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Abstract: Among phosphorylated derivatives, phosphinates occupy a prominent place due to their
ability to be bioisosteres of phosphates and carboxylates. These properties imply the necessity to
develop efficient methodologies leading to phosphinate scaffolds. In recent years, our team has
explored the nucleophilic potential of silylated phosphonite towards various electrophiles. In this
paper, we propose to extend our study to other electrophiles. We describe here the implementation
of a cascade reaction between (trimethylsilyl)imidates and hypophosphorous acid mediated by a
Lewis acid allowing the synthesis of aminomethylenebisphosphinate derivatives. The present study
focuses on methodological development including a careful NMR monitoring of the cascade reaction.
The optimized conditions were successfully applied to various aliphatic and aromatic substituted
(trimethylsilyl)imidates, leading to the corresponding AMBPi in moderate to good yields.

Keywords: bisphosphinates; phosphonite; Lewis acid; methodological development

1. Introduction

The synthesis of phosphorylated molecules still represents a major challenge for
organic chemists to propose new drugs [1–4]. Among them, phosphinate derivatives
(R2R3PO2R1) have gained attention in medicinal chemistry for their potential as bioactive
compounds and drug candidates thanks to their ability to mimic the function of phosphates
or carboxylates. Indeed, the presence of a P-C bond imparts chemical stability against
hydrolysis, whether it occurs through chemical or enzymatic processes [2,4].

Hence, the development of efficient methodologies is crucial to access phosphorylated
scaffolds. The formation of the P-C bond can be managed via several pathways such as
transition metal catalysis, radical reactions and nucleophilic additions or substitutions [5].
Among these methods, the use of silylated phosphonite II represents a versatile tool that
operates smoothly and thus is compatible with functionalized molecules. Moreover, it
is easily accessible through a reaction between H-phosphinate I and a silylated agent
like HMDS, TMSCl or bis(trimethylsilyl)acetamide (BSA) depicted in Figure 1. The sila-
Arbuzov reaction of silylated phosphonites II on alkyl halides as electrophiles can provide
substituted alkyl phosphinates.

Aldehydes, ketones and imines can also undergo nucleophilic attack from silylated phos-
phonites via the Abramov reaction to give various α-hydroxy- and α-aminophosphinates,
respectively. In addition, Michael addition on α,β-unsaturated ketones can selectively take
place to form functionalized substituted phosphinates [6]. Our group has contributed to
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the use of the simplest silylated phosphonite: bis(trimethylsilyl)phosphonite II (R1 = TMS,
R2 = H: BTSP), obtained starting from hypophosphorous acid (H3PO2) and BSA as a silylat-
ing agent. First, we have demonstrated that only two equivalents of BSA were required to
fully transform H3PO2 into BTSP, despite large excesses of silylated agents being previously
employed in the literature [6]. Then, the subsequent addition on aldehydes and ketones
provided various α-hydroxyphosphinates as sodium salts in good to excellent yields [7].
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Moreover, we also performed the successive double nucleophilic addition of BTSP
onto trivalent electrophiles as acyl chlorides, which enabled the formation of hydrox-
ymethylenebisphosphinates (HMBPi) via silylated α-ketophosphinates in good to excellent
yields and short reaction times [8,9]. Thereafter, this easily handled methodology was
successfully used on other trivalent electrophiles, like anhydrides and activated esters,
which led to more functionalized HMBPi derivatives in good yields [10].

This method was subsequently transposed to synthesize hydroxymethylene(phosphinyl)
phosphonate derivatives (HMPPs), which consisted of adding BTSP to in situ pre-formed
α-ketophosphonates starting from trimethylphosphite and acyl chlorides. This one-pot pro-
cedure allowed the preparation of original HMPPs, in which no purification of intermediate
species was required (Figure 1a) [11].

Moreover, these methodologies were applied to the synthesis of aminoalkyl-substituted
HMBPi and HMPPs, which are analogues of the hydroxymethylenebisphosphonates
(HMBPs) currently used in clinics to treat bone diseases such as osteoporosis, solid tumor
metastases or myeloma bone disease [12–19]. Moreover, HMBPs have shown interesting
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antitumor properties on in vitro and in vivo models of soft tissue primary tumors. As a
result, the antiproliferative activities of these newly synthesized HMBPi and HMPPs have
been evaluated on various cancer cell lines and encouraging results have been obtained,
especially on A549 cells (Figure 1b) [11].

