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Abstract: Since heavy metal ion-contaminated water pollutionis becoming a serious threat to human
and aquatic lives, new methods for highly efficient removal of heavy metal ions from wastewater
are important to tackle environmental problems and sustainable development. In this work, we
investigate the removal performances of heavy metal copper (II) ions from aqueous solutions using a
gas hydrate-based method. Efficient removal of heavy metal copper (II) ions from wastewater via
a methane hydrate process was demonstrated. The influence of the temperature, hydration time,
copper (II) ions concentration, and stirring rate on the removal of heavy metal copper (II) ions were
evaluated. The results suggested that a maximum of 75.8% copper (II) ions were removed from
aqueous solution and obtained melted water with 70.6% yield with a temperature of −2 ◦C, stirring
speed 800 r/min, and hydration time of 4 h with aninitial copper concentration of 100 mg/L. The
initial concentration of copper (II) ions in the aqueous solution could be increased to between 100
and 500 mg/L. Meanwhile, our study also indicated that 65.6% copper (II) ions were removed from
aqueous solution and the yield of melted water with 56.7%, even with the initial copper concentration
of 500 mg/L. This research work demonstrates great potential for general applicability to heavy
metal ion-contaminated wastewater treatment and provides a reference for the application of the gas
hydrate method in separation.

Keywords: heavy metal ions; copper (II) ions; removal; wastewater; hydrate

1. Introduction

Rapid population growth and economic development has created a growing demand
for consumer goods, which has also led to a serious rise in various pollution problems [1–5].
Along with a plethora of pollution issues, water pollution has become a key challenge
for sustainable development. It is well known that water is indispensable to humans in
all aspects of human life and the available water resources on the earth are quite limited.
Currently, the demand for agricultural, medical and industrial activities has significantly in-
creased. This has led to various hazardous pollutants into water resources and has resulted
in serious pollution of surface and ground water resources. Typical water pollutants such as
microplastics, heavy metals, bacteria, viruses, and radiological contaminants are known to
have seriously affected the usage of water resources [6–8]. Among them, hazardous heavy
metal pollution of wastewater is one of the utmost significant environmental problems
and endangers human beings throughout the world [9–12]. Although heavy metals can
generally be detected in traces, they are still hazardous. Heavy metals are highly toxic
and stable in aquatic environments and do not degrade. They can build up in significant
amounts in the human body once they reach the food chain and cause serious health issues
when metals are consumed beyond the allowed concentration limit [13–15]. On the other
hand, a recent report demonstrated that heavy metals contribute to the heterogeneity of
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water environments via metal–algae interaction. Heavy metals affect algal communities,
which could cause a potential risk of algal blooms. Harmful algal blooms seriously af-
fect ecological environments because harmful cyanobacteria occupy the habitat of other
organisms, resulting in biological community structure and ecological balance in aquatic
environments becoming disrupted and biodiversity decreasing [16,17]. Thus, efficient
decontamination of heavy metals from water is an urgent and challenging issue.

To this end, a variety of effective methods have been developed to remove heavy metal
ions from water, such as chemical precipitation, ion exchange, the oxidation–reduction
method, membrane separation, electrochemical and adsorption [18–21]. However, these
methods often cause some side effects and include excessive pretreatment steps. For
example, chemical precipitation can produce large amount of sludge that can only be
treated with great difficulty, or ineffectively when metal ion concentration is very low, while
flotation and electrochemical technology involve high initial investment and operation
costs [22,23]. Some new methods, such as electro-adsorption or photocatalytic reduction
of heavy metals, are also reported in very recent years [22,24]. However, it is still highly
desired to design a noveland efficient means for removal of heavy metals for the sustainable
development of the environment.

Recently, clathrate hydrate-based technologies have attracted considerable attention
for mixture separation, such as gas mixture separation, water desalination, and purification,
which have the advantages of ease of operation, low toxicity and good selectivity [25–28].
Clathrate hydrates are ice-like substances consisting of host water molecules which are
hydrogen-bonded to form cages that encapsulate different guest molecules [29,30]. The
basis for hydrate-based gas separation is guest compound selectivity, which is one of the
unique properties of hydrates. Gas hydrate is formed by gas molecules and water at a
low temperature and under high pressure [31–33]. In theory, heavy metal ions could also
be separated by being repelled out of the hydrate phase from the wastewater when host
water molecules with gas guest molecules form hydrate. A detailed process for a gas
hydrate-based method for heavy metal removal is shown in Figure 1. Under a certain
temperature and pressure, pure water crystallizes as a solid hydrate phase from aqueous
solution with the help of a gas molecule and all the metal ions are ejected into the effluent
during the formation of hydrate (Figure 1a,b). As a result, only pure water and gas are
left in the solid hydrate. The residual water with metal ions was thrown away, leaving
significant solid hydrate (Figure 1c). The solid hydrate was further dissociated via thermal
stimulation or depressurization to yield pure water and the gas could be further recycled
(Figure 1d,e). In this context, gas hydrate-based technology has recently emerged as a
promising option for the removal of heavy metal ions from water [34–37]. For example,
Zhao and their co-works first performed heavy metal separation experiments from aqueous
solutions using a hydrate-based method [38]. In our previous work, we have also measured
the removal efficiencies of heavy metal chromium and nickel form their aqueous solutions
using a hydrate-based method [39,40].

