Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design
Abstract
:1. Introduction
2. Sericultural By-Products
2.1. Silk Fibroin as a Functional Biomaterial
2.2. Therapuetic Potential of Mulberry
3. Fibroin’s Impact in Anticancer Therapy
3.1. Fibroin-Based Target Delivery Systems
3.2. Fibroin-Based Tumor Models
4. Sericin in Cancer Research
5. Mulberry as an Alternative Anticancer Approach
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zang, R.; Zhang, M.; Song, P.; Liu, L.; Bie, F.; Peng, Y.; Bai, G.; Gao, S. Worldwide Burden and Epidemiological Trends of Tracheal, Bronchus, and Lung Cancer: A Population-Based Study. EBioMedicine 2022, 78, 103951. [Google Scholar] [CrossRef] [PubMed]
- Didkowska, J.; Wojciechowska, U.; Michalek, I.M.; Caetano dos Santos, F.L. Cancer Incidence and Mortality in Poland in 2019. Sci. Rep. 2022, 12, 10875. [Google Scholar] [CrossRef]
- Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current Challenges in Cancer Treatment. Clin. Ther. 2016, 38, 1551–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammon, J.M.; Dold, N.M.; Jewell, C.M. Improving the Clinical Impact of Biomaterials in Cancer Immunotherapy. Oncotarget 2016, 7, 15421. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Mooney, D.J. Biomaterials and Emerging Anticancer Therapeutics: Engineering the Microenvironment. Nat. Rev. Cancer 2016, 16, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Devarasetty, M.; Forsythe, S.D.; Shelkey, E.; Soker, S. In Vitro Modeling of the Tumor Microenvironment in Tumor Organoids. Tissue Eng. Regen. Med. 2020, 17, 759–771. [Google Scholar] [CrossRef]
- Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal Plants and Cancer Chemoprevention. Curr. Drug Metab. 2008, 9, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.J.; Jahan, S.; Singh, R.; Saxena, J.; Ashraf, S.A.; Khan, A.; Choudhary, R.K.; Balakrishnan, S.; Badraoui, R.; Bardakci, F.; et al. Plants in Anticancer Drug Discovery: From Molecular Mechanism to Chemoprevention. BioMed Res. Int. 2022, 2022, 5425485. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-Derived Anticancer Agents: A Green Anticancer Approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant Derived Substances with Anti-Cancer Activity: From Folklore to Practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef] [PubMed]
- Eo, H.J.; Park, J.H.; Park, G.H.; Lee, M.H.; Lee, J.R.; Koo, J.S.; Jeong, J.B. Anti-Inflammatory and Anti-Cancer Activity of Mulberry (Morus alba L.) Root Bark. BMC Complement. Altern. Med. 2014, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.W.C.; Wong, S.K.; Tangah, J.; Inoue, T.; Chan, H.T. Phenolic Constituents and Anticancer Properties of Morus alba (White Mulberry) Leaves. J. Integr. Med. 2020, 18, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Z.; Lin, L.; Terenius, O. Antheraea Pernyi (Lepidoptera: Saturniidae) and Its Importance in Sericulture, Food Consumption, and Traditional Chinese Medicine. J. Econom. Entomol. 2017, 110, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, T.P.S.; Tayal, M.K. Mulberry Sericulture. In Industrial Entomology; Springer: Singapore, 2017; pp. 197–263. [Google Scholar] [CrossRef]
- Chanotra, S.; Kamlesh Bali, I.; Rk Bali, I.; Corresponding, I.; Kashmir, I.; Bali, K.; Bali, R.K. Sericulture: An Opportunity for the Upliftment of Rural Livelihood. J. Entomol. Zool. Stud. 2019, 7, 1100–1103. [Google Scholar]
- Chandan, R. A Review on Genesis, Growth and Development of Bengal Artisanal Silk Industry in India. Integr. J. Res. Arts Humanit. 2022, 2, 27–37. [Google Scholar] [CrossRef]
- Bucciarelli, A.; Motta, A. Use of Bombyx mori silk fibroin in tissue engineering: From cocoons to medical devices, challenges, and future perspectives. Biomater. Adv. 2022, 139, 212982. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Analysis on the Development of China’s Modern Silk Industry. Asian Soc. Sci. 2022, 18, 27. [Google Scholar] [CrossRef]
- Ratiu, A.C.; Neagu, A.; Mihalache, R.M.; Lazar, V.; Ecovoiu, A. Molecular and Bioinformatics Analysis of the Relative Expression Profiles of Dorsal, Toll-1, Relish and Duox Genes in Young versus Old Diutinus Workers of Apis Mellifera. Rom. Biotechnol. Lett. 2016, 21, 11513–11526. [Google Scholar]
- Tabunoki, H.; Bono, H.; Ito, K.; Yokoyama, T. Can the Silkworm (Bombyx mori) Be Used as a Human Disease Model? Drug Discov. Ther. 2016, 10, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, M.; Jouraku, A.; Toyoda, A.; Yokoi, K.; Minakuchi, Y.; Katsuma, S.; Fujiyama, A.; Kiuchi, T.; Yamamoto, K.; Shimada, T. High-Quality Genome Assembly of the Silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2019, 107, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Baci, G.M.; Cucu, A.A.; Giurgiu, A.I.; Muscă, A.S.; Bagameri, L.; Moise, A.R.; Bobiș, O.; Rațiu, A.C.; Dezmirean, D.S. Advances in Editing Silkworms (Bombyx mori) Genome by Using the Crispr-Cas System. Insects 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shah, S.A.M.; Basharat, K.; Qamar, S.A.; Raza, A.; Abdullah, M.; Muhammad, B.; Hafiz, I. Silk-based nano-hydrogels for futuristic biomedical applications. J. Drug Deliv. Sci. Technol. 2022, 72, 103385. [Google Scholar] [CrossRef]
- Li, G.; Sun, S. Silk Fibroin-Based Biomaterials for Tissue Engineering Applications. Molecules 2022, 27, 2757. [Google Scholar] [CrossRef]
- Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Molecular Sciences Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1499. [Google Scholar] [CrossRef]
- Kwon, G.; Heo, B.; Kwon, M.J.; Kim, I.; Chu, J.; Kim, B.Y.; Kim, B.K.; Park, S.S. Effect of Silk Fibroin Biomaterial Coating on Cell Viability and Intestinal Adhesion of Probiotic Bacteria. J. Microbiol. Biotechnol. 2021, 31, 592–600. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.H.; Le, T.H.; Huynh, V.Q.N.; Vo, D.V.N.; Trinh, Q.T.; Kim, S.Y.; van Le, Q. Silk Fibroin F-Based Biomaterials for Biomedical Applications: A Review. Polymers 2019, 11, 1933. [Google Scholar] [CrossRef] [Green Version]
- Lujerdean, C.; Baci, G.M.; Cucu, A.A.; Dezmirean, D.S. The Contribution of Silk Fibroin in Biomedical Engineering. Insects 2022, 13, 286. [Google Scholar] [CrossRef]
- Yu, R.; Yang, Y.; He, J.; Li, M.; Guo, B. Novel Supramolecular Self-Healing Silk Fibroin-Based Hydrogel via Host–Guest Interaction as Wound Dressing to Enhance Wound Healing. Chem. Eng. J. 2021, 417, 128278. [Google Scholar] [CrossRef]