Additionally, several α-aminomethylenebisphosphonates (AMBPs) exhibit biological
activities that include antiparasitic [20,21], antibacterial [22], herbicidal [23,24] and bone-
resorption-inhibitory [14,25] activities (Figure 2a). The access to AMBPs is well documented
in the literature [26]. Indeed, several approaches present the double phosphonylation of
amides and nitriles mediated by various Lewis acids [27–30], a three-component reaction of
amines with orthoformate and phosphites [31–40], and a Beckmann transposition of oximes
in the presence of phosphites [41,42] (Figure 2b). Alternatively, only limited examples were
reported for the synthesis of aminomethylenebisphosphinates (AMBPi) and their biological
activities remain unknown to date [43–45]. Here, the strategy usually consists of adding in
situ pre-formed BTSP onto ethyl formimidate hydrochloride or onto substituted amides in
the presence of TMSOTf, respectively (Figure 2c). In this case, only a few N-substituted
aminomethylenebisphosphinates (AMBPi) were synthesized.
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Figure 2. (a) Representative bioactive AMBPs. (b) Synthetic pathways to AMBPs. (c) Synthetic
pathways to AMBPi.

As a result of these works, our team has decided to pursue exploring the nucleophilic
potential of BTSP towards less-reactive trivalent electrophiles such as nitriles.

In this case, aminomethylenebisphosphinate (AMBPi) scaffolds will be formed through
the successive double addition of BTSP onto nitriles. However, the lack of nitrile reactivity
should require the use of a Lewis acid, as was demonstrated for the AMBP series.
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Our initial experiment consisted of the in situ formation of BTSP via silylation of
H3PO2 in the presence of BSA in THF followed by the addition of benzonitrile and ZnCl2
as a Lewis acid (Figure 3a). Finally, the reaction mixture was stirred under reflux as no
conversion was observed at room temperature. The reaction evolution was monitored
via 31P and 31P{1H} NMR experiments. After refluxing for 6 h, the complete conver-
sion of BTSP was observed and an AMBPi derivative was obtained after methanolysis.
However, the careful analysis of the 1H and 13C spectra and mass spectroscopy indicates
the formation of an α-aminomethylenebisphosphinate including a methyl substituent
instead of the expected phenyl group. Consequently, the reaction did not occur on ni-
trile but on the N-silylacetamide generated during the silylation step in the presence of
bis(trimethylsilyl)acetamide, which is in accordance with some reported works previously
mentioned [30]. N-Silylacetamide appears to be a better electrophile than benzonitrile
towards the attack of the nucleophilic BTSP.
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In view of this unexpected result, we decided to explore the feasibility of developing a
cascade reaction in which bis(trimethylsilyl)imidate 1 could silylate H3PO2 to simultane-
ously generate nucleophilic BTSP and an electrophilic N-silylamide 2 (Figure 3b). Subse-
quently, and in the presence of a Lewis acid, these products could react together to enable the
formation of AMBPi derivatives. Herein, we present our endeavors to develop an efficient
cascade process promoted by a Lewis acid to furnish α-aminomethylenebisphosphinates 3
(AMBPi).

2. Results and Discussion
2.1. Synthesis of Bis(silyl)imidates 1

First, we focused on the synthesis of N,O-bis(trimethylsilyl)imidates 1 [46,47], which
could be achieved via the silylation of amides [48,49] or by adding LiHMDS to acyl chlo-
rides [46,50–53] (Scheme 1).
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Scheme 1. Synthesis of N,O-bis(silyl)imidates 1.

In both cases, the reaction allowed us to form N,N-bis(silyl)amides 4, which instantly
tautomerized to the more stable N,O-bis(trimethylsilyl)imidates 1 [46,52]. Indeed, the
reaction monitoring via 13C NMR enabled us to only detect the quaternary carbon of 1
at ~160–165 ppm. The signal at ~147 ppm corresponding to N,N-bis(silyl)amides 4 was
only observed when 2.2 equivalents of TMSOTf/Et3N were sequentially added in two
portions to the corresponding acetamide. In our study, the reaction between amides and
TMSOTf/Et3N was selected due to its ease of implementation and higher efficiency.

2.2. Optimization of the Reaction between N,O-Bis(trimethylsilyl)imidates and Phosphorous Acid
Mediated by Lewis Acid

The reaction was first carried out between hypophosphorous acid and commercially
available N,O-bis(trimethylsilyl)acetamide 1a (R = Me) (Table 1). The silylation was moni-
tored via 31P NMR and was completed after 40 min at 0 ◦C.

Table 1. Optimizations of reaction parameters.
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Entry 2a–c R LA T, ◦C Time, Hour 3a–c/5c, Yield (%) 1

Entry 1 2a Me 5 ZnCl2 70 18 3a, 90 2 (75) 3

Entry 2 2a Me 5 ZnI2 70 1.5 3a, 88 2 (83) 3

Entry 3 2a Me 5 TMSOTf 0 0.5 3a, 90 2 (75) 3

Entry 4 2a Me 5 BF3·OEt2 0–70 18 -
Entry 5 2a Me 6 ZnCl2 70 15 3a, 90 2 (75) 3

Entry 6 2a Me 6 ZnI2 70 1.5 3a, 88 2 (79) 3

Entry 7 2a Me 6 TMSOTf 0 0.5 3a, 90 2 (75) 3

Entry 8 2b Pr ZnCl2 70 18 3b, 77 2 (60) 3

Entry 9 2b Pr ZnI2 70 2 3b, 77 2 (60) 3

Entry 10 2b Pr TMSOTf 0 0.5 3b, 6 4

Entry 11 2c Ph ZnCl2 70 18 5c, 15 4

Entry 12 2c Ph ZnI2 70 1 3c, 85 2 (72) 3

Entry 13 2c Ph TMSOTf 0 0.5 -
1 The reaction evolution was monitored via 31P NMR. 2 The conversions were determined via 31P NMR after
methanolysis. 3 Isolated yields after purification. 4 Proportion determined via 31P NMR after methanolysis in the
crude mixture. 5 Commercially available BSA was used. 6 BSA was synthesized according to the procedure in
the literature.

