions like conventional hydrogen bonding and carbon–hydrogen bonding with the
LYS224 and THR329. The methyl group showed alkyl interactions with ILE226 and TYR198.
The pyrrolidine ring showed pi-alkyl interactions with LEU30. The rest of the neighboring
amino acids like ILE118, SER35, ARG235, VAL332, THR231, THR232, VAL166, GLY11,
GLY13, ILE110, and TRP115 showed van der Waals interactions with the molecule. The
elenbecestat had the CDOCKER interaction energy of −42.8232 kcal/mol, which proves the
newer analogues to be promising candidates for further research in BACE-1 inhibition. The
2D and 3D views of interactions of SB306 and SB12 are given in Figures 2 and 3, respectively.
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Figure 3. The 2D (A) and 3D (B) view showing a docked complex of SB12 with BACE-1 enzyme.

3. Molecular Dynamics Simulations

An MD simulation study of the best two compounds was performed to analyze their
thermodynamic stability and dynamic behavior of the ligand–protein complex and to study
the effect on the conformational alterations induced by ligand binding with the active
pocket of BACE-1 [19]. After MD, although the important interactions were conserved,
some additional interactions were also observed. The protein–ligand complex of BACE-1
and SB306 were analyzed, and the compound SB306 showed hydrogen bonding interactions
with the ASP32, GLY11, π-π interactions with TYR14. Strong hydrogen bonding interactions
were also observed with the VAL31 (Figure 4A). These interactions are summarized in
the protein–ligand contacts plot (Figure 4B). After MD simulations, the root mean square
deviation (RMSD) was calculated for the SB306 compound concerning protein and plotted
against time (ns) (Figure 4C).
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The protein–ligand complex of BACE-1 and SB12 were also analyzed, and the com-
pound showed strong hydrogen bonding interactions with ASP32 and VAL31. The com-
pound showed strong π–π interactions with TYR14 and hydrogen bonding interactions
with GLY11 (Figure 5A). These interactions are summarized in the protein–ligand contacts
plot (Figure 5B). After the MD studies, the RMSD graph of the SB12 ligand concerning
BACE-1 was plotted against time (ns) (Figure 5C).
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Figure 5. Post-MD H-bonds and hydrophobic interactions of SB12 with BACE 1. (A) Protein
interactions fractions with the ligand (SB12) plot throughout the simulation. (B) Protein–ligand
contacts plot of compound SB12 with BACE 1 and (C) RMSD trajectory plot for compound SB12.

The plots of RMSD of the compounds SB306 and SB12 showed that docked complexes
were quite stable throughout, with minor fluctuations in the range of 1.2–2.0 Å. The stability
of the simulated system indicates the inhibitory nature of the SB306 and SB12 on BACE 1.
Compound SB306 has shown almost no or a very small vibration throughout the simulation
and remains stable within the macromolecular cavity, while the ligand SB12 has shown a
couple of moves during the initial 20 ns time within the binding cavity to achieve the most
stable conformation. Both the compounds SB306 and SB12 have shown a high degree of
stability within the macromolecular cavity throughout the simulation period, which was
expected to initiate the therapeutic response.
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4. Material and Methods
4.1. Clinical Trials Screening

The clinical trials database (clinicaltrials.gov.in) was screened for small molecule BACE
inhibitors. A total of 7 molecules were found, listed in Table 4. Most of the molecules
currently undergoing clinical trials reduced concentration of Aβ in CSF, but their trials were
terminated due to liver toxicity and severe adverse effects. Elenbecestat (E2609), which
is currently undergoing phase III clinical trials, was found to be effective in reducing the
Aβ levels in CSF and plasma, and also resulted in a decreased rate of decline in cognitive
abilities, and also no hepatic toxicity was found to occur, but some side effects are associated
with the molecule [12,20].

Table 4. Some of the small molecule inhibitors are under clinical trials.