As we know, copper is one of the most common heavy metals. Excessive copper
can harm the nervous system and organs, especially the liver and gallbladder, leading
to neuritis and cirrhosis. Therefore, removing copper ions from wastewater is a very
important project. In this work, we have performed heavy metal copper (II) ion separation
experiments from aqueous solutions using a gas hydrate-based method. This method has
several advantages: (a) mild operating conditions and cooling energy is saved, (b) the
process is simple, and no raw material is lost in theory, (c) it is safe to handle and cost
effective. The obtained data were also analyzed to evaluate the possibility of heavy metal
copper (II) ion separation using a gas hydrate-based method.
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Figure 1. Schematic diagram of heavy metal separation from aqueous solution. (a) Before of hydrate
formation; (b) Hydrate formation; (c) Heavy metal removal; (d) Hydrate dissociation; (e) Gas recycled
and obtain melted water.

2. Results and Discussion
2.1. Effect of Temperature on the Copper (II) Ions Removal Efficiency

To begin our study, we use CuSO4 as copper (II) ion precursors and model solutions
were prepared with concentrations in 100 mg/L, under conditions of a stirring speed of
800 r/min and a hydration time of 4 h. Methane hydrate was formed under 6.0 MPa
pressure and the experimental temperatures were −2 ◦C, −1 ◦C, 0 ◦C, 1 ◦C and 2 ◦C
respectively. As shown in Figure 2, a series of experiments was carried out to evaluate the
experimental temperatures. When the temperature was −2 ◦C, copper (II) ion removal
efficiency was 75.8% and the yield of melted water was 70.6%. Although the copper (II)
ion removal efficiency was 74.6% and 73.9% respectively when the temperature increased
to −1 ◦C and 0 ◦C, the yield of melted water sharply decreased to 64.1% and 59.0%,
respectively. When the temperature increased to 1 ◦C and 2 ◦C, the copper (II) ion removal
efficiency and the yield of melted water both sharply decreased. Thus, we use −2 ◦C as the
temperature for the following experiments.
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Figure 2. Effect of temperature on the removal of copper (II) ions and the yield of melted water.

2.2. Effect of Hydration-Time on the Copper (II) Ion Removal Efficiency

After the optimal temperature −2 ◦C was determined, we began to explore the effect
of hydration time on the copper (II) ions removal efficiency and the results are outlined in
Figure 3. The copper (II) ion removal efficiency was only 11.7% and the yield of melted
water was 26.3% when the hydration time was 0.5 h. The copper (II) ion removal efficiency
and the yield of melted water rapidly rises as the hydration time rises. The copper (II) ion
removal efficiency reached 75.8% when hydration time was 4 h, and the corresponding
yield of melted water was 70.6%. However, both copper (II) ion removal efficiency and the
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yield of melted water increased slowly after 4 h and copper removal efficiency even started
to decreases lightly. These results indicate that more heavy metal ions could have become
trapped between, or adsorbed onto, the surface of the hydrate crystallites when the hydra-
tion time continuously increased. Therefore, 4 h was chosen for the following experiments.
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2.3. Effect of Copper (II) Ions Concentration on Removal Efficiency

The copper (II) ion concentration of an aqueous solution is an important parameter in
the process of removal. As shown in Figure 4, the removal efficiency toward copper (II) ions
was 75.8% and the corresponding yield of melted water was 70.6% when the model solution
copper (II) ions concentrations were 100 mg/L. It can be seen that the removal efficiencies
toward copper (II) ions and the corresponding yield of melted water keeps decreasing
with an increase in initial concentrations. When copper (II) ion concentrations increased
to 200 mg/L, 300 mg/L, 400 mg/L and 500 mg/L, the copper (II) ion removal efficiency
decreased to 73.3%, 70.7%, 68.8%, and 65.6%, respectively. The yield of melted water then
decreased to 66.1%, 63.6%, 59.9%, and 56.7%, respectively. To our delight, the copper (II) ion
removal efficiencies and the corresponding yield of melted water obtained were 65.6% and
56.7% respectively, even with an initial copper concentration of 500 mg/L. In consideration
of copper (II) ion removal efficiency and yield of melted water, we chose the model solution
copper (II) ions concentration of 100 mg/L for the following experiments.
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2.4. Effect of Stirring Speed on the Copper (II) Ions Removal Efficiency