Thereafter, various Lewis acids were screened for the second reaction between trimethylsi-
lylacetamide 2a and BTSP (Table 1, entries 1–4). In the presence of zinc halides, AMBPi 3a



Molecules 2023, 28, 6226 6 of 16

was similarly obtained in good conversions and isolated yields after purification (Table 1,
entries 1, 2). However, it was noted that the reaction rate was higher with ZnI2 than with
ZnCl2, as the former allowed the reaction to completed after only 1.5 h, whereas the latter
took 18 h. When TMSOTf was used as a Lewis acid, the reaction was able to proceed at
0 ◦C after only 30 min and furnished AMBPi 3a in 75% yield (Table 1, entry 3). In contrast,
no conversion was observed in the presence of BF3·OEt2, regardless of the temperature and
reaction time (Table 1, entry 4).

Then, the same reactions were performed with freshly prepared N,O-bis(trimethylsilyl)
acetamide 1a (R = Me) in the presence of ZnX2 or TMSOTf (Table 1: entries 5–7 versus 1–3).
In these cases, the reactions provided the same results independently of the Lewis acids
as expected.

To explore the potential range of the reaction, additional N,O-bis(trimethylsilyl)imidates
1b (R = Pr) and 1c (R = Ph) were initially combined with H3PO2, and the resulting blend
was subsequently subjected to various Lewis acids (Table 1, entries 8–13).

Concerning the use of N,O-bis(trimethylsilyl)butanimidate 1b, the silylation of H3PO2
was completed after 40 min at 0 ◦C. The consequent double addition of BTSP to the corre-
sponding silylamide 2b successfully ensued in the presence of ZnX2 to furnish the expected
AMBPi 3b after methanolysis and purification (Table 1, entries 8, 9). As previously ob-
served, the reaction rate was higher for ZnI2 than for ZnCl2. However, we noted a dramatic
drop in the conversion into 2b in the presence of TMSOTf, as a major disproportionation of
BTSP was observed (Table 1, entry 10).

Upon investigating the reactivity of aromatic bis(trimethylsilyl)amide (Table 1, entries
11–13), it was revealed that among the various Lewis acids tested, zinc iodide uniquely
mediated the attack of BTSP onto 2c, leading to the proper formation of AMBPi 3c (Table 1,
entry 12). Indeed, no reaction took place in the presence of TMSOTf (Table 1, entry 13);
moreover, the use of zinc chloride resulted in the formation of α-aminophosphinate 5c and
a major disproportionation of BTSP into silylated phosphorus derivatives (Table 1, entry 11).
Furthermore, the reactivity of zinc chloride seems inadequate to promote the sila-Arbuzov
reaction. Additionally, AMBPi 3c may not be stable enough and seems to lead to the
formation of 5c, as previously described in the literature [43]. Finally, the optimization of
the cascade reaction showed the potent use of various commercially available and freshly
prepared aliphatic and aromatic N,O-bis(trimethylsilyl)imidates 1a–c as silylating agents.
In addition, the Lewis acid screening highlighted zinc iodide as the best compromise in
terms of reactivity and reaction time.

2.3. NMR Monitoring and Purification Details

As mentioned earlier, 31P and 31P {1H} NMR experiments are routinely performed
to follow the course of reactions implying phosphorus derivatives. Figure 4 displays the
optimized cascade reaction monitoring of the various phosphorus intermediate species.

The rapid silylation of H3PO2 was observed through the disappearance of its signal at
12.8 ppm for the benefit of a new signal at 141.6 ppm in the trivalent phosphorus region
that confirmed the formation of BTSP as expected (Figure 4, spectra (b) versus (a)).