Molecule Name Clinical and Pharmacology
Consideration Clinical Trial Status Clinical Trial ID

Lanabecestat (AZD3293,
LY3314814) Reduce CSF Aβ levels Phase 3 trials terminated due to

less efficacy
Clinicaltrials.gov ID:

NCT02245737

(JNJ-54861911)
Atabecestat Reduce CSF Amyloid-β levels Phase 2 or 3 trials were

terminated due to liver toxicity
Clinicaltrials.gov ID:

NCT02569398

CNP520 Reduce CSF Aβ levels Phase II/III completed Clinicaltrials.gov ID:
NCT02576639

(E2609) Elenbecestat

Decreased Amyloid-β levels in
cerebrospinal fluid and plasma

Less decline in functional
cognition.

Currently in Phase III clinical
trials but side effects like

dermatitis, respiratory tract
infection, abnormal nightmares

and dreams, headache, falls,
and diarrhea but safe for liver

Clinicaltrials.gov ID:
NCT03036280, NCT02956486

(MK-8931) Verubecestat
Decreased CNS amyloid-β

levels in animals and patients of
AD

Phase 3 trials were withdrawn
due to lack of efficacy as well as
dermatological and behavioral

side effects

Clinicaltrials.gov ID:
NCT01953601

LY2886721 Potent BACE-1 inhibitor
Phase 1/2 terminated due to
abnormal liver biochemical

toxicity.

Clinicaltrials.gov ID:
NCT01561430

LY320262 BACE-1 inhibitor Phase II but no clinical efficacy
as of now

Clinicaltrials.gov ID:
NCT02323334

4.2. Scaffold Morphing

This technique for designing drugs refers to modifying structural features to amelio-
rate the synthetic feasibility, potency, and drug-likeliness properties. The method provides
the approach to enhancing the overall therapeutic profile of the chosen molecule [21,22].
The scaffold morphing works on the principle of bio-isosteric replacement, replacing each
functional group or segment of the molecule with their bioisosteres and boosting the effec-
tiveness in addition to pharmacokinetic profiling of the compound [21,22]. In this research
study, the scaffold morphing of elenbecestat was performed using the freely available web
server MolOpt [18]. The three molecule sites were identified, and various analogues were
generated by replacing multiple molecule segments using 4 inbuilt transformation rules:
AI generative model, data mining, data mining (fast), and similarity comparison. The
generated elenbecestat analogues were sorted based on synthetic accessibility. The range of
synthetic accessibility lies from very easy (1) to very difficult (10) [23]. A cut-off of 4.5 was
employed to screen the formed analogues, and the 1880 analogues proceeded for in silico
pharmacokinetic studies (Figure 6).
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4.3. In Silico Pharmacokinetic Predictions

The pharmacokinetic properties of the selected 1880 molecules were evaluated using
the online free web server swissADME tool (http://www.swissadme.ch (accessed on
25 May 2023)). Various molecular attributes were examined, including physicochemical
properties, water solubility, pharmacokinetics, lipophilicity, and drug likeliness properties

http://www.swissadme.ch
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comprising (Ro5) Lipinski’s rule [23,24]. Since the drug being evaluated is for Alzheimer’s
disease, the BBB permeability is also considered along with other parameters for evaluating
the BACE inhibitor analogues [25–27]. Only the analogues exhibiting BBB permeability
were proceeded for further molecular docking studies. Out of 1880 molecules examined,
only 50 molecules were found to possess drug-likeliness properties and BBB permeability.