On the basis of the screening of the above conditions, we further explore the effect of
stirring speed on copper (II) ion removal efficiency. Stirring speed ranged from 200 r/min
to 1000 r/min. The results are outlined in Figure 5. Within a certain stirring speed range,
the increase of stirring speed increased copper (II) ion removal efficiency and the yield
of melted water. Although copper (II) ion removal efficiency was only 37.9% with a
stirring speed of 200 r/min, copper (II) ion removal efficiency increased to 51.3%, 60.7%,
and 75.8% respectively when the stirring speed increased to 400 r/min, 600 r/min and
800 r/min. Unfortunately, 64.6% copper (II) ion removal efficiency was obtained while the
corresponding yield of melted water obtained was 75.9% when the stirring speed increased
to 1000 r/min. The reason for this is that higher stirring speed contributes to an increase in
the volume of copper (II) ions from the solution that are adsorbed to the methane hydrate
surface. Thus, the optimal stirring speed was 800 r/min.
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3. Materials and Methods
3.1. Materials and Apparatus

Unless otherwise stated, all chemicals and reagents were commercially available in
analytical grade without further purification. Copper (II) sulfate of analytical grade was
purchased from Shanghai Macklin Chemical Co. Ltd. and distilled water was produced in
our laboratory. The weight of copper (II) sulfate was measured by an electronic balance
with an accuracy of 0.1 mg. Inductively Coupled Plasma (ICP, Optima 8300) was used
to measure the concentration of copper (II) sulfate solution. All experiments have been
conducted in an autoclave with a stirrer. The experimental flow diagram is illustrated in
Figure 6. The apparatus mainly consists of an autoclave, a stirrer with an adjustable rotation
speed, a glycol bath with temperature control system, and a system for data acquisition and
collection. A stirrer was inserted into the autoclave and the stirring speed can be controlled
from 0 r/min to 1200 r/min. A thermocouple with an accuracy of ±0.1 ◦C was inserted
from the bottom of the autoclave to monitor the temperature of experimental solutions. The
temperature of experimental solutions could be controlled from −20 ◦C to 50 ◦C by a glycol
bath. The temperature data can be collected by the data acquired and collected system.
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3.2. Experimental Procedure

According to our previous work [39,40], the autoclave and the relative connections
are cleaned three times, and then the prepared copper (II) sulfate solution was injected
into the autoclave. Then, the glycol bath was set to the experimental temperature, and
maintained for 30 min. Methane was injected into the autoclave at a certain temperature.
The stirrer was started and adjusted to the required speed to form methane hydrate. After
a certain time, the solution that was not intended to form methane hydrate was vented
out and collected with a beaker on a balance to be weighed. When all solutions were
vented into the beaker, the valve was closed to leave methane hydrate in the autoclave.
Then, the temperature was set to 20 ◦C to dissociate methane hydrate completely and the
dissociated solution was obtained. The dissociated solution was vented into another baker
and then weighed by a balance. The vented solution was collected for ion measurement
by Inductively Coupled Plasma (ICP). Unless otherwise stated, all the experiments were
repeated two times and all experimental data are the average of two repetitions. The
difference between the two repetitions is less than 1.0 wt%.

3.3. Data Analysis

The copper (II) ions removal efficiency is calculated using the following equation.

R = (W0 − W1)/W0 × 100% (1)

where R is the copper (II) sulfate removal efficiency, W0 is initial copper (II) sulfate
concentration in solution, and W1 s is copper (II) sulfate concentration in dissociated
methane hydrate.

The yield of melted water is calculated using the following equation.

Yield of melted water = Vw/Vt s × 100% (2)

where Vw is the volume of melted water obtained from methane hydrate and Vt is the total
volume of the initial solution.

4. Conclusions

In summary, we have reported an efficient and novel heavy metal copper (II) ions
removal method for waste water purification via a methane hydrate-based technology.
Ttemperature, hydration time, initial copper (II) ions concentration, and stirring rate played
an important role in the removal efficiency and the yield of the melted water. Optimal
conditions for copper (II) ion removal were: temperature −2 ◦C, hydrate-time 4 h, copper
(II) ions concentration 100 mg/L and stirring speed 800 r/min. The removal efficiency
and the according yield of melted water were 75.8% and 70.6%, respectively. Under our
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conditions, the initial concentration of copper (II) ions in the aqueous solution could be
between 100 and 500 mg/L. This report offers a reference for a gas hydrate method for
the separation of heavy metals from wastewater and demonstrated that hydrate-based
technology is a potentially useful method in separation application fields.
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