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Hołyńska-Iwan, I. Chitosan–Glycolic

Acid Gel Modification of Chloride

Ion Transport in Mammalian Skin:

An In Vitro Study. Molecules 2023, 28,

6581. https://doi.org/10.3390/

molecules28186581

Academic Editor: Agnieszka

Ewa Wiącek
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Abstract: Chitosan, a polyaminosaccharide with high medical and cosmetic potential, can be com-
bined with the beneficial properties of glycolic acid to form a gel that not only moisturizes the
skin, but also has a regenerative effect. Its involvement in the activation of biochemical processes
may be associated with the activity of skin ion channels. Therefore, the aim of the research was to
evaluate the immediate (15 s) and long-term (24 h) effect of chitosan–glycolic acid gel (CGG) on
the transepithelial electric potential and the transepithelial electric resistance (R) of skin specimens
tested in vitro. Stimulation during immediate and prolonged application of CGG to skin specimens
resulted in a significant decrease in the measured minimal transepithelial electric potential (PDmin).
The absence of any change in the R after the CGG application indicates that it does not affect the
skin transmission, or cause distortion, microdamage or changes in ion permeability. However, the
reduction in potential may be due to the increased transport of chloride ions, and thus water, from
outside the cell into the cell interior. Increased secretion of chloride ions is achieved by stimulating
the action of the CFTR (cystic fibrosis transmembrane conductance). It can be assumed that chitosan
gently stimulates the secretion of chlorides, while maintaining a tendency to reduce the transport of
sodium ions, without causing deformation or tissue damage.

Keywords: chitosan; epithelial sodium channels; chloride ion transport; cystic fibrosis transmembrane
regulator; electric potential; electric resistance; skin

1. Introduction

Chitosan is a linear polyaminosaccharide obtained in the process of chemical or en-
zymatic deacetylation of chitin. It is a biologically derived raw material and the second
most common polymer after cellulose. Chitosan is well-known for its applicability as a
biocompatible, biodegradable and non-toxic material for biomedical, food-related, supple-
mental and cosmetic use [1–4]. The unique properties of chitosan result from the presence
of amine and hydroxyl functional groups in its structure [3–5]. Its special features and
biological activity, including antimicrobial, antioxidant, anti-cancer, anti-inflammatory,
hemocompatible and hemostatic properties, also result from its chemical structure and
make it an excellent raw material for biomedical applications [6,7] (Figure 1).

The antimicrobial effect is closely related to the presence of positively charged amino
groups in the structure of the molecule, which interact with the negatively charged surface
of the cell walls of microorganisms. This leads to damage to the membranes and destruction
of the internal structures of the pathogens [8]. Chitosan also has a high chelating ability,
supporting antimicrobial activity [5,6]. This makes chitosan a potential replacement for
some antibiotics that are effective against drug-resistant bacteria [9]. Moreover, chitosan
acts as an antioxidant that neutralizes free radicals by creating stable radicals with its
functional groups [5].

Molecules 2023, 28, 6581. https://doi.org/10.3390/molecules28186581 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28186581
https://doi.org/10.3390/molecules28186581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-0098-1633
https://orcid.org/0000-0002-0986-5604
https://doi.org/10.3390/molecules28186581
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28186581?type=check_update&version=1


Molecules 2023, 28, 6581 2 of 13
Molecules 2023, 28, x FOR PEER REVIEW 2 of 14 
 

 

 

Figure 1. Properties and applications of chitosan. 

The antimicrobial effect is closely related to the presence of positively charged 
amino groups in the structure of the molecule, which interact with the negatively charged 
surface of the cell walls of microorganisms. This leads to damage to the membranes and 
destruction of the internal structures of the pathogens [8]. Chitosan also has a high che-
lating ability, supporting antimicrobial activity [5,6]. This makes chitosan a potential re-
placement for some antibiotics that are effective against drug-resistant bacteria [9]. 
Moreover, chitosan acts as an antioxidant that neutralizes free radicals by creating stable 
radicals with its functional groups [5]. 

The polymer, due to targeting pro-inflammatory cytokines and inhibiting their ex-
pression, exerts an anti-inflammatory effect [5]. In addition, it stimulates humoral and 
cellular immunity. It has been proven that chitosan inhibits the growth of cancer cells and 
is helpful in gene therapy aimed towards the direct delivery of genetic material [10]. The 
bioactivity of the polymer is conditioned by the degree of deacetylation and molecular 
weight [8]. 