After refluxing for 1.5 h, the NMR monitoring indicated the complete conversion of
BTSP through its missing signal at 141.6 ppm and the appearance of several peaks in the
P(III)/P(V) regions (142–147 ppm and 33–36 ppm) related to P(III)-TMS3-3a and TMS3-3a,
respectively (Figure 4, spectra (c) versus (b)). After methanolysis, a major signal remained
at 22.0 ppm, which matches the acidic form H3-3a of AMBPi 3a (Figure 4, spectra (d) versus
(c)). It was noted that small amounts of H3PO2 and H3PO3 were also generated. The
pH adjustment to 10 produced AMBPi 3a as a disodium salt and concomitantly caused
the partial precipitation of the zinc salt, which was eliminated via centrifugation. Then,
successive washes with ethyl acetate (with 0–10% ethanol) and methanol enabled us to
recover the excess amide, and to discard both NaH2PO2 and Na2HPO3, respectively. The
residual zinc salts were removed thanks to a cation-exchange resin.
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The effectiveness of zinc elimination was verified by ICP-AES analysis. Finally, the
disodium salt of AMBPi 3a was isolated after lyophilization as a pure form (Figure 4,
spectra (e) versus (d)).
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2.4. Viability Considerations of the Cascade Reaction

The cascade reaction appears to be an interesting and straightforward method for
accessing AMBPi scaffolds; however, 2 equivalents of silylimidates 1 are required for
the silylation step, but only a 0.5 equivalent of the silylamide generated in the first step
participates in the sila-Arbuzov reaction. To overcome this significant drawback, we focused
on retrieving the excess of the amides initially used for the formation of the silylimidates
(Scheme 2a).

Several attempts enabled us to finally recover up to 90% of the resulting amides during
the purification procedure, which could be reused for the same reaction.

We also wondered if the reaction could proceed via a direct silylation of H3PO2 in
the presence of Et3N/TMSOTf followed by the addition of an amide in the presence of
TMSOTf. Here, TMSOTf will both play the role of a silylating agent and a Lewis acid
(Scheme 2b). First, hypophosphorous acid and two equivalents of triethylamine/TMSOTf
were mixed at 0 ◦C.

Unfortunately, the silylation was partial even after an extended period. To achieve
completion, an additional equivalent of Et3N/TMSOTf was added, leading to a 30 min
reaction time. However, this approach resulted in a significant amount of HP(O)(OTMS)2
due to the oxidation of BTSP. In the second step, acetamide and TMSOTf were subse-
quently introduced at 0 ◦C. Unfortunately, no AMBPi derivative was formed, and the



Molecules 2023, 28, 6226 8 of 16

reaction only resulted in the disproportionation of BTSP, giving hypophosphorous and
phosphorous acids.

As a final attempt, we independently synthesized 2a and BTSP in the presence of
triethylamine and TMSOTf, which were subsequently mixed (Scheme 2c). Alas, the reaction
did not occur under these conditions.

1 
 

 
Scheme 2. Complementary tests to validate the cascade reaction.

These assays validated the viability of the cascade reaction we proposed. Moreover,
the excess of amide can be successfully recovered, thus limiting its impact on the reaction
implementation.

2.5. Scope of the Cascade Reaction

The scope of the cascade reaction was carried out in the presence of various prepared
aliphatic and aromatic bis(trimethylsilyl)imidates 1a–l amd hypophosphorous acid and zinc
iodide as Lewis acids (Scheme 3). As a general trend, all imidates enabled the promotion of
the silylation of H3PO2 into BTSP efficiently.

We were pleased to observe that the reaction was successful with aliphatic imi-
dates bearing longer-chain 1b and 1d. In these cases, the corresponding AMBPi 3b and
3d were obtained in good conversions and isolated yields after purification. Although
bis(trimethylsilyl)trifluoroacetimidate 1e can properly promote the silylation of H3PO2, the
sila-Arbuzov reaction did not happen. Only the oxidation of BTSP was noted.
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Scheme 3. Scope of the cascade reaction between various bis(trimethylsilyl)imidates 2a–l and
hypophosphorous acid in the presence of zinc iodide.

Concerning the use of aromatic bis(trimethylsilyl)imidate derivatives, the reactivity of
para-substituted aromatic imidate derivatives was evaluated under the previous optimized
conditions. The substitution at the para-position by a methoxy group had little influence
on the course of the reaction, which produced AMBPi 3f in similar yield to 3c. When
the reaction was performed with a para-substituted methyl moiety on silylamide 2i, the
yield for the formation of 3i surprisingly decreased. However, the meta-substituted methyl
aromatic amide 2j properly underwent the sila-Arbuzov reaction with good conversion
and isolated yield of 3j. The reaction was also carried out with electrowithdrawing para-
fluoro- and para-trifluoromethyl-substituted groups on amides 2g and 2h. Although the
conversion into 3g reached 60%, the isolated yield dropped to 29% due to its oxidation
during the purification. Moreover, 3h was not produced as only the disproportionation of
BTSP took place.

The introduction of an ortho-substituted methyl group and a heteroaromatic moiety
on the aromatic imidates 2k and 2l was also considered. In these cases, only AMBPi 3l was
generated in good conversion and isolated yield, probably due to the steric hindrance of
substrate 2k.

It was noted that α-aminophosphinates 5c,f,g,i,j were detected after methanolysis.
According to the NMR spectra, these compounds represented 10 to 15% (31P NMR) of crude
products. This observation could justify the lower yields obtained for these AMBPi 3c,f,g,i,j.