- Zheng, H.; Zuo, B. Functional Silk Fibroin Hydrogels: Preparation, Properties and Applications. J. Mater. Chem. B 2021, 9, 1238–1258. [Google Scholar] [CrossRef]
- Pudkon, W.; Laomeephol, C.; Damrongsakkul, S.; Kanokpanont, S.; Ratanavaraporn, J. Comparative Study of Silk Fibroin-based Hydrogels and Their Potential as Material for 3-dimensional (3d) Printing. Molecules 2021, 26, 3887. [Google Scholar] [CrossRef] [PubMed]
- Maity, B.; Samanta, S.; Sarkar, S.; Alam, S.; Govindaraju, T. Injectable Silk Fibroin-Based Hydrogel for Sustained Insulin Delivery in Diabetic Rats. ACS Appl. Bio Mater. 2020, 3, 3544–3552. [Google Scholar] [CrossRef] [PubMed]
- Varkey, A.; Venugopal, E.; Sugumaran, P.; Janarthanan, G.; Pillai, M.M.; Rajendran, S.; Bhattacharyya, A. Impact of Silk Fibroin-Based Scaffold Structures on Human Osteoblast MG63 Cell Attachment and Proliferation. Int. J. Nanomed. 2015, 10, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Nisal, A.; Sayyad, R.; Dhavale, P.; Khude, B.; Deshpande, R.; Mapare, V.; Shukla, S.; Venugopalan, P. Silk Fibroin Micro-Particle Scaffolds with Superior Compression Modulus and Slow Bioresorption for Effective Bone Regeneration. Sci. Rep. 2018, 8, 7235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, N.; Hushye, C.; Warunkar, S.; sen Gupta, S.; Nisal, A. In Vitro Study of Novel Microparticle Based Silk Fibroin Scaffold with Osteoblast-like Cells for Load-Bearing Osteo-Regenerative Applications. RSC Adv. 2017, 7, 26551–26558. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Ji, S.C.; Wang, Y.Z.; Shen, X.C.; Liang, H. Silk Fibroin-Based Scaffolds for Tissue Engineering. Front. Mater. Sci. 2013, 7, 237–247. [Google Scholar] [CrossRef]
- Zhu, H.M.; Liu, W.; Yin, Q.; Li, S.W.; Wang, C.Y.; Song, L.; Qiao, X. Silk Fibroin Sponge Combined with Cell-Derived ECM for Tissue-Engineered 3D Functional Neural Tissues. Sci. China Technol. Sci. 2020, 63, 2113–2122. [Google Scholar] [CrossRef]
- Najberg, M.; Haji Mansor, M.; Taillé, T.; Bouré, C.; Molina-Peña, R.; Boury, F.; Cenis, J.L.; Garcion, E.; Alvarez-Lorenzo, C. Aerogel Sponges of Silk Fibroin, Hyaluronic Acid and Heparin for Soft Tissue Engineering: Composition-Properties Relationship. Carbohydr. Polym. 2020, 237, 116107. [Google Scholar] [CrossRef]
- Siavashani, A.Z.; Mohammadi, J.; Rottmar, M.; Senturk, B.; Nourmohammadi, J.; Sadeghi, B.; Huber, L.; Maniura-Weber, K. Silk Fibroin/Sericin 3D Sponges: The Effect of Sericin on Structural and Biological Properties of Fibroin. Int. J. Biol. Macromol. 2020, 153, 317–326. [Google Scholar] [CrossRef]
- Kambe, Y.; Kojima, K.; Tamada, Y.; Tomita, N.; Kameda, T. Silk Fibroin Sponges with Cell Growth-Promoting Activity Induced by Genetically Fused Basic Fibroblast Growth Factor. J. Biomed. Mater. Res. A 2016, 104, 82–93. [Google Scholar] [CrossRef]
- Zhaorigetu, S.; Sasaki, M.; Watanabe, H.; Kato, N. Supplemental Silk Protein, Sericin, Suppresses Colon Tumorigenesis in 1,2-Dimethylhydrazine-Treated Mice by Reducing Oxidative Stress and Cell Proliferation. Biosci. Biotechnol. Biochem. 2001, 65, 2181–2186. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.L.; Zhang, S.X.; Tao, H.; Chen, Z.H.; Li, X.; Qiu, J.F.; Cui, W.Z.; Sima, Y.H.; Cui, W.Z.; Xu, S.Q. Metabolomics Differences between Silkworms (Bombyx mori) Reared on Fresh Mulberry (Morus) Leaves or Artificial Diets. Sci. Rep. 2017, 7, 10972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, K.K.; Banerjee, I.; Mayookha, V.P. Recent Trends in the Development and Diversification of Sericulture Natural Products for Innovative and Sustainable Applications. Bioresour. Technol. Rep. 2021, 13, 100614. [Google Scholar] [CrossRef]
- Kim, H.-B.; Ryu, S.; Baek, J.-S. The Effect of Hot-Melt Extrusion of Mulberry Leaf on the Number of Active Compounds and Antioxidant Activity. Plants 2022, 11, 3019. [Google Scholar] [CrossRef]
- de Pádua Lúcio, K.; Rabelo, A.C.S.; Araújo, C.M.; Brandão, G.C.; de Souza, G.H.B.; da Silva, R.G.; de Souza, D.M.S.; Talvani, A.; Bezerra, F.S.; Cruz Calsavara, A.J.; et al. Anti-Inflammatory and Antioxidant Properties of Black Mulberry (Morus nigra L.) in a Model of LPS-Induced Sepsis. Oxid. Med. Cell. Longev. 2018, 2018, 5048031. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, M.F.; Hussain, A.; Tazeddinova, D.; Abylgazinova, A.; Xu, B. Assessing the Nutritional-Value-Based Therapeutic Potentials and Non-Destructive Approaches for Mulberry Fruit Assessment: An Overview. Comput. Intell. Neurosci. 2022, 2022. [Google Scholar] [CrossRef]
- Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry Leaves and Their Potential Effects against Cardiometabolic Risks: A Review of Chemical Compositions, Biological Properties and Clinical Efficacy. Pharm. Biol. 2018, 56, 109–118. [Google Scholar] [CrossRef]
- Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant Activity of Mulberry Fruit Extracts. Int. J. Mol. Sci. 2012, 13, 2472–2480. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lye, P.Y.; Wong, S.K. Phytochemistry, Pharmacology, and Clinical Trials of Morus alba. Chin. J. Nat. Med. 2016, 14, 17–30. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.B.; Wang, S.W.; Zhou, Y.; Tang, Z.S.; Li, F. Mulberry Granules Protect against Diabetic Cardiomyopathy through the AMPK/Nrf2 Pathway. Int. J. Mol. Med. 2017, 40, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.S.; Lim, S.H.; Lee, S.R.; Choi, C.I.; Kim, K.H. Antioxidant and Anti-Inflammatory Effects of White Mulberry (Morus alba L.) Fruits on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Molecules 2021, 26, 920. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Liang, J.; Ai, J.-Y.; Cui, J.-L.; Huang, W.-D.; You, Y.-L.; Zhan, J.-C. Mulberry Ethanol Extract and Rutin Protect Alcohol-Damaged GES-1 Cells by Inhibiting the MAPK Pathway. Molecules 2022, 27, 4266. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Lee, S.M.; Lee, J.; Kim, J.H. Anti-Inflammatory Activity of Mulberry Leaf Extract through Inhibition of NF-ΚB. J. Funct. Foods 2013, 5, 178–186. [Google Scholar] [CrossRef]
- Tilak, R.; Rahmathulla, V.K.; Rajan, R.K. Influence of Moisture Content of Mulberry Leaf on Growth and Silk Production in Bombyx mori L. Casp. J. Environ. Sci. 2006, 4, 25–30. [Google Scholar]
- Thangapandiyan, S.; Dharanipriya, R. Comparative Study of Nutritional and Economical Parameters of Silkworm (Bombyx mori) Treated with Silver Nanoparticles and Spirulina. J. Basic Appl. Zool. 2019, 80, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abdelkarim, S.; Mohamed, G.S. Effect of Pollen a Bee-Hive Product on Some Physiological, Biochemical and Economical Characteristics of Silkworm, Bombyx mori L. SVU Int. J. Agric. Sci. 2022, 4, 79–89. [Google Scholar] [CrossRef]
- Bhatti, M.F.; Azizullah; Shahzadi, N.; Tahir, H.M.; Ali, S.; Zahid, M.T.; Khurshid, R. Effect of Honey (Apis Dorsata [Hymenoptera: Apidae]) on Larval Growth and Silk Cocoon Yield of Bombyx mori (Lepidoptera: Bombycidae). J. Insect Sci. 2019, 19, 11. [Google Scholar] [CrossRef]
- He, Z.; Fang, Y.; Li, D.C.; Chen, D.S.; Wu, F. Effect of Lactic Acid Supplementation on the Growth and Reproduction of Bombyx mori (Lepidopteria: Bombycidae). J. Insect Sci. 2021, 21, 7. [Google Scholar] [CrossRef]
- Lineke, N.; Tulung, M.; Pelealu, J.; Tulung, B. The Effect of Palm Sugar Supplementation on Feed Consumption and Percentage of Silkworms (Bombyx mori L.) in the End of Instar V. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 377–381. [Google Scholar]
- Marin, G.; Arivoli, S.; Tennyson, S. Effect of Micronutrient Supplemented Mulberry Leaves on Larvae of Silk Worm Bombyx mori. Indian J. Entomol. 2022, 1–7. [Google Scholar] [CrossRef]
- Rani, G.; Padmalatha, C.; Raj, S.R.; Singh, A.J.A.R. Impact of Supplementation of Amway Protein on the Economic Characters and Energy Budget of Silkworm Bombyx mori L. Asian J. Anim. Sci. 2011, 5, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Nazim, N.; Buhroo, Z.I.; Mushtaq, N.; Javid, K.; Rasool, S.; Mir, G.M. Medicinal Values of Products and by Products of Sericulture. J. Pharmacogn. Phytochem. 2017, 6, 1388–1392. [Google Scholar]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.Y.; Kim, I.S.; Zhang, K.Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci. 2017, 18, 237. [Google Scholar] [CrossRef] [PubMed]
- Jastrzebska, K.; Kucharczyk, K.; Florczak, A.; Dondajewska, E.; Mackiewicz, A.; Dams-Kozlowska, H. Silk as an Innovative Biomaterial for Cancer Therapy. Rep. Pract. Oncol. Radiother. 2015, 20, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Asakura, T. Structure of Silk I (Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, not α-Helix. Molecules 2021, 26, 3706. [Google Scholar] [CrossRef]
- Vepari, C.; Kaplan, D.L. Silk as a Biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Gupta, P.; Joseph Christakiran, M.; Nandi, S.K.; Mandal, B.B. Silk-Based Matrices for Bone Tissue Engineering Applications. In Nanostructures for the Engineering of Cells, Tissues and Organs: From Design to Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 439–472. [Google Scholar] [CrossRef]
- Seib, F.P.; Pritchard, E.M.; Kaplan, D.L. Self-Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer. Adv. Funct. Mater. 2013, 23, 58–65. [Google Scholar] [CrossRef]
- Blake, S.; Kim, N.Y.; Kong, N.; Ouyang, J.; Tao, W. Silk’s Cancer Applications as a Biodegradable Material. Mater. Today Sustain. 2021, 13, 100069. [Google Scholar] [CrossRef]
- Talley, N.J. Functional Gastrointestinal Disorders as a Public Health Problem. Neurogastroenterol. Motil. 2008, 20, 121–129. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Soccol, C.R.; Porto De Souza Vandenberghe, L.; Spier, M.R.; Bianchi, A.; Medeiros, P.; Yamaguishi, C.T.; De, J.; Lindner, D.; Pandey, A.; Thomaz-Soccol, V. The Potential of Probiotics: A Review. Food Technol. Biotechnol. 2010, 48, 413–434. [Google Scholar]
- Zhu, Y.; Wang, Z.; Bai, L.; Deng, J.; Zhou, Q. Biomaterial-Based Encapsulated Probiotics for Biomedical Applications: Current Status and Future Perspectives. Mater. Des. 2021, 210, 110018. [Google Scholar] [CrossRef]
- Muhardina, V.; Ermaya, D.; Aisyah, Y.; Haryani, S. Quality Evaluation of Probiotic Capsule Prepared from Alginate, Carrageenan and Tofu Waste Flour Based on Bacterial Activity and Organoleptic Test. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2018; Volume 122. [Google Scholar] [CrossRef]
- Diep, E.; Schiffman, J.D. Encapsulating Bacteria in Alginate-Based Electrospun Nanofibers. Biomater. Sci. 2021, 9, 4364–4373. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Lee, A.; Chang, S.L.; Shien-Fong, L. Biomaterial-Induced Conversion of Quiescent Cardiomyocytes into Pacemaker Cells in Rats. Nat. Biomed. Eng. 2022, 6, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Phamornnak, C.; Han, B.; Spencer, B.F.; Ashton, M.D.; Blanford, C.F.; Hardy, J.G.; Blaker, J.J.; Cartmell, S.H. Instructive Electroactive Electrospun Silk Fibroin-Based Biomaterials for Peripheral Nerve Tissue Engineering. Biomater. Adv. 2022, 141, 213094. [Google Scholar] [CrossRef]
- Liu, S.; Gao, X.; Wang, Y.; Wang, J.; Qi, X.; Dong, K.; Shi, D.; Wu, X.; Guo, C. Baicalein-Loaded Silk Fibroin Peptide Nanofibers Protect against Cisplatin-Induced Acute Kidney Injury: Fabrication, Characterization and Mechanism. Int. J. Pharm. 2022, 626, 122161. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, J.S.; Ajiteru, O.; Lee, O.J.; Lee, J.S.; Lee, H.; Kim, S.W.; Park, J.W.; Kim, K.Y.; Choi, K.Y.; et al. Biocompatible Fluorescent Silk Fibroin Bioink for Digital Light Processing 3D Printing. Int. J. Biol. Macromol. 2022, 213, 317–327. [Google Scholar] [CrossRef]
- Lau, K.; Waterhouse, A.; Akhavan, B.; Gao, L.; Kim, H.N.; Tang, F.; Whitelock, J.M.; Bilek, M.M.; Lord, M.S.; Rnjak-Kovacina, J. Biomimetic Silk Biomaterials: Perlecan-Functionalized Silk Fibroin for Use in Blood-Contacting Devices. Acta Biomater. 2021, 132, 162–175. [Google Scholar] [CrossRef]
- Gharehnazifam, Z.; Dolatabadi, R.; Baniassadi, M.; Shahsavari, H.; Kajbafzadeh, A.M.; Abrinia, K.; Gharehnazifam, K.; Baghani, M. Multiphysics Modeling and Experiments on Ultrasound-Triggered Drug Delivery from Silk Fibroin Hydrogel for Wilms Tumor. Int. J. Pharm. 2022, 621, 121787. [Google Scholar] [CrossRef]
- Phan, V.H.G.; Murugesan, M.; Nguyen, P.P.T.; Luu, C.H.; Le, N.H.H.; Nguyen, H.T.; Manivasagan, P.; Jang, E.S.; Li, Y.; Thambi, T. Biomimetic Injectable Hydrogel Based on Silk Fibroin/Hyaluronic Acid Embedded with Methylprednisolone for Cartilage Regeneration. Colloids Surf. B Biointerfaces 2022, 219, 112859. [Google Scholar] [CrossRef]
- Lu, X.; Sun, Y.; Han, M.; Chen, D.; Wang, A.; Sun, K. Silk Fibroin Double-Layer Microneedles for the Encapsulation and Controlled Release of Triptorelin. Int. J. Pharm. 2022, 613, 121433. [Google Scholar] [CrossRef]
- Crakes, K.R.; Herrera, C.; Morgan, J.L.; Olstad, K.; Hessell, A.J.; Ziprin, P.; Liwang, P.J.; Dandekar, S. Efficacy of Silk Fibroin Biomaterial Vehicle for in Vivo Mucosal Delivery of Griffithsin and Protection against HIV and SHIV Infection Ex Vivo. J. Int. AIDS Soc. 2020, 23, e25628. [Google Scholar] [CrossRef]
- Križman, K.; Novak, S.; Kristl, J.; Majdič, G.; Drnovšek, N. Long-Acting Silk Fibroin Xerogel Delivery Systems for Controlled Release of Estradiol. J. Drug Deliv. Sci. Technol. 2021, 65, 102701. [Google Scholar] [CrossRef]
- Li, Z.; Meng, Z.; Zhao, Z. Silk Fibroin Nanofibrous Scaffolds Incorporated with MicroRNA-222 Loaded Chitosan Nanoparticles for Enhanced Neuronal Differentiation of Neural Stem Cells. Carbohydr. Polym. 2022, 277, 118791. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Mitriashkin, A.; Lim, T.T.; Goh, J.C.H. Conductive Polypyrrole-Encapsulated Silk Fibroin Fibers for Cardiac Tissue Engineering. Biomaterials 2021, 276, 121008. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, Y.; Chen, B.; Li, Y.; Zhu, P.; Wang, P.; Yan, S.; Li, Y.; Yang, F.; Gu, N. Novel Magnetic Silk Fibroin Scaffolds with Delayed Degradation for Potential Long-Distance Vascular Repair. Bioact. Mater. 2022, 7, 126–143. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Wang, Y.; Li, G.; Zheng, Z.; Kaplan, D.L.; Wang, X.; Wang, X. Flexible Water-Absorbing Silk-Fibroin Biomaterial Sponges with Unique Pore Structure for Tissue Engineering. ACS Biomater. Sci. Eng. 2020, 6, 1641–1649. [Google Scholar] [CrossRef]
- Baptista, M.; Joukhdar, H.; Alcala-Orozco, C.R.; Lau, K.; Jiang, S.; Cui, X.; He, S.; Tang, F.; Heu, C.; Woodfield, T.B.F.; et al. Silk Fibroin Photo-Lyogels Containing Microchannels as a Biomaterial Platform for: In Situ Tissue Engineering. Biomater. Sci. 2020, 8, 7093–7105. [Google Scholar] [CrossRef]
- Qi, Z.; Cao, J.; Tao, X.; Wu, X.; Kundu, S.C.; Lu, S. Silk Fibroin Microneedle Patches for the Treatment of Insomnia. Pharmaceutics 2021, 13, 2198. [Google Scholar] [CrossRef]
- Chou, K.C.; Chen, C.T.; Cherng, J.H.; Li, M.C.; Wen, C.C.; Hu, S.I.; Wang, Y.W. Cutaneous Regeneration Mechanism of β-Sheet Silk Fibroin in a Rat Burn Wound Healing Model. Polymers 2021, 13, 3537. [Google Scholar] [CrossRef]
- Sun, M.; Li, Q.; Yu, H.; Cheng, J.; Wu, N.; Shi, W.; Zhao, F.; Shao, Z.; Meng, Q.; Chen, H.; et al. Cryo-Self-Assembled Silk Fibroin Sponge as a Biodegradable Platform for Enzyme-Responsive Delivery of Exosomes. Bioact. Mater. 2022, 8, 505–514. [Google Scholar] [CrossRef]
- Kiritani, S.; Kaneko, J.; Ito, D.; Morito, M.; Ishizawa, T.; Akamatsu, N.; Tanaka, M.; Iida, T.; Tanaka, T.; Tanaka, R.; et al. Silk Fibroin Vascular Graft: A Promising Tissue-Engineered Scaffold Material for Abdominal Venous System Replacement. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lovati, A.B.; Lopa, S.; Bottagisio, M.; Talò, G.; Canciani, E.; Dellavia, C.; Alessandrino, A.; Biagiotti, M.; Freddi, G.; Segatti, F.; et al. Peptide-Enriched Silk Fibroin Sponge and Trabecular Titanium Composites to Enhance Bone Ingrowth of Prosthetic Implants in an Ovine Model of Bone Gaps. Front. Bioeng. Biotechnol. 2020, 8, 563203. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Higuchi, A.; Kubo, R.; Murakami, T.; Nakazawa, Y.; Tanaka, R. The Effect of a Silk Fibroin/Polyurethane Blend Patch on Rat Vessels. Organogenesis 2017, 13, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-khoei, H. Medicinal Plants: Past History and Future Perspective. J. Herbmed Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A.; Dentistry, C. The Role and Place of Medicinal Plants In The Strategies For Disease Prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef]
- Londhe, V.P.; Gavasane, A.T.; Nipate, S.S.; Bandawane, D.D.; Chaudhari, P.D. Role of Garlic (Allium Sativum) in Various Diseases: An Overview. J. Pharm. Res. Opin. 2011, 1, 13. [Google Scholar]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus Limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Pervin, M.; Hasnat, M.A.; Lim, B.O. Antibacterial and Antioxidant Activities of Vaccinium Corymbosum L. Leaf Extract. Asian Pac. J. Trop. Dis. 2013, 3, 444–453. [Google Scholar] [CrossRef]
- Hao, J.; Gao, Y.; Xue, J.; Yang, Y.; Yin, J.; Wu, T. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022, 11, 1170. [Google Scholar] [CrossRef]
- Ramesh, H.L.; Sivaram, V.; Murthy, V.N.Y. Antioxidant and Medicinal Properties of Mulberry (Morus Sp.): A Review. World J. Pharm. Res. 2014, 3, 320–343. [Google Scholar]
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Groza, F.M.; Venter, A.C.; Vicas, S.I. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application In food industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit—A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Arora, S.; Kaur, J.; Manhas, R.K. Phenolic Compounds as Antioxidants and Chemopreventive Drugs from Streptomyces Cellulosae Strain TES17 Isolated from Rhizosphere of Camellia Sinensis. BMC Complement. Altern. Med. 2018, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic Compounds: From Plants to Foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Zhu, Z.; Jun-jie, J.; Jie, Y.U.; Xiang-bing, M.A.O.; Bing, Y.U.; Dai-wen, C. Effect of Dietary Supplementation with Mulberry (Morus alba L.) Leaves on the Growth Performance, Meat Quality and Antioxidative Capacity of Finishing Pigs. J. Integr. Agric. 2019, 18, 143–151. [Google Scholar] [CrossRef]
- Hu, L.; Chen, D.; Zhou, W.; Chen, X.; Zhang, Q. Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf. Molecules 2023, 28, 148. [Google Scholar] [CrossRef]
- Horng, C.; Liu, Z.; Huang, Y.; Lee, H. Extract from Mulberry (Morus Australis) Leaf Decelerate Acetaminophen Induced Hepatic Inflammation Involving Downregulation of Myeloid Differentiation Factor 88 (MyD88) Signals. J. Food Drug Anal. 2016, 25, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Gu, P.S.; Moon, M.; Choi, J.G.; Oh, M.S. Mulberry Fruit Ameliorates Parkinson’s-Disease-Related Pathology by Reducing α -Synuclein and Ubiquitin Levels in a. J. Nutr. Biochem. 2017, 39, 15–21. [Google Scholar] [CrossRef]
- Hu, L.; Wang, C.; Guo, X.; Chen, D.; Zhou, W.; Chen, X. Flavonoid Levels and Antioxidant Capacity of Mulberry Leaves: Effects of Growth Period and Drying Methods. Front. Plant Sci. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jaruchotikamol, A.; Pannangpetch, P. Cytoprotective Activity of Mulberry Leaf Extract against Oxidative Stress-Induced Cellular Injury in Rats. Pak. J. Pharm. Sci. 2013, 26, 163–168. [Google Scholar]
- Xv, Z.C.; He, G.L.; Wang, X.L.; Shun, H.; Chen, Y.J.; Lin, S.M. Mulberry Leaf Powder Ameliorate High Starch-Induced Hepatic Oxidative Stress and Inflammation in Fish Model. Anim. Feed Sci. Technol. 2021, 278, 114834. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Chen, Y.; Li, N.; Wang, Q.; Zhang, M.; He, C.; Chen, H. A Combined Network Pharmacology and Molecular Biology Approach to Investigate the Active Ingredients and Potential Mechanisms of Mulberry (Morus alba L.) Leaf on Obesity. Phytomedicine 2021, 92, 153714. [Google Scholar] [CrossRef]
- Tu, J.; Shi, D.; Wen, L.; Jiang, Y.; Zhao, Y.; Yang, J.; Liu, H.; Liu, G.; Yang, B. Identification of Moracin N in Mulberry Leaf and Evaluation of Antioxidant Activity. Food Chem. Toxicol. 2019, 132, 110730. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Tang, X.; Shao, X.; Han, D.; Zhang, H.; Shan, Y.; Gooneratne, R.; Shi, L.; Wu, X.; Hosseininezhad, M. Mulberry (Morus Atropurpurea Roxb.) Leaf Protein Hydrolysates Ameliorate Dextran Sodium Sulfate-Induced Colitis via Integrated Modulation of Gut Microbiota and Immunity. J. Funct. Foods 2021, 84, 104575. [Google Scholar] [CrossRef]
- Fan, L.; Peng, Y.; Wu, D.; Hu, J.; Shi, X.; Yang, G.; Li, X. Dietary Supplementation of Morus Nigra L. Leaves Decrease Fat Mass Partially through Elevating Leptin-Stimulated Lipolysis in Pig Model. J. Ethnopharmacol. 2020, 249, 112416. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Jiang, W.; Bai, H.; Li, J.; Zhu, H.; Xu, L.; Li, Y.; Li, K.; Tang, H.; Duan, W.; et al. Study on Active Components of Mulberry Leaf for the Prevention and Treatment of Cardiovascular Complications of Diabetes. J. Funct. Foods 2021, 83, 104549. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, T.; Jiang, Y.; Gong, L.; Yang, B. Identification of Prenylated Phenolics in Mulberry Leaf and Their Neuroprotective Activity. Phytomedicine 2021, 90, 153641. [Google Scholar] [CrossRef]
- Li, R.; Xue, Z.; Jia, Y.; Wang, Y.; Li, S.; Zhou, J.; Liu, J.; Zhang, M.; He, C.; Chen, H. Polysaccharides from Mulberry (Morus alba L.) Leaf Prevents Obesity by Inhibiting Pancreatic Lipase in High-Fat Diet Induced Mice. Int. J. Biol. Macromol. 2021, 192, 452–460. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural Product-Based Nanoformulations for Cancer Therapy: Opportunities and Challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Wathoni, N.; Nguyen, A.N.; Rusdin, A.; Umar, A.K.; Mohammed, A.F.A.; Motoyama, K.; Joni, I.M.; Muchtaridi, M. Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System. Drug Des. Dev. Ther. 2020, 14, 4387–4405. [Google Scholar] [CrossRef] [PubMed]
- Mottaghitalab, F.; Kiani, M.; Farokhi, M.; Kundu, S.C.; Reis, R.L.; Gholami, M.; Bardania, H.; Dinarvand, R.; Geramifar, P.; Beiki, D.; et al. Targeted Delivery System Based on Gemcitabine-Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 31600–31611. [Google Scholar] [CrossRef]
- Zare-Zardini, H.; Vojdani Nejad Yazdi, S.; Zandian, A.; Zare, F.; Miresmaeili, S.M.; Dehghan-Manshadi, M.; Fesahat, F. Synthesis, Characterization, and Biological Evaluation of Doxorubicin Containing Silk Fibroin Micro- and Nanoparticles. J. Indian Chem. Soc. 2021, 98, 100161. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Q.; Wang, Q.; Qian, H.; Yu, L.; Liu, B.; Li, R. Novel Silk Fibroin Nanoparticles Incorporated Silk Fibroin Hydrogel for Inhibition of Cancer Stem Cells and Tumor Growth. Int. J. Nanomed. 2018, 13, 5405–5418. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, M.; Jin, S.; Fan, L.; Zhu, W.; Sui, X.; Cao, L.; Yang, C.; Han, C. Combined Using of Paclitaxel and Salinomycin Active Targeting Nanostructured Lipid Carriers against Non-Small Cell Lung Cancer and Cancer Stem Cells. Drug Deliv. 2019, 26, 281–289. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, S.J.; Chung, H.W.; Kwon, S.H.; do Cha, S.; Lee, J.E.; Cho, C.H. Salinomycin Reduces Stemness and Induces Apoptosis on Human Ovarian Cancer Stem Cell. J. Gynecol. Oncol. 2017, 28, e14. [Google Scholar] [CrossRef] [Green Version]
- Suyamud, C.; Phetdee, C.; Jaimalai, T.; Prangkio, P. Silk Fibroin-Coated Liposomes as Biomimetic Nanocarrier for Long-Term Release Delivery System in Cancer Therapy. Molecules 2021, 26, 4936. [Google Scholar] [CrossRef]
- Montalbán, M.G.; Coburn, J.M.; Lozano-Pérez, A.A.; Cenis, J.L.; Víllora, G.; Kaplan, D.L. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. Nanomaterials 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Nasrine, A.; Gulzar Ahmed, M.; Narayana, S. Silk Fibroin-Anastrozole Loaded Prolonged-Release Biodegradable Nanomedicine: A Promising Drug Delivery System for Breast Cancer Therapy. Mater. Today Proc. 2022, 68, 56–65. [Google Scholar] [CrossRef]
- Tan, M.; Liu, W.; Liu, F.; Zhang, W.; Gao, H.; Cheng, J.; Chen, Y.; Wang, Z.; Cao, Y.; Ran, H. Silk Fibroin-Coated Nanoagents for Acidic Lysosome Targeting by a Functional Preservation Strategy in Cancer Chemotherapy. Theranostics 2019, 9, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Adali, T.; Tulay, P.; Altinoglu, G. Micro-Encapsulation of Anticancer Drug Carboplatin in Silk Fibroin and Chitosan Nano/Micro Particles as Breast Cancer Treatment. J. Biotechnol. 2019, 305, S65. [Google Scholar] [CrossRef]
- Qu, J.; Liu, Y.; Yu, Y.; Li, J.; Luo, J.; Li, M. Silk Fibroin Nanoparticles Prepared by Electrospray as Controlled Release Carriers of Cisplatin. Mater. Sci. Eng. C 2014, 44, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Lerdchai, K.; Kitsongsermthon, J.; Ratanavaraporn, J.; Kanokpanont, S.; Damrongsakkul, S. Thai Silk Fibroin/Gelatin Sponges for the Dual Controlled Release of Curcumin and Docosahexaenoic Acid for Anticancer Treatment. J. Pharm. Sci. 2016, 105, 221–230. [Google Scholar] [CrossRef]
- Norouzi, P.; Motasadizadeh, H.; Atyabi, F.; Dinarvand, R.; Gholami, M.; Farokhi, M.; Shokrgozar, M.A.; Mottaghitalab, F. Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin SiRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomater. Sci. Eng. 2021, 7, 1074–1087. [Google Scholar] [CrossRef]
- Fuster, M.G.; Carissimi, G.; Montalbán, M.G.; Víllora, G. Antitumor Activity of Rosmarinic Acid-Loaded Silk Fibroin Nanoparticles on Hela and MCF-7 Cells. Polymers 2021, 13, 3169. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, X.; Chen, X.; Shao, Z.; Yang, W. Doxorubicin-Loaded Magnetic Silk Fibroin Nanoparticles for Targeted Therapy of Multidrug-Resistant Cancer. Adv. Mater. 2014, 26, 7393–7398. [Google Scholar] [CrossRef]
- Peng, Z.; Li, M.; Wang, Y.; Yang, H.; Wei, W.; Liang, M.; Shi, J.; Liu, R.; Li, R.; Zhang, Y.; et al. Self-Assembling Imageable Silk Hydrogels for the Focal Treatment of Osteosarcoma. Front. Cell Dev. Biol. 2022, 10, 698282. [Google Scholar] [CrossRef]
- Pham, D.T.; Saelim, N.; Tiyaboonchai, W. Paclitaxel Loaded EDC-Crosslinked Fibroin Nanoparticles: A Potential Approach for Colon Cancer Treatment. Drug Deliv. Transl. Res. 2020, 10, 413–424. [Google Scholar] [CrossRef]
- Yavuz, B.; Zeki, J.; Coburn, J.M.; Ikegaki, N.; Levitin, D.; Kaplan, D.L.; Chiu, B. In Vitro and in Vivo Evaluation of Etoposide—Silk Wafers for Neuroblastoma Treatment. J. Control. Release 2018, 285, 162–171. [Google Scholar] [CrossRef]
- Ornell, K.J.; Chiu, B.; Coburn, J.M. Development of a Dinutuximab Delivery System Using Silk Foams for GD2 Targeted Neuroblastoma Cell Death. J. Biomed. Mater. Res. A 2021, 109, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Wahid, M.A.; Wang, Z.; Xie, C.; Thakkar, A.; Prabhu, S.; Wang, J. Triptolide and Celastrol Loaded Silk Fibroin Nanoparticles Show Synergistic Effect against Human Pancreatic Cancer Cells. Nanoscale 2017, 9, 11739–11753. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, H.; Fattahi, A.; Sadrjavadi, K.; Khaledian, S.; Shokoohinia, Y. Preparation and Characterization of Silk Fibroin Nanoparticles as a Potential Drug Delivery System for 5-Fluorouracil. Adv. Pharm. Bull. 2019, 9, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Chen, G.; Feng, Y.; Liu, X.; Pan, P.; Huang, L.; Guo, Y.; Li, M. Polyethylenimine-Modified Bombyx mori Silk Fibroin as a Delivery Carrier of the ING4-IL-24 Coexpression Plasmid. Polymers 2021, 13, 3592. [Google Scholar] [CrossRef] [PubMed]
- al Saqr, A.; Wani, S.U.D.; Gangadharappa, H.v.; Aldawsari, M.F.; Khafagy, E.S.; Abu Lila, A.S. Enhanced Cytotoxic Activity of Docetaxel-Loaded Silk Fibroin Nanoparticles against Breast Cancer Cells. Polymers 2021, 13, 1416. [Google Scholar] [CrossRef]
- Ma, P.; Gou, S.; Wang, M.; Chen, J.; Hu, W.; Xiao, B. Knitted Silk Fibroin-Reinforced Bead-on-String Electrospun Fibers for Sustained Drug Delivery Against Colon Cancer. Macromol. Mater. Eng. 2018, 303, 1700666. [Google Scholar] [CrossRef]
- Moin, A.; Wani, S.U.D.; Osmani, R.A.; Abu Lila, A.S.; Khafagy, E.S.; Arab, H.H.; Gangadharappa, H.v.; Allam, A.N. Formulation, Characterization, and Cellular Toxicity Assessment of Tamoxifen-Loaded Silk Fibroin Nanoparticles in Breast Cancer. Drug Deliv. 2021, 28, 1626–1636. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Jiang, Z.; Li, L.; Huang, Z. Selenium Nanoparticles Coated with PH Responsive Silk Fibroin Complex for Fingolimod Release and Enhanced Targeting in Thyroid Cancer. Artif. Cells Nanomed. Biotechnol. 2021, 49, 83–95. [Google Scholar] [CrossRef]
- Balachander, G.M.; Kotcherlakota, R.; Nayak, B.; Kedaria, D.; Rangarajan, A.; Chatterjee, K. 3D Tumor Models for Breast Cancer: Whither We Are and What We Need. ACS Biomater. Sci. Eng. 2021, 7, 3470–3486. [Google Scholar] [CrossRef]
- Braccini, S.; Tacchini, C.; Chiellini, F.; Puppi, D. Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. Int. J. Mol. Sci. 2022, 23, 3265. [Google Scholar] [CrossRef]
- Carvalho, M.R.; Lima, D.; Reis, R.L.; Correlo, V.M.; Oliveira, J.M. Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models. Trends Biotechnol. 2015, 33, 667–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahcecioglu, G.; Basara, G.; Ellis, B.W.; Ren, X.; Zorlutuna, P. Breast Cancer Models: Engineering the Tumor Microenvironment. Acta Biomater. 2020, 106, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Buhome, O.; Wongwattanakul, M.; Daduang, J.; Limpaiboon, T. 3D Silk Fibroin-Gelatin/Hyaluronic Acid/Heparan Sulfate Scaffold Enhances Expression of Stemness and EMT Markers in Cholangiocarcinoma. In Vivo 2022, 36, 1155–1167. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Silva-Correia, J.; Gonçalves, C.; Pina, S.; Radhouani, H.; Montonen, T.; Hyttinen, J.; Roy, A.; Oliveira, A.L.; Reis, R.L.; et al. Rapidly Responsive Silk Fibroin Hydrogels as an Artificial Matrix for the Programmed Tumor Cells Death. PLoS ONE 2018, 13, e0194441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dondajewska, E.; Juzwa, W.; Mackiewicz, A.; Dams-Kozlowska, H. Heterotypic Breast Cancer Model Based on a Silk Fibroin Scaffold to Study the Tumor Microenvironment. Oncotarget 2017, 9, 4935. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Xiao, J.; Lou, X.; Guo, L.; Zhang, Y.; Yang, R.; Yang, H.; Wang, S.; Niu, F. Three-Dimensional Silk Fibroin/Chitosan Based Microscaffold for Anticancer Drug Screening. Front. Bioeng. Biotechnol. 2022, 10, 800830. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Chen, W.; Yuan, Z.; You, B.; Liu, Y.; Yang, S.; Li, F.; Qu, C.; Zhang, X. A Novel 3D in Vitro Tumor Model Based on Silk Fibroin/Chitosan Scaffolds to Mimic the Tumor Microenvironment. ACS Appl. Mater. Interfaces 2018, 10, 36641–36651. [Google Scholar] [CrossRef]
- Jeong, H.-L.; Kang, E.-B.; Yun, S.-G.; Park, D.-b.; Lim, J.-O.; Suh, J.-S. Effect of a Silk Sericin and Methylsulfonylmethane (MSM) Blends on Inflammatory Response and Wound Healing. Appl. Sci. 2023, 13, 288. [Google Scholar] [CrossRef]
- Ashraaf, S.; Muhammad Tahir, H.; Yar Khan, S.; Tahir, H.M.; Ashraaf, S. Synergistic Effect of Silk Sericin and Curcumin to Treat an Inflammatory Condition. J. Burn Care Res. 2023, 44, 106–113. [Google Scholar] [CrossRef]
- Suzuki, S.; Sakiragaoglu, O.; Chirila, T.v. Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 2022, 27, 4635. [Google Scholar] [CrossRef]
- Kaewkorn, W.; Limpeanchob, N.; Tiyaboonchai, W.; Pongcharoen, S.; Sutheerawattananonda, M. Effects of Silk Sericin on the Proliferation and Apoptosis of Colon Cancer Cells. Biol. Res. 2012, 45, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, I.C.; Zaharia, C.; Hudiță, A.; Tanasă, E.; Ginghină, O.; Marin, M.; Gălățeanu, B.; Costache, M. In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with Mcf-7 Breast Cancer Cells Leads to Dna Damage. Polymers 2021, 13, 2047. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Deng, L.; Yu, J.; Chen, Z.; Woo, Y.; Liu, H.; Li, T.; Lin, T.; Chen, H.; Zhao, M.; et al. Sericin Nanomicelles with Enhanced Cellular Uptake and Ph-Triggered Release of Doxorubicin Reverse Cancer Drug Resistance. Drug Deliv. 2018, 25, 1103–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.E.; Hou, S.; Cheng, J.; Li, X.; Wu, Y.; Tang, Y.; Li, Y.; Xue, P.; Kang, Y.; Xu, Z.; et al. Silk Sericin-Based Nanoparticle as the Photosensitizer Chlorin E6 Carrier for Enhanced Cancer Photodynamic Therapy. ACS Sustain. Chem. Eng. 2021, 9, 3213–3222. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Fu, D.; Yuan, Y.; Li, Q.; Shi, L.; Wang, G.; Wang, Z.; Wang, L. Sericin Microparticles Enveloped with Metal-Organic Networks as a Pulmonary Targeting Delivery System for Intra-Tracheally Treating Metastatic Lung Cancer. Bioact. Mater. 2021, 6, 273–284. [Google Scholar] [CrossRef]
- Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Li, Q.; et al. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment. ACS Appl. Mater. Interfaces 2016, 8, 6411–6422. [Google Scholar] [CrossRef]
- Guo, W.; Deng, L.; Chen, Z.; Chen, Z.; Yu, J.; Liu, H.; Li, T.; Lin, T.; Chen, H.; Zhao, M.; et al. Vitamin B12-Conjugated Sericin Micelles for Targeting CD320-Overexpressed Gastric Cancer and Reversing Drug Resistance. Nanomedicine 2019, 14, 353–370. [Google Scholar] [CrossRef]
- Akbal, Ö. Sericin-Montmorillonite Composite Nanoparticles as Drug Delivery System in Human Liver Cancer: Development, Drug Release, Cellular Uptake and Cytotoxicity. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2020, 24, 169–177. [Google Scholar] [CrossRef]
- Gagliardi, A.; Ambrosio, N.; Voci, S.; Salvatici, M.C.; Fresta, M.; Cosco, D. Easy Preparation, Characterization and Cytotoxic Investigation of 5-Fluorouracil-Loaded Zein/Sericin Nanoblends. J. Mol. Liq. 2022, 366, 120344. [Google Scholar] [CrossRef]
- Kanoujia, J.; Faizan, M.; Parashar, P.; Singh, N.; Saraf, S.A. Curcumin Loaded Sericin Nanoparticles: Assessment for Biomedical Application. Food Hydrocoll. Health 2021, 1, 100029. [Google Scholar] [CrossRef]
- Suktham, K.; Koobkokkruad, T.; Wutikhun, T.; Surassmo, S. Efficiency of Resveratrol-Loaded Sericin Nanoparticles: Promising Bionanocarriers for Drug Delivery. Int. J. Pharm. 2018, 537, 48–56. [Google Scholar] [CrossRef]
- Yalcin, E.; Kara, G.; Celik, E.; Pinarli, F.A.; Saylam, G.; Sucularli, C.; Ozturk, S.; Yilmaz, E.; Bayir, O.; Korkmaz, M.H.; et al. Preparation and Characterization of Novel Albumin-Sericin Nanoparticles as SiRNA Delivery Vehicle for Laryngeal Cancer Treatment. Prep. Biochem. Biotechnol. 2019, 49, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Q.; Zhang, J.; Huang, L.; Qi, C.; Xu, L.; Liu, X.; Wang, G.; Wang, L.; Wang, Z. Safe and Effective Reversal of Cancer Multidrug Resistance Using Sericin-Coated Mesoporous Silica Nanoparticles for Lysosome-Targeting Delivery in Mice. Small 2017, 13, 1602567. [Google Scholar] [CrossRef]
- Niu, L.; Yang, S.; Zhao, X.; Liu, X.; Si, L.; Wei, M.; Liu, L.; Cheng, L.; Qiao, Y.; Chen, Z. Sericin Inhibits MDA-MB-468 Cell Proliferation via the PI3K/Akt Pathway in Triple-negative Breast Cancer. Mol. Med. Rep. 2021, 23, 140. [Google Scholar] [CrossRef]
- Kumar, J.P.; Mandal, B.B. Silk Sericin Induced Pro-Oxidative Stress Leads to Apoptosis in Human Cancer Cells. Food Chem. Toxicol. 2019, 123, 275–287. [Google Scholar] [CrossRef]
- Shu, Y.H.; Yuan, H.H.; Xu, M.T.; Hong, Y.T.; Gao, C.C.; Wu, Z.P.; Han, H.T.; Sun, X.; Gao, R.L.; Yang, S.F.; et al. A Novel Diels–Alder Adduct of Mulberry Leaves Exerts Anticancer Effect through Autophagy-Mediated Cell Death. Acta Pharmacol. Sin. 2021, 42, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Chou, C.C.; Li, R.; Liu, J.; Zhang, L.; Zhu, W.; Hu, J.; Yang, B.; Tian, J. Chalcomoracin Is a Potent Anticancer Agent Acting through Triggering Oxidative Stress via a Mitophagy- and Paraptosis-Dependent Mechanism. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dalkiliç, S.; Dalkiliç, L.K.; İnci, Ş.; Korkmaz, İ.; Kırbağ, S. Investigation of Cytotoxic Effect of Black Mulberry (Morus Nigra L.) Fruit. Indian J. Tradit. Knowl. 2021, 20, 1–5. [Google Scholar]
- Fallah, S.; Hajihassan, Z.; Zarkar, N.; Rabbani-Chadegani, A.; Mohammadnejad, J.; Hajimirzamohammad, M. Evaluation of Anticancer Activity of Extracted Flavonoids from Morus alba Leaves and Its Interaction with DNA. Braz. Arch. Biol. Technol. 2018, 61, 18160623. [Google Scholar] [CrossRef]
- Erden, Y. Sour Black Mulberry (Morus Nigra L.) Causes Cell Death by Decreasing Mutant P53 Expression in HT-29 Human Colon Cancer Cells. Food Biosci. 2021, 42, 101113. [Google Scholar] [CrossRef]
- Long, H.L.; Zhang, F.F.; Wang, H.L.; Yang, W.S.; Hou, H.T.; Yu, J.K.; Liu, B. Mulberry Anthocyanins Improves Thyroid Cancer Progression Mainly by Inducing Apoptosis and Autophagy Cell Death. Kaohsiung J. Med. Sci. 2018, 34, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.N.; Kim, O.; Ha, M.T.; Hwangbo, C.; Min, B.S.; Lee, J.H. Albanol b from Mulberries Exerts Anti-Cancer Effect through Mitochondria Ros Production in Lung Cancer Cells and Suppresses in Vivo Tumor Growth. Int. J. Mol. Sci. 2020, 21, 9502. [Google Scholar] [CrossRef]
- Cho, E.; Chung, E.Y.; Jang, H.-Y.; Hong, O.-Y.; Chae, H.S.; Jeong, Y.-J.; Kim, S.-Y.; Kim, B.-S.; Yoo, D.J.; Kim, J.-S.; et al. Anti-Cancer Effect of Cyanidin-3-Glucoside from Mulberry via Caspase-3 Cleavage and DNA Fragmentation in Vitro and in Vivo. Anticancer Agents Med. Chem. 2017, 17, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Wang, C.J.; Chang, Y.C.; Hung, T.W.; Lai, C.J.; Kuo, C.W.; Huang, H.P. Mulberry Fruits Extracts Induce Apoptosis and Autophagy of Liver Cancer Cell and Prevent Hepatocarcinogenesis in Vivo. J. Food Drug Anal. 2020, 28, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.S.; Lee, D.; Lee, S.R.; Lee, J.W.; Choi, C.I.; Jang, T.S.; Kang, K.S.; Kim, K.H. Chemical Characterization of Cytotoxic Indole Acetic Acid Derivative from Mulberry Fruit (Morus alba L.) against Human Cervical Cancer. Bioorg. Chem. 2018, 76, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Turan, I.; Demir, S.; Kilinc, K.; Burnaz, N.A.; Yaman, S.O.; Akbulut, K.; Mentese, A.; Aliyazicioglu, Y.; Deger, O. Antiproliferative and Apoptotic Effect of Morus Nigra Extract on Human Prostate Cancer Cells. Saudi Pharm. J. 2017, 25, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Sureshkumar, T.; Satheeshkumar, P.K.; Priya, S. Purified Mulberry Leaf Lectin (MLL) Induces Apoptosis and Cell Cycle Arrest in Human Breast Cancer and Colon Cancer Cells. Chem. Biol. Interact. 2012, 200, 38–44. [Google Scholar] [CrossRef]
- Feng, F.; Hu, P.; Tao, X. Mulberry Leaf Polysaccharide Extracted by Response Surface Methodolog Suppresses the Proliferation, Invasion and Migration of MCF-7 Breast Cancer Cells. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Çakıroğlu, E.; Uysal, T.; Çalıbaşı Koçal, G.; Aygenli, F.; Baran, G.; Baskın, Y. The Role of Morus Nigra Extract and Its Active Compounds as Drug Candidate on Human Colorectal Adenocarcinoma Cell Line HT-29. Int. J. Clin. Oncol. Cancer Res. 2017, 2, 10–14. [Google Scholar] [CrossRef]
Biomaterial | Target | Clinical Significance | Experimental Model | Reference |
---|---|---|---|---|
Silk fibroin (SF) hydrogel | Quiescent ventricular cardiomyocytes | Biological pacemakers cells production intended for human use | Rats | [77] |
Electrically conductive SF-based scaffolds | Peripheral nerve tissue | Peripheral nerve injury regeneration | In vitro | [78] |
SF nanofibers | Kidney tissue | Renal protection | Mice | [79] |
Fluorescent SF bioink-hydrogel printing | Tissues | To keep track of encapsulated cell and the evaluation of hydrogel degradation | Mice | [80] |
Biomimetic SF-based biomaterials | Whole blood and platelet | Blood contacting devices production for diagnostic and therapy | In vitro; ex vivo | [81] |
SF hydrogel | Human Wilms tumor | Drug delivery | In vitro | [82] |
SF/hyaluronic acid injectable hydrogels | Articular cartilage | Cartilage defects regeneration | Mice | [83] |
SF microneedles | Prostate gland | Drugs sustained release | Rats | [84] |
SF discs | Mucosal tissue | Viral prevention and drug delivery | In vivo, ex vivo | [85] |
SF xerogels | Hormones | Drug delivery | In vitro | [86] |
Chitin/SF nanoribbons | Neural tissue | Neural tissue regeneration | In vitro | [87] |
SF nanofibers | Cardiac tissue | Cardiac tissue regeneration | In vitro | [88] |
SF scaffolds | Vascular tissue | Long-distance vascular defect restauration | Rabbits | [89] |
SF sponges | Soft tissues | Wound injuries regeneration | In vitro | [90] |
Photo-lyogels SF-based | Tissues | Tissue engineering | In vitro | [91] |
Microneedles patches SF-based | Blood | Treatment of Insomnia | Rat | [92] |
SF dressings | Cutaneous wounds | Burn wound healing | Rat | [93] |
Cryo-sponges SF-based | Bone marrow mesenchymal stem cells | Exosome therapy | Mice | [94] |
Vascular graft SF based | Abdominal venous system | Replacement of abdominal venous system | Rat | [95] |
SF sponges enriched with peptide | Cartilage and bone tissue | Biological functionality improvement of materials that are used for prosthetic devices | Ovine | [96] |
SF/Polyurethane patch grafts | Vessels | Vascular diseases treatment | Rat | [97] |
Formulation | Bioactivity | Clinical Significance | Experimental Model | Reference |
---|---|---|---|---|
Powder | Antioxidant and anti-inflammatory | Alleviation of hepatic injuries | Fish | [117] |
Flavonoids extract | Anti-obesity | Obesity prevention and therapy | In vitro | [118] |
Moracin N extract | Antioxidant | Maintenance of oxidation-antioxidation balance | In vitro | [119] |
Protein hydrolysates | Anti-inflammatory | Prevention and treatment of colitis | Mice | [120] |
Mulberry leaves dietary supplementation | Anti-obesity | Regulation of lipid metabolism | Pig | [121] |
Mulberry leaves extract | Hypoglycemic, antioxidative, cardioprotective | Protection against diabetic myocardium | Mice | [122] |
Moracin N | Antioxidative, neuroprotective | Protection against neurotoxicity | In vitro | [123] |
Mulberry leaf polysaccharides | Anti-obesity | Obesity prevention and treatment | In vitro | [124] |
Carrier Formulation | Loading | Cancer Type | Study Type | Preparation Method | Reference |
---|---|---|---|---|---|
Nanoparticles | Anastrozole | Breast cancer | In vitro | Solvent change | [134] |
Nanoparticles | Doxorubicin | Not specified | In vitro, in vivo | Gas diffusion method | [135] |
Silk fibroin (SF)/Chitosan nano- and microparticles | Carboplatin | Breast cancer | In vivo | Ionotropic gelation | [136] |
Nanoparticles | Cisplatin | Lung cancer | In vivo | Electrospray | [137] |
SF/Gelatin sponges | Curcumin, docosahexaenoic acid | Cervical cancer | In vitro | Freeze-drying; glutaraldehyde cross-linking | [138] |
Polyethylenimine-modified SF nanoparticles | Doxorubicin, surviving siRNA | Breast cancer | In vivo | Dropwise addition of acetone in SF solution (2% w/v) | [139] |
Nanoparticles | Rosmarinic acid | Cervical carcinoma and breast cancer | In vitro | Dissolution of SF in ionic liquid by using high power ultrasound | [140] |
Magnetic nanoparticles SF | Doxorubicin | Breast cancer | In vitro | Salting-out precipitation of potassium phosphate and including hydrophilic magnetic iron oxide nanoparticles into the phosphate solution | [141] |
Hydrogels | Iodine | Osteosarcoma | In vivo | Mixing Sf solution, polyethylene glycol 400, polyvinylpyrrolidone iodine, and meglumine diatrizoate | [142] |
Nanoparticles | Paclitaxel | Colon cancer, breast cancer | In vitro | Desolvation method | [143] |
SF wafers | Etoposide | Neuroblastoma | In vivo | Utilization of a bench-top compression press | [144] |
SF foam | Dinutuximab | Neuroblastoma | In vitro | Mixing SF, glycerol and dinutuximab | [145] |
Nanoparticles | Triptolide, celastrol | Pancreatic cancer | In vitro | Desolvation method | [146] |
Nanoparticles | 5-fluorouracil | Adenocarcinoma | In vitro | Nanoprecipitation | [147] |
Gene delivery system | Inhibitor of growth 4 and interleukin-24 co-expression plasmid | Lung cancer | In vitro | Freeze-drying | [148] |
Nanoparticles | Docetaxel | Breast cancer | In vitro | Nanoprecipitation | [149] |
SF meshes | Camptothecin | Colon cancer | In vitro | Electrospinning process | [150] |
Nanoparticles | Tamoxifen | Breast cancer | In vitro | Desolvation method | [151] |
SF/Selenium nanoparticles | Fingolimod | Thyroid cancer | In vivo | Freeze-drying | [152] |
Carrier Formulation | Loading | Cancer Type | Study Type | Reference |
---|---|---|---|---|
Nanoparticles | Doxorubicin | Breast cancer | In vitro | [166] |
Sericin/poly(γ-benzyl-l-glutamate nanomicelles | Doxorubicin | Hepatocellular carcinoma; breast cancer | In vitro; in vivo | [167] |
Nanoparticles | Chlorin e6 | Breast cancer | In vitro; in vivo | [168] |
Microparticles | Metal-organic networks; Doxorubicin | Lung cancer | In vitro; in vivo | [169] |
Sericin/Dextran hydrogel | Doxorubicin | Melanoma | In vitro; in vivo | [170] |
Sericin/Synthetic poly(γ-benzyl-l-glutamate | Paclitaxel | Gastric cancer | In vitro; in vivo | [171] |
Sericin-Montmorillonite nanoparticles | Doxorubicin | Hepatocarcinoma | In vitro | [172] |
Zein/Sericin nanoblends | 5-Fluorouracil | Breast cancer; colon carcinoma