4.4. Molecular Docking Studies

To explore the binding affinity of the formed and sorted elenbecestat analogues
with the BACE-1 enzyme, docking was carried out using Biovia Discovery Studio soft-
ware [24,28]. Molecular docking of the formulated analogues and elenbecestat molecule
was performed using the crystal structure of BACE-1 protein possessing 2Å, and an R-
value of 0.223 was obtained using (Research Collaboratory for Structural Bioinformatics)
RCSB-protein data bank (PDB) (https://www.rcsb.org/ (accessed on 25 May 2023)), the
PDB ID: 6OD6 [29–31]. The protein was prepared using the ‘macromolecule module’ of
the Biovia discovery studio software. The ligands were prepared using the Discovery
Studio software’s ‘small molecule module.’ The docking was proceeded by the Dock
ligands ‘CDOCKER’ protocol, and the docked poses’ molecular interactions was noted
down [19]. In docking experiments, the grid box was generated with the X, Y, and Z
axes coordinates of −36.937, −45.388, and 19.516, respectively, for 6OD6. A maximum
of 10 binding modes were allowed to be generated for each ligand during the docking
execution program [32–34]. Before docking the ligands, the docking protocol was validated
by redocking the co-crystallized ligand (ligand ID: M7D) attached to the BACE-1 protein.
Similar validated docking protocols for the analysis of the prepared ligand were followed.
The interactions of the docked ligands with the catalytic aspartate (Asp) dyad (Asp32 and
Asp228) residues present in the BACE-1 protein were observed. The interactions, docking
score, and binding energy for each docked ligand were noted.

4.5. Molecular Dynamic Simulations

The designed analogues having good binding energies against the BACE-1 enzyme
in molecular docking were further assessed for their thermodynamic stability concerning
time by executing molecular dynamics (MD) simulation for a duration of 100 ns by using
the molecular dynamics module of Desmond software by Schrodinger [35–38]. The simula-
tions aided in stabilizing the protein–ligand complex by minimizing the system’s energy
by attaining the most preferred conformation after complexation concerning time. The
interaction persisting between the complex ligand and the target macromolecule during
the 100 ns duration of the simulation was analyzed by studying its simulation–interaction
diagram [37,39–44]. This analysis leads to assessing important interactions for ligand bind-
ing that can be utilized to assess ligand’s affinity further. The system was first built using
the TIP3P solvent model with an orthorhombic box shape; the input system’s ionic state
was adjusted using the salt solution of 0.15 M. The simulation was carried out using the
NPT ensemble and a time step of 1.0 fs; the constant temperature of 310 K was adjusted by
using the Nose–Hoover Chain method as the thermostat and pressure of 1.01325 bar using
Martyn–Tobias–Klein as the barostat.

5. Conclusions and Future Remarks

A scaffold morphing and a structure-based drug designing approach were successfully
utilized to identify putative analogues of elenbecestat against BACE 1. Initially, the bio-
isosteric replacement was carried out on various suggested sites of elenbecestat to generate
a library of its analogues. From a library of more than 10,000 analogues, 2003 were selected
based on synthetic feasibility and submitted for in silico ADME prediction to confer
the drug-like properties of these analogues. Using a molecular docking approach, the
50 analogues were further evaluated for binding affinity with the target protein. Though
all the compounds showed good interactions with the target protein (BACE 1), compounds
SB306 and SB12 were the most active molecules, suggesting a plausible binding mode with

https://www.rcsb.org/
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the active or catalytic site of the enzyme, which is responsible for the BACE 1 activity. To
analyze the stability and dynamic behavior of the ligands–protein complexes and to study
the effect on the conformational alterations induced by binding of the ligand with the active
pocket of BACE 1, the molecular dynamic simulation study of the top two compounds
(SB306 and SB12) was performed. The plots of RMSD of both the compounds showed
stability of the complexes all through with minor fluctuations in the range of 1.2–2.0 Å. The
stability of the simulated system indicated the inhibitory nature of the SB306 and SB12 on
BACE 1. Based on these results, it can be suggested that a slight structural modification in
the elenbecestat may improve its therapeutic profile. The protocol adopted in this study
may be used as a framework in the future for developing novel small molecules for the
treatment of Alzheimer’s disease and suggested that the designed new compounds could
be further investigated for pharmacological development in AD therapy.
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