The presence of amino and hydroxyl groups in the chitosan molecule make it easy to 
modify it with other bioactive compounds. Chemical modifications include cross-linking, 
graft copolymerization, carboxymethylation, etherification, esterification, O-acetylation, 
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and several others. These modifications not only improve solubility and affect rheological 
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activity [4]. Chitosan modification products with desired properties are, in various forms, 

Figure 1. Properties and applications of chitosan.

The polymer, due to targeting pro-inflammatory cytokines and inhibiting their expres-
sion, exerts an anti-inflammatory effect [5]. In addition, it stimulates humoral and cellular
immunity. It has been proven that chitosan inhibits the growth of cancer cells and is helpful
in gene therapy aimed towards the direct delivery of genetic material [10]. The bioactivity
of the polymer is conditioned by the degree of deacetylation and molecular weight [8].

The presence of amino and hydroxyl groups in the chitosan molecule make it easy to
modify it with other bioactive compounds. Chemical modifications include cross-linking,
graft copolymerization, carboxymethylation, etherification, esterification, O-acetylation,
hydroxyalkylation, sulfonation, acetylation, quaternization, Schiff base reaction, grafting
and several others. These modifications not only improve solubility and affect rheological
properties, thermal stability and oxidation resistance, but they also impart new biological
activity [4]. Chitosan modification products with desired properties are, in various forms,
components of biomaterials—for example, hydrogels [11], nanofibers [12], microparti-
cles [13], nanoparticles [14] or scaffolds [14–16].

Chitosan is of particular importance in skin regeneration processes. It has the ability
to increase the influx of phagocytic cells to the site of infection and affects the proliferation
of fibroblasts. It also stimulates the production of cytokines and activates macrophages and
neutrophils, which cleanse wounds. This polymer is an inhibitor of metalloproteinase 2
(MMP-2), which is present in skin fibroblasts and a hydrolyzing type IV collagen. Inhibiting
the action of MMP-2 enables the proper reconstruction of damaged tissues in the case of
chronic wounds [17,18]. These properties make chitosan a great potential tool in skin tissue
engineering [5,19,20].

The study of chitosan properties requires its prior dispersion in an aqueous environ-
ment, as is the case with most polysaccharides. Chitosan dissolves only in acidic solutions,
at a pH value lower than pH6. This is due to the presence of intermolecular hydrogen
bonds that prevent the dissolution of chitosan in water or organic solvents. As a result
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of protonation of amino groups in an acidic environment (Figure 2), chitosan forms a
water-soluble cationic polyelectrolyte [3,21].
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Glycolic acid is present in many sugar-rich plants, including sugar cane, sugar beet, 
apples and grapes. And for years it has been well known among specialists in the cos-
metics and dermatology community as a multifunctional skin care product [22,23]. The 
small size of the acid molecule determines its excellent penetration into the skin layers, 
intensifying the degradation of corneodesmosomes responsible for corneocyte adhesion. 
Due to this, glycolic acid is a popular exfoliant. The effectiveness of glycolic acid as a 
peeling exfoliant depends primarily on the amount that is in the most biologically active 
free acid form, its pH value and its concentration. As with all alpha hydroxy acids, gly-
colic acid may cause irritation and erythema of the skin, which is intensified at high acid 
concentration and lower pH [22]. 
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effect. At a concentration of 0.1 mM, it has a significant photoprotective effect on human 
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In this study, glycolic acid was selected to lower the pH of the solution and form
a water-soluble chitosan polycation. Glycolic acid (hydroxyacetic acid, Figure 3) is the
simplest hydroxycarboxylic acid. It belongs to the group of alpha hydroxy acids, among
which it has the smallest molecule [22].
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Glycolic acid is present in many sugar-rich plants, including sugar cane, sugar beet,
apples and grapes. And for years it has been well known among specialists in the cosmetics
and dermatology community as a multifunctional skin care product [22,23]. The small size
of the acid molecule determines its excellent penetration into the skin layers, intensifying
the degradation of corneodesmosomes responsible for corneocyte adhesion. Due to this,
glycolic acid is a popular exfoliant. The effectiveness of glycolic acid as a peeling exfoliant
depends primarily on the amount that is in the most biologically active free acid form, its
pH value and its concentration. As with all alpha hydroxy acids, glycolic acid may cause
irritation and erythema of the skin, which is intensified at high acid concentration and
lower pH [22].

Depending on the concentration used, glycolic acid can have an anti-inflammatory
effect. At a concentration of 0.1 mM, it has a significant photoprotective effect on human
keratinocytes by regulating the secretion of cytokines induced by UVB radiation and the
secretion of chemokines in keratinocytes [24].

CGG is formed as a result of interactions between the positively charged proto-
nated amine groups of chitosan and the negative charges present in the glycolic acid
molecule, with the formation of various types of bonds connecting different chitosan chains
(Figure 4) [21]. The obtained gel can be used not only in various skin anti-aging agents, but
also in wound dressing materials [4] and improved drug delivery systems [25].

Due to the high molecular weight of chitosan, it seems that only the superficial effect
of water retention on the skin can be expected. However, changes in the skin under the
influence of chitosan indicate the activation of more advanced physiological processes.
Studies of changes in electrophysiological parameters of the skin, such as skin electrical
potential or tissue resistance, can shed light on the nature of skin changes.

Mammals’ skin, due to the close intercellular connections and its multilayer, bipolar
structure, is characterized by an electrophysiological parameter of electrical resistance
and electric potential [26–29]. The multilayered skin structure, tight intercellular con-
nections and the high content of keratin and lipids in cells determine high resistance
values [26,29,30]. The value of electrical resistance also depends on the activity of sweat
glands, the degree of skin hydration and the integrity of the epidermis, because dam-
age may cause a decrease in electrical resistance [26,29–31]. Rabbit skin seems to be an
appropriate experimental model to study the effect of various substances on the proper-
ties of tissue in relation to human skin. There are even reports that rabbit skin is more
sensitive than that of humans [27,31–33]. The properties of the skin can be assessed by
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checking its integrity and the transport of ions through the membranes of its building
cells [30,34]. This can be done by examining the changes in the electric potential of tissues
exposed to various factors [26,27,31,32,35]. The transport of skin ions is essential for the
proper functioning of the entire organism [36,37]. The functioning of epithelial sodium
channels (ENaCs) in keratinocytes is related to the transport of water through the skin
layer, the action of immunocompetent cells and wound healing. The transport of chloride
ions is via the transmembrane regulator of cystic fibrosis (CFTR) and the chloride channel
(CLCA) [38,39]. The activity of chloride channels seems to be important for water flow and
for dehydration and overhydration of the skin microenvironment [37,40]. CFTR channels
act on cellular regulators that influence, for example, the functioning of ENaCs [37,38].
Changes in the functioning of sodium and/or chloride channels may underlie problems
with hypersensitivity to pain [41,42], the onset of hypersensitivity and/or allergy [41,43],
issues with regeneration and healing [40] and atopic dermatitis [39].
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The aim of the study was to evaluate the immediate (15 s) and long-term (24 h) effects
of chitosan gel with glycolic acid on both the transepithelial electric potential and the
transepithelial electric resistance of the skin specimens tested in vitro. The transepithelial
electric potential reflects changes in transepithelial ion transport pathways following the
use of chitosan gel with glycolic acid. Currently, there are no direct scientific reports on the
effects of chitosan on electrophysiological parameters of the skin, which indicate changes
in the functioning of ion channels.

2. Results

Transepithelial electrical resistance was measured initially before and after mechanical
and mechanical–chemical stimulations for skin fragments treated with both iso-osmotic
Ringer’s solution and chitosan. Results ranged from 2474 Ω*cm2 (median, R final chitosan
incubation) to 3450 Ω*cm2 (median, R final RS incubation). There were no statistically
significant differences in any of the study groups (Table 1, Wilcoxon test) or between the
groups (Table 1, Mann–Whitney test). The resistance of the skin specimens did not change
under the influence of chitosan.
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Table 1. Transepithelial resistance (R) and transepithelial electric potential (PD) measured under
steady-state conditions with immediate and prolonged effects of chitosan–glycolic acid gel solution
on skin specimens.

PD Initial
(mV)

PD Final
(mV)

Wilcoxon
Test (p)

R Initial
(Ω∗cm2)

R Final
(Ω∗cm2)

Wilcoxon
Test (p)

Incubation: RS
(n = 40)

median −0.53 −0.86

0.000103

2721 3450

0.667697lower quartile −0.24 −1.31 1422 1467

upper quartile 0.23 −0.15 4855 5024

Incubation: CGG
(n = 32)

median −1.11 −0.53

0.099541

2817 2474

0.379375lower quartile −1.48 −0.86 1050 1013

upper quartile −0.09 0 5916 5203

Mann–Whitney
test (p) RS vs. Chitosan 0.002873 0.219698 0.66735 0.62078

Abbreviations: RS—iso-osmotic Ringer solution, CGG—chitosan–glycolic acid gel in RS, PD—transepithelial
potential difference of epithelial skin surface measured in stationary conditions (mV), R—resistance measured in
stationary conditions (Ω∗cm2), p < 0.05.

The initial PD, measured without stimulation for the skin fragments held in the iso-
osmotic RS, was −0.53 mV (median). However, the final one was statistically significantly
reduced (Table 1, Wilcoxon test) to the level of −0.86 mV (median). The initial PD measured
for the chitosan treated skin specimens was −1.11 mV (median). The final PD measured
after a series of mechanical and mechanical–chemical stimulations tended to increase to
−0.53 mV (median), but this was not a statistically significant increase. Comparing the
initial PD value measured for the control tissues and those treated with chitosan, a statisti-
cally significant reduction was demonstrated (Table 1, Mann–Whitney test). Meanwhile,
the final PD was similar in both tissue groups.

The immediate effects of chitosan included a statistically significant decrease in mea-
sured PDmin to a value of −0.57 mV (median), compared to −0.4 mV (median) for the
samples that underwent RS stimulation (Table 2, Wilcoxon test, RS incubation). Long-term
retention of tissues in the chitosan solution and stimulation with the chitosan and Ringer’s
solution resulted in a significant decrease of measured PDmin to the value of −1.31 mV
(median) for chitosan stimulation and −1.06 mV (median) for RS stimulation. The PDmin
values measured for these stimulations were similar (Table 2, Wilcoxon test, CGG incu-
bation). The comparison of the two incubation conditions showed a significant decrease
in the PDmin measured after stimulation with RS and with chitosan solution, performed
under long-term stationary conditions (Table 3, Mann–Whitney test).

The PDmax measured under the conditions of incubation in Ringer’s solution and
during stimulation with this solution, before chitosan administration, was 0.37 mV (median)
positive, while during chitosan stimulation it decreased to 0.23 mV (median). These values
did not differ significantly (Table 2, Wilcoxon test, RS incubation). During incubation in
chitosan solution and stimulation with its solution and with RS, the PDmax was similar
and amounted to 0 mV (median). Comparison of the two incubation conditions showed no
significant change in PDmax for RS stimulation (Table 3, Mann–Whitney test). The analysis
of PDmax values measured for stimulation with chitosan solution showed a statistically
significant reduction of this parameter (Table 3, Mann–Whitney test).

The administration of sodium (A) and chloride (B) ion transport blockers caused changes
in PDmax and PDmin in a similar manner, regardless of whether chitosan was administered
for 15 s during the stimulation or whether incubation for 24 h was used (Table 4).



Molecules 2023, 28, 6581 6 of 13

Table 2. Minimal (PDmin) and maximal (PDmax) transepithelial electric potential, measured during
15 s mechanical (RS) and mechanical–chemical (chitosan–glycolic acid gel) stimulations of skin
specimens treated with immediate and prolonged exposure to chitosan–glycolic acid gel solution.

Incubation: RS (n = 40) Incubation: CGG (n = 32)

Stimulation PDmin
(mV)

PDmax
(mV) Stimulation PDmin

(mV)
PDmax
(mV)

RS

median −0.4 0.37

CGG

Median −1.31 0

lower quartile −0.98 −0.23 lower quartile −2.06 −0.97

upper quartile 0 0.97 upper quartile −0.36 0.58

CGG

median −0.57 0.23

RS

Median −1.06 0

lower quartile −1.16 −0.34 lower quartile −2.04 −0.26

upper quartile −0.15 0.69 upper quartile −0.27 0.45

Wilcoxon test (p) 0.014024 0.112656 Wilcoxon test (p) 0.378920 0.243286

Abbreviations: RS—iso-osmotic Ringer solution, CGG—chitosan–glycolic acid gel in RS, PDmin—minimal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV), PDmax—maximal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV), p < 0.05.

Table 3. Mann–Whitney test results for minimal (PDmin) and maximal (PDmax) transepithelial
electric potential, measured during 15 s mechanical (RS) and mechanical–chemical (chitosan–glycolic
acid gel) stimulations of skin specimens exposed to chitosan–glycolic acid gel solution immediately
and for a prolonged period.

PDmin p

RS stimulation in RS incubation vs. RS stimulation in CGG incubation 0.000502

CGG stimulation in RS incubation vs. CGG stimulation in CGG incubation 0.002292

PDmax P

RS stimulation in RS incubation vs. RS stimulation in CGG incubation 0.090533

CGG stimulation in RS incubation vs. CGG stimulation in CGG incubation 0.043357
Abbreviations: RS—iso-osmotic Ringer solution, CGG—chitosan–glycolic acid gel in RS, PDmin—minimal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV), PDmax—maximal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV), p < 0.05.

The applied series of stimulations caused reproducible changes in the measured
PDmin and PDmax potential, regardless of the applied incubation conditions and the type
of stimulation (Tables 2 and 4). PDmin and PDmax values measured during stimulation
were statistically significantly different from PD measured under stationary conditions, i.e.,
without stimulation (Table 5, Wilcoxon test).

Table 4. Minimal (PDmin) and maximal (PDmax) transepithelial electric potential measured during
15 s mechanical–chemical stimulations of skin specimens treated with immediate and prolonged
exposure to chitosan–glycolic acid gel solution.

Incubation RS (n = 40) Chitosan (n = 32)

Stimulation PDmin (mV) PDmax (mV) PDmin (mV) PDmax (mV)

B

Median −0.64 0.08 −0.63 0.36

lower quartile −1.45 −0.43 −1.28 −0.06

upper quartile −0.2 0.67 −0.19 1.94
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Table 4. Cont.

Incubation RS (n = 40) Chitosan (n = 32)

Stimulation PDmin (mV) PDmax (mV) PDmin (mV) PDmax (mV)

A

Median −0.86 −0.08 −0.96 0.06

lower quartile −1.28 −0.72 −3.03 0

upper quartile −0.21 0.69 −0.26 0.98

AB

Median −0.54 0.23 −0.54 0.12

lower quartile −0.74 −0.57 −1.16 −0.59

upper quartile 0.07 0.92 −0.12 2.12

Abbreviations: RS—iso-osmotic Ringer solution, CGG—chitosan–glycolic acid gel in RS, A—amiloride (0.1 mM)
solution; B—bumetanide (0.1 mM) solution; AB—mixture A (0.1 mM) and B (0.1 mM) solutions; PDmin—minimal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV); PDmax—maximal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV).

Table 5. Results of Wilcoxon test for minimal (PDmin) and maximal (PDmax) transepithelial electric
potential measured during 15 s mechanical (Ringer solution) and mechanical–chemical (chitosan
solution) stimulation of skin specimens treated with immediate and prolonged exposure to chitosan
glycolic acid gel solution.

Incubation: RS (n = 40) p

PD vs. PDmin for RS stimulation <0.001

PD vs. PDmax for RS stimulation <0.001

PD vs. PDmin for CGG stimulation <0.001

PD vs. PDmax for CGG stimulation <0.001

Incubation: CGG (n = 32) p

PD vs. PDmin for CGG stimulation <0.001

PD vs. PDmax for CGG stimulation <0.001

PD vs. PDmin for RS stimulation <0.001

PD vs. PDmax for RS stimulation <0.001
Abbreviations: RS—iso-osmotic Ringer solution, CGG—chitosan–glycolic acid gel in RS, PDmin—minimal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV), PDmax—maximal
transepithelial potential difference during 15 s stimulation of epithelial skin surface (mV), p < 0.05.

3. Discussion

In this study, the influence of chitosan–glycolic acid gel on the electrophysiological
parameters, such as electric potential and resistance of tissues of the skin, has been investigated.

The positive effects of chitosan application have been confirmed in many scientific
studies. Chitosan is beneficial for the skin, hair and nails [11–16,44,45]. Despite its positive
effects on the skin, chitosan is not absorbed by it. It creates a hydrophilic film on the
skin surface, which effectively reduces transepidermal water loss from the epidermis
and supports the renewal of the skin’s natural hydro-lipid coat [44,45]. Chitosan has
antimicrobial and antioxidant properties, supports skin regeneration processes, and has
anti-inflammatory and anti-cancer effects.

The advantageous effect of glycolic acid has been confirmed in relation to various skin
problems connected to keratinization disorders. Glycolic acid peeling treatments affect the
lightening of melasma and post-inflammatory hyperpigmentation, are an element of anti-acne
therapy in adolescents and adults and reduce actinic or seborrheic keratosis [46–48]. Glycolic
acid also improves the penetration of other exfoliants. The anti-aging effect of glycolic acid is
related to its ability to stimulate the production of hyaluronic acid and collagen [49].

The use of glycolic acid creates an acidic environment that allows chitosan to be
introduced into the solution. Glycolic acid, having the smallest molecule among hydroxy
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acids, is a weak acid (pKa = 3.83). The chitosan chain will interact not only with the
hydrogen ions formed during acid dissociation, but also with counter-anions (glycolate),
which contributes to better dispersal of the chitosan [50–52].

It is difficult to explain the beneficial influence of chitosan on the skin only on the basis of
its superficial effects. It can be assumed that chitosan is involved in the activation of biochemical
processes responsible for the functioning of the skin, including the activity of ion channels.
However, there are no direct studies regarding the effect of chitosan on such processes.

Changes in ion transport in the skin can be measured using a modified Ussing cham-
ber [31,32]. The modification consists of placing the tissue in a horizontal position and
applying a stimulus. Stimulation is based on the free release of fluid onto the surface of
the examined tissue. Full-thickness skin fragments with preserved vitality, layering and
physiological intercellular spaces, as well as active nerve endings and functioning channels
and ion pumps, are examined. The assessment of ion transport is important for the evalua-
tion of processes such as tissue hydration; the ability to receive stimuli; and the function
of immunocompetent cells and melanocytes [31,32]. So far, the influence of chitosan and
glycolic acid on the electrophysiological parameters of the skin has not been studied. The
effect of CGG on the transport of sodium ions, chlorides and water in a multilayer structure
seems to be extremely important for inferring the moisturizing, immunogenic effect or the
maintenance of a uniform skin tone.

Our studies were carried out in stationary conditions (RS, CGG), during which mechani-
cal and/or mechanical–chemical (A, B, AB) stimulation caused changes in the ion transport.

The lack of changes in the electrical resistance after the use of chitosan proves that the
incubation of the skin specimens in the applied concentration of chitosan solution does not
change the skin permeability (Table 1, Mann–Whitney). It also does not cause deformations,
microdamage or changes in the ion permeability. The resistance values are stable and the
tissue was alive and reactive throughout the experiment (Table 2, Wilcoxon, control and
CGG). All skin specimens used were alive and retained full structure and compactness as
well as active nerve fibers. Chitosan gel with glycolic acid applied to the outer skin layer
did not change the vitality and compactness of the tissues. It also did not increase the ion
and water permeability of the analyzed fragments. The ability to respond to the applied
mechanical and/or mechanical–chemical stimulus was not affected by CGG, as tissues
treated with CGG reacted analogously to control fragments (Table 5, Wilcoxon test).

Maintaining a negative charge on the surface of skin cells depends on the proper
transport of chloride ions to the surface of the skin and the penetration of sodium ions
into the cells [27,31,32]. The use of ion transport inhibitors amiloride and bumetanide
allowed the inhibition of the entire pathway for individual ions and obtaining layers,
cells that cannot secrete chloride or absorb sodium [1,2,27,31,32]. A reduction of the
potential measured in stationary conditions (PDinitial) was demonstrated in comparison
with preparations treated with Ringer’s solution and with CGG (Table 1, Mann–Whitney,
PDinitial). The reduction of the potential may result from the increased transport of chloride
ions from the cell, and thus cause an influx of water in the intracellular direction [1,2].
After a series of stimulations, the potential value (PDfinal) does not differ from the control.
The cells transported available chloride ions and water, so there is no room for excessive
ion/water influx and cell swelling (Table 1, Mann–Whitney, PDfinal). Chitosan and glycolic
acid gel does not increase the activity of the sodium–potassium pump maintaining the
difference in potential under stationary conditions. The physiological activity is preserved
(Table 5, Wilcoxon, CGG). The constantly occurring, ion transport enabling reaction to
external and internal stimuli was not affected by the CGG solution. The generation of a
more electronegative PD after incubation in CGG is most likely related to the intensification
of chloride secretion to the surface. It is not possible to absorb such a large amount of
sodium ions without interfering with the cell volume, which was ruled out after examining
R, which was not changed after the application of CGG.

The absence of changes in the transepithelial transport of sodium ions after the use of
CGG, both during stimulation and in case of prolonged action, is important for maintaining
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skin tissue homeostasis [31,33,36,37,43,53]. Each time, the intensification of the transport
of sodium ions is associated with the movement of water towards the outer layers and its
loss [1,31,37]. Additionally, the displacement of sodium ions is associated with the response
to sensory stimuli [42] and the response to the triggers of local inflammation [43,53].
Substances changing the sodium transport in the skin may cause hypersensitivity reactions,
pain and hyperreactivity [32]. The applied CGG solution did not cause such reactions
under the proposed experimental conditions (Tables 1, 2 and 4).

Increased secretion of chloride ions is achieved thanks to the activation of the CFTR
transporter (cystic fibrosis transmembrane conductance). This channel also acts out the
role of a cell volume regulator, by inhibiting the ENaC channel (epithelial Na channel) and
stimulating other chloride ion transport channels present in the apical membrane of skin
cells [1,27,31,32]. The stimulation of the CFTR channel is also associated with the inhibition
of the 2Cl-K-Na cotransporter [54]. In addition, CFTR stimulation is associated with the
maintenance of the physiological pH of cells in the cell cytoplasm due to the interaction
with the sodium–potassium pump and potassium channels [55]. Access to magnesium
ions is essential for the activation and regulatory action of CFTR [27]. The CFTR channel
present in the sweat channels is inhibited by bumetanide [1,2,26]. It can be assumed that
the applied chitosan solution gently stimulates CFTR to chloride secretion, maintaining
a tendency to decrease sodium ion transport (changes in potential—PD, Tables 3 and 4)
and to maintain a constant cell volume. At the same time, it causes a slight increase in
the amount of water in the intracellular spaces, without causing deformations or tissue
damage (no change in R, Table 1). This confirms the data [21,23,24,45] that chitosan and
glycolic acid have a moisturizing effect on the skin tissue, allowing the preservation and/or
replenishment of water in the cells. The thesis about the effect of chitosan on ion channels is
confirmed by reports on the effectiveness of the use of chitosan-based nanosystems in order
to modify the operation of ion channels, e.g., reducing ENaC activity [51] and stimulating
CFTR activity [52].

4. Materials and Methods
4.1. Animals

Specimens were excised from adult albino New Zealand rabbits of both sexes, weigh-
ing 3.5 to 4.0 kg and ranging in age from three to four months. Animals were subjected to
asphyxiation with CO2. The gas causes respiratory depression, reduces the contractility of
the heart muscle and has a beneficial effect on the neuromuscular system. The death of each
animal was confirmed by two methods, by a qualified person. The obtained preparations,
isolated from the skin of ears, were stripped of hair and cleaned. The experiment consisted
in examining tissues taken from sacrificed animals. To maximize the use of sacrificed ani-
mals, each rabbit’s trachea, intestines, skin, liver, kidneys and muscles were also collected
for other experimental procedures. The isolated tissues were submerged and incubated in
the appropriate solution according to the experimental protocol. Rabbit skin prepared this
way contains corneocytes, keratinocytes (95%), fibroblasts, immunocompetent cells, hair
follicles, and nerve fiber endings.

4.2. Experimental Procedure

A modified Ussing chamber was used in the experiments. The tissue was mounted in a
horizontal position, which allowed the stimulus to be applied to the examined surface [12].
The nozzle outlet was located at a safe distance from the tissue structure (approx. 5–7 mm).
The surface of the external side of the tissue, which was gently rinsed with the solution, was
1 cm2. The fluid flowing through the nozzle moved perpendicularly to it. A single stimula-
tion lasted 15 s and the fluid was administered in a volume of 1 mL (0.06 mL/s), during
which the analyzer recorded noticeable changes in the transepithelial electric potential. The
modified Ussing chamber used consisted of two parts, and the tissue placed between the
half-chambers acted as a partition. In order to equalize the pressure after administration of
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the stimulation fluid, went-holes had been placed in the upper half-chamber to allow the
removal of excess solution.

Mechanical stimulation was performed using a Ringer’s solution (RS), a stimulating
fluid without a chemical component that only mechanically affected the isolated tissue. The
combined mechanical–chemical stimulation was achieved through the use of a stimulus,
CGG and/or amiloride and/or bumetanide. The immediate effect was tested with a
15 s mechanical–chemical stimulation by chitosan solution of the skin specimens. The
prolonged effect was tested after applying the chitosan solution for 24 h to the external
surface of the skin taken from the ear of a rabbit.

Tissues were kept in the dark at constant temperature (25 ◦C) and humidity (55%).
After that time, measurements of electrophysiological parameters were performed:

(1) In stationary conditions: transepithelial electric potential (PD, mV) continuously
measured, transepithelial electric resistance (R, Ω*cm2) measured after stimulation
and counted according to Ohm’s law.

(2) During 15 s stimulation: minimal transepithelial electric potential (PDmin), maximal
transepithelial electric potential (PDmax).

Measurement of electrophysiological parameters lasted 30 min for each tissue speci-
men. The following parameters were measured during the experiment:

- R—transepithelial electrical resistance recorded while the tissue sample was exposed
to a current with a stimulus intensity of ±10 µA; then, after measuring the voltage
change, calculations were made according to the Ohm’s law (Ω*cm2).

- PD—changes in transepithelial electric potential difference measured in stationary
conditions, i.e., without stimulation, recorded continuously (mV).

- PDmax and PDmin—minimal and maximal transepithelial electric potential difference
measured during a 15 s stimulation (mV).

4.3. Chemicals

For the experiment the following solutions were used:

- Ringer’s solution (RS)—(K+ 4.0 mM; Na+ 147.2 mM; Ca2+ 2.2 mM; Mg2+ 2.6 mM; Cl−

160.8 mM; Hepes 10.0 mM), solution with iso-osmotic properties.
- Mineral compounds (NaCl, CaCl2, KCl, MgCl2) were purchased in Avantor Perfor-

mance Materials Poland S.A., Poland.
- Chitosan–glycolic acid gel in RS (CGG) was prepared by dissolving chitosan (2.6%

w/v) in 30 mL of aqueous glycolic acid solutions and put away for 24 h in a dark place.
After this time, it was diluted with 500 mL of the Ringer’s solution. Chitosan and
glycolic acid were obtained from ACROS Organics, Poland, and used without further
purification.

- A—amiloride, 3,5-diamino-6-chloro-2-carboxylic acid, 0.1 mM, (Sigma-Aldrich, St.
Louis, MO, USA), inhibitor of ENaCs, used as an inhibitor of transepithelial sodium
transport pathways.

- B—bumetanide, 3-butylamino-4-phenoxy-5-sulfamoylbenzoic acid, 0.1 mM (Sigma-
Aldrich, St. Louis, MO, USA), inhibitor of Na-K-Cl cotransporter, used as an inhibitor
of transepithelial chloride transport pathways.

- AB—a solution of amiloride (A, 0.1 mM) and bumetanide (B, 0.1 mM).

4.4. Data Analysis

The Ussing chamber was connected to the EVC 4000 measuring instrument (WPI, Worces-
ter, MA, USA) coupled with the MP150 (Biopac, Goleta, CA, USA), a computer system which
enables the recording of experimental results. The non-parametricity of the data distribution
was confirmed by the Kolmogorov–Smirnov test, with the Lilliefors correction.

The results were presented as median and lower and upper quartile. Due to the fact
that incorrect distribution of data was demonstrated, non-parametric tests, Wilcoxon test
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and U Mann–Whitney test with significance level p < 0.005 were used for the analysis. The
obtained values were statistically analyzed using the Statistica 13.1. Programs.

5. Conclusions

The influence of chitosan–glycolic acid gel on the electrophysiological parameters,
such as electric potential and resistance of skin tissues, was investigated. The studies
were carried out in stationary conditions (RS, CGG) during which mechanical and/or
mechanical–chemical (A, B, AB) stimulations caused changes in ion transport. A modified
Ussing chamber was used in the experiments.

Studies have shown that stable values of electrical resistance are observed after the
use of chitosan. This means that incubation in the applied concentration of chitosan
solution does not increase the skin’s permeability, the tissue remains alive and reactive.
The observed decrease in stationary potential (PDinitial) probably indicates an increased
transport of chloride ions, and thus water, from outside the cell into the cell interior. After
the start of the stimulations, the potential value (PDfinal) did not differ from the control, the
cells transported the available chloride ions and water and there was no excess ion/water
flux and no cell swelling.

Chitosan maintains the potential difference under stationary conditions, but does not
increase the activity of the sodium–potassium pump. Physiological activity is maintained,
which is important for maintaining skin tissue homeostasis. Increased secretion of chloride
ions is initiated by stimulating the action of CFTR. This causes a slight increase in the amount
of water in the intercellular spaces without causing distortions and damage to the tissue.
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