Molecules 2023, 28, 6226 10 of 16

Even if the results were moderate for some substituted aromatic AMBPi, this cascade
reaction represents the first example of an AMBPi which displays alkyl or aromatic groups
at the methylene carbon on α-aminomethylenebisphosphinates.

2.6. Plausible Mechanism of the Cascade Reaction

In view of our past and present results, the following mechanism depicted in Scheme 4
could be proposed to explain the formation of AMBPi 3a–l and α-aminophosphinates
5c,f,g,i,j [9,10].
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First, the existing equilibrium between hypophoshorous acid and its trivalent form
could be disrupted by trapping the latter as the silylated phosphonite BTSP in the pres-
ence of silylimidate 1a–l. Subsequently, the generated silylamide 2a–l, activated by zinc
iodide, could undergo attack by BTSP resulting in the formation of a phosphonium in-
termediate B. Following this, a series of trans-silylation steps could lead to the silylated
α-iminophosphinate D. A second attack of BTSP on intermediate D could give the second
phosphonium derivative E, which participates in various trans-silylation equilibria. These
equilibria are supported by the presence of multiple trivalent and pentavalent species
during the 31P{1H} NMR reaction monitoring. Finally, the methanolysis step yields the
acidic form H3-3, subsequently leading to the expected AMBPi 3a–l through pH adjustment
to 10.

The formation of the aromatic α-aminophosphinate byproducts 5c,f,g,i,j could be ex-
plained by the relative instability of AMBPi, which may rapidly degrade inα-aminophosphinate
and phosphorous acid as already reported in the literature [43]. However, the side products
5c,f,g,i,j were only observed in the presence of aromatic and/or steric-hindered silylamides
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2c,f,g,i,j, which implies another possible degradation pathway during the reaction pro-
cess. In our past studies on the synthesis of HMBPi, phosphinylphosphonate byproducts
resulting from transposition reactions were identified when the reaction was carried out
with electrowithdrawing substituted aromatic and/or steric-hindered acyl chlorides and
BTSP. Here, we proposed similar possible side routes starting from α-iminophosphinate
D or/and the phosphonium derivative E. Indeed, the phosphonylated derivatives D and
E could evolve into a benzylic stabilized anion H resulting from the attack of BTSP on
the nitrogen atom of D or/and the ring opening of phosphaziridine G, respectively. The
anion H could subsequently move towards the silylated phosphinylphosphonamidate I,
which afforded compound H2-5 due to the hydrolysis of J. Further investigations might be
undertaken to corroborate this postulated mechanism.

3. Materials and Methods
3.1. General Informations

Reagents were purchased from usual commercial suppliers (Sigma-Aldrich, Alfa Aesar,
Acros Organics, Saint-Quentin-Fallavier, France) and used as delivered. Triethylamine was
distillated and stored over KOH under argon. Extra-dry grade solvents (Acros Organics,
St. Louis, MO, USA) were used. N,O-bis(trimethylsilyl)acetamide (BSA) was purchased
from Alfa Aesar, Karlsruhe, DE, USA (batch number: 10186753). Anhydrous H3PO2 was
dehydrated from a commercially available aqueous solution of H3PO2 (50% w/w) according
to the procedure reported by Montchamp et al. [54]. Reactions requiring inert conditions
were carried out in flame-dried glassware under an argon atmosphere. The solvents were
degassed via argon bubbling for 30 min.

NMR spectra were recorded at 20 ◦C on a Bruker Avance-III-400 spectrometer, Billerica,
MA, USA (1H: 400 MHz, 13C: 101 MHz, 31P: 162 MHz, 19F: 377 MHz). Chemical shifts (δ)
were given in ppm, the number of protons (n) for a given resonance was indicated by n
H and coupling constants J in Hz. 1H NMR spectra were calibrated on a non-deuterated
solvent residual peak (H2O: 4.79 ppm), while H3PO4 (85% in water) was used as an ex-
ternal standard for 31P NMR. The following abbreviations were used for 1H, 13C, 31P and
19F NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), dd
(doublet of doublets), dm (doublet of multiplet), m (multiplet), dq (doublet of quartets)
and ddq (doublet of doublets of quartets). All 13C NMR spectra were measured with
1H decoupling while 31P and 19F NMR spectra were measured with 1H coupling and 1H
decoupling. 1H experiments with water presaturation were performed with D1 = 2 s and
128 scans. The reactions were followed by 31P and 31P{1H} NMR experiments (the spectra
were recorded without lock and shims). All NMR peak assignments were performed thanks
to 2D NMR COSY, HMQC and HMBC experiments. High-resolution mass spectra (HRMS)
were obtained on a Bruker maXis mass spectrometer in negative (ESI-) mode (ESI) via the
“Fédération de Recherche” ICOA/CBM (FR2708) platform. MS analyses were performed
using a QTOF Impact HD mass spectrometer equipped with an electrospray (ESI) ion
source (Bruker Daltonics, Billerica, MA, USA). The instrument was operated in the negative
mode with an ESI source on a Q-TOF mass spectrometer with an accuracy tolerance of
2 ppm. Samples were diluted with acetonitrile and water (15:85) and were analyzed via
mass spectrometry in continuous infusion using a syringe pump at 200 µL/min. The mass
profiles obtained via ESI-MS were analyzed using Data Analysis software (Bruker Dalton-
ics). ICP-AES analyses were performed via “plateforme Analytiques des Inorganiques”
IPHC UMR7178 on Varian 720ES, Palo Alto, CA, USA.

3.2. General Procedure for the Cascade Synthesis of Aminomethylenebisphosphinates 3a–l

To a dry and argon-flushed 100 mL three-necked flask, equipped with a thermometer,
an argon inlet and a septum, the corresponding amide 1a–l (15.00 mmol, 1.00 equiv.),
anhydrous pentane (34.00 mL), anhydrous dichloromethane (1.50 mL) and triethylamine
(33.00 mmol, 5.58 mL, 2.20 equiv.) were successively introduced. Trimethylsilyltri-
floromethanesulfonate (33.00 mmol, 5.73 mL, 2.20 equiv.) was added dropwise at 0 ◦C and
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the mixture was stirred for 30 min at room temperature. The lower phase obtained during
the process was eliminated. Then, the solvent was evaporated under reduced pressure.
The imidates 2a–l were used in the next step without further purification.

To another dry and argonflushed 25 mL three -necked flask equipped with a thermome-
ter, a reflux condenser with an argon inlet and a septum, anhydrous hypophosphorous
acid (5.00 mmol, 0.330 g, 0.50 equiv.) and anhydrous tetrahydrofuran (1.00 mL) were added
under an argon atmosphere. The synthesized imidates 2a–l (10.00 mmol, 2.00 equiv.) were
added dropwise at 0 ◦C and the mixture was stirred for 40 min. The reaction conversion
was monitored via 31P NMR. A solution of zinc iodide (2.50 mmol, 0.750 g, 0.50 equiv.)
in anhydrous tetrahydrofuran (4.00 mL) was added dropwise at 0 ◦C and the mixture
was stirred under reflux conditions. The reaction conversion was also monitored via 31P
NMR upon completion. Then, anhydrous methanol (3.00 mL) was added dropwise at 0 ◦C
followed by water (0.5 mL). The solvents were evaporated, and the crude compound was
dissolved in minimum of water (2.00 mL) and an aqueous solution of sodium hydroxide
(0.50 M, 8.00 mL) was added carefully to adjust the pH to 10.00. The mixture was centrifu-
gated to partially discard precipitated zinc salts. The filtrate was then washed with ethyl
acetate (5 × 5.00 mL) (with 0–10% ethanol) and methanol (10 × 2.00 mL) to eliminate the
excess of amides 1a–l and phosphorous acid, respectively. In addition, a cation-exchange
resin was used to eliminate the residual zinc salts. Finally, the solution was lyophilized to
afford the pure AMBPi 3 as a disodium salt.

3.3. Spectral Data of Aminomethylenebisphosphinates 3a–l

1-aminoethane-1,1-bis(H-phosphinate) disodium salts 3a. White powder; 425 mg, 79%
yield. 31P {1H} NMR (162 MHz, D2O) δ 28.5 (s). 31P NMR (162 MHz, D2O) δ 28.5 (dm,
1JP-H = 524.9 Hz). 1H NMR (400 MHz, D2O) δ 6.80 (dt, 1JP-H = 525.3 Hz, 2J = 11.7 Hz, 2H),
1.19 (t, 2JP-H = 15.8 Hz, 3H). 13C NMR (101 MHz, D2O) δ 52.2 (t, 1JP-C = 89.4 Hz), 15.0. MS
(ESI-) m/z 171.99 [M − H]−, 193.97 [M − 2H + Na]−, 153.98 [M − H-H2O]−. HRMS (ESI-)
m/z: [M − H]−. Calcd. for [C2H8NO4P2]: 171.9934; found: 171.9934.

1-amino-1-propylmethane-1,1-bis(H-phosphinate) disodium salts 3b. White powder;
359 mg, 60% yield. 31P {1H} NMR (162 MHz, D2O) δ 28.1 (s). 31P NMR (162 MHz,
D2O) δ 28.1 (dp, 1JP-H = 523.6 Hz, 2J = 13.4 Hz). 1H NMR (400 MHz, D2O) δ 6.84 (dt,
1JP-H = 523.5 Hz, 2J = 12.1 Hz, 2H), 1.72–1.55 (m, 2H), 1.54–1.39 (m, 2H), 0.88 (t, J = 7.2 Hz,
3H). 13C NMR (101 MHz, D2O) δ 55.3 (t, 1JP-C = 89.0 Hz, 33.1, 16,6 (t, 2JP-C = 6.8 Hz), 14.3.
MS (ESI-) m/z 200.02 [M − H]−, 222.00 [M − 2H + Na]−, 182.01 [M − H-H2O]−, 134.04
[M − H-H3PO2]−. HRMS (ESI-) m/z: [M − H]−. Calcd. for [C4H12NO4P2]: 200.0247;
found: 200.0247.

1-amino-1-phenylmethane-1,1-bis(H-phosphinate) disodium salts 3c. White powder;
500 mg, 72% yield. 31P {1H} NMR (162 MHz, D2O) δ 26.8 (s). 31P NMR (162 MHz, D2O) δ
26.8 (dt, 1JP-H = 538.6 Hz, J = 12.1 Hz). 1H NMR (400 MHz, D2O) δ 7.43 (d, 3JP-H = 8.1 Hz, 2H),
7.32 (t, 4JP-H = 7.6 Hz, 2H), 7.23 (t, 1JP-H = 7.6 Hz, 1H), 6.87 (dt, 1JP-H = 539.0 Hz, 2J = 10.3 Hz,
2H). 13C NMR (101 MHz, D2O) δ 164.0, 128.5, 127.0, 126.0, 60.5 (t, 1JP-C = 86.0 Hz. MS (ESI-)
m/z 234.00 [M − H]−, 215.99 [M − H-H2O]−, 170.04 [M − H-HPO2]−. HRMS (ESI-) m/z:
[M-H]−. Calcd. for [C7H10NO4P2]: 234.0090; found: 234.0090.

1-amino-1-butylmethane-1,1-bis(H-phosphinate) disodium salts 3d. White powder; 417 mg,
65% yield. 31P {1H} NMR (162 MHz, D2O) δ 27.9 (s). 31P NMR (162 MHz, D2O) δ 27.9
(dp, 1JP-H = 523.8 Hz, 2J = 13.2 Hz). 1H NMR (400 MHz, D2O) δ 6.85 (dt, 1JP-H = 524.3 Hz,
2J = 11.9 Hz, 2H), 1.73–1.62 (m, 2H), 1.48–1.40 (m, 2H), 1.28 (hex., J = 7.3 Hz, 2H), 0.86
(t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, D2O) δ 55.2 (t, 1JP-C = 88.6 Hz), 30.45 (C2), 25.1
(t, 3JP-C = 6.7 Hz), 23.0, 13.1. MS (ESI-) m/z 214.04 [M − H]−, 236.02 [M − 2H + Na]−,
196.03 [M − H-H2O]−. HRMS (ESI-) m/z: [M − H]−. Calcd. for [C5H14NO4P2]: 214.0403;
found: 214.0403.

1-amino-1-(4-methoxyphenyl)methane-1,1-bis(H-phosphinate) disodium salts 3f. White
powder; 0.483 mg, 65% yield. 31P {1H} NMR (162 MHz, D2O) δ 26.8 (s). 31P NMR (162 MHz,
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D2O) δ 26.8 (dt, 1JP-H = 538.7 Hz, 2J = 12.4 Hz). 1H NMR (400 MHz, D2O) 7.47 (d, 3J = 8.9 Hz,
2H), 7.02 (d, 3JP-H = 8.5 Hz, 2H), δ 6.95 (dt, 1JP-H = 537.9 Hz, 2J= 11.1 Hz, 2H), 3.81 (s, 3H).
13C NMR (101 MHz, D2O) δ 157.8 (t, J = 2.4 Hz), 128.2, 127.4 (t, 3JP-C = 4.9 Hz), 114.0,
59.8 (t, 1JP-C = 86.8 Hz), 55.3. MS (ESI-) m/z 264.02 [M − H]−, 286.00 [M − 2H + Na]−,
246.01 [M − H-H2O]−, 200.05 [M − H-HPO2]−. HRMS (ESI-) m/z: [M − H]−. Calcd. for
[C8H12NO5P2]: 264.0196; found: 200.0204.

1-amino-1-(4-fluorophenyl)methane-1,1-bis(H-phosphinate) disodium salts 3g. White
powder; 220 mg, 29% yield. 31P {1H} NMR (162 MHz, D2O) δ 26.4 (s). 31P NMR (162 MHz,
D2O) δ 26.4 (dt, 1JP-H = 538.6 Hz, J = 11.1 Hz). 19P NMR (377 MHz, D2O) δ 116.8 (m).
1H NMR (400 MHz, D2O) δ 7.57–7.46 (m, 2H), 7.14 (t, 4JP-H = 8.8 Hz, 2H), 6.96 (dt,
1JP-H = 537.4 Hz, 1JP-H = 10.8 Hz, 2H). 13C NMR (101 MHz, D2O) δ 160.7 (dt, 1JC-F = 243.2 Hz,
4JP-C = 2.8 Hz), 131.6–131.5 (m), 127.8–127.7 (m), 115.2, 115.0, 60.0 (t, 1JP-C = 86.0 Hz). MS
(ESI-) m/z 252.00 [M − H]−, 273.98 [M − 2H + Na]−, 233.99 [M − H-H2O]−, 188.03
[M − H-HPO2]−. HRMS (ESI-) m/z: [M − H]−. Calcd. for [C7H9FNO4P2]: 251.9996;
found: 251.9996.

1-amino-1-(4-tolyl)methane-1,1-bis(H-phosphinate) disodium salts 3i. White powder;
250 mg, 35% yield. 31P {1H} NMR (162 MHz, D2O) δ 26.8 (s). 31P NMR (162 MHz, D2O)
δ 26.8 (dt, 1JP-H = 539.8 Hz, J = 12.0 Hz). 1H NMR (400 MHz, D2O) δ 7.46–7.40 (m, 2H),
7.26–7.22 (m, 2H), 6.96 (dt, 1JP-H = 538.2 Hz, 2J = 10.8 Hz, 2H), 2.30 (s, 3H). 13C NMR
(101 MHz, D2O) δ 137.0, 132.6, 129.1, 126.05 (t, 3JP-C = 4.8 Hz), 60.2 (t, 1JP-C = 86.5 Hz), 20.1.
MS (ESI-) m/z 248.02 [M − H]−, 270.00 [M − H-H2O]−, 184.05 [M − H-HPO2]−. HRMS
(ESI-) m/z: [M − H]−. Calcd. for [C8H12FNO4P2]: 248.0247; found: 248.0247.

1-amino-1-(3-tolyl)phenyl)methane-1,1-bis(H-phosphinate) disodium salts 3j. White pow-
der; 400 mg, 57% yield. 31P {1H} NMR (162 MHz, D2O) δ 26.8 (s). 31P NMR (162 MHz,
D2O) δ 26.8 (dt, 1JP-H = 542.3 Hz, J= 11.5 Hz). 1H NMR (400 MHz, D2O) δ 7.36 (s, 1H),
7.30−7.29 (m, 2H), 7.15 (s, 1H), 6.96 (dt, 1JP-H = 538.9 Hz, 2J = 11.8 Hz, 2H), 2.32 (s, 3H). 13C
NMR (101 MHz, D2O) δ 138.4, 135.8 (t, 4JP-C = 2.3 Hz), 128.4, 127.6, 126.7 (t, 3JP-C = 4.9 Hz),
123.0 (t, 3JP-C = 5.0 Hz), 60.5 (t, 1JP-C = 86.1 Hz), 20.7. MS (ESI-) m/z 248.02 [M − H]−,
270.01 [M − 2H + Na]−, 230.01 [M − H-H2O]−, 184.05 [M − H-HPO2]−. HRMS (ESI-) m/z:
[M − H]−. Calcd. for [C8H12NO4P2]: 248.0247; found: 248.0247.

1-amino-1-(2-thienyl)ethane-1,1-bis(H-phosphinate) disodium salts 3l. White powder;
437 mg, 59% yield. 31P {1H} NMR (162 MHz, D2O) δ 26.5 (s). 31P NMR (162 MHz, D2O) δ
26.5 (dm, 1JP-H = 531.6 Hz). 1H NMR (400 MHz, D2O) δ 7.28–7.27 (m, 1H, H6), 6.99–6.97
(m, 2H), 6.83 (dt, 1JP-H = 530.6 Hz, 2J = 11.8 Hz, 2H), 3.26 (t, J = 12.7 Hz, 2H). 13C NMR (101
MHz, D2O) δ 136.9 (t, 3JP-C = 9.1 Hz), 128.5, 126.9, 125.1, 55.1 (t, 1JP-C = 89.3 Hz), 29.8. MS
(ESI-) m/z 253.98 [M − H]−, 275.96 [M − 2H + Na]−, 253.97 [M − H-H2O]−. HRMS (ESI-)
m/z: [M − H]−. Calcd. for [C6H10NO4P2S]: 253.9811; found: 253.9811.

4. Conclusions

In this study, we have established a cascade reaction involving the silylation of hy-
pophosphorous acid with a N,O-bis(trimethylsilyl)imidate, leading to the formation of
bis(trimethylsilyl)phosphonite (BTSP) and a N-silylamide. The latter can subsequently
undergo nucleophilic attack of BTSP through a sila-Arbuzov reaction, which is mediated
by zinc iodide as a Lewis acid. This approach relies on an unexpected result as our initial
attempt was to investigate the reactivity of nitriles in the presence of BTSP and a Lewis
acid. We present a detailed methodology to propose a novel means to access AMBPi
scaffolds, which have been understudied in the literature. The screening of Lewis acids has
highlighted zinc iodide as the best promoter for the sila-Arbuzov reaction. Consequently,
we successfully synthesized various AMBPi 3a–l in moderate to good yields. Better results
were obtained in aliphatic series and will enable us to extend this method to more function-
alized AMBPi, analogous to aminomethylenebisphosphonates, which have demonstrated
relevant biological activities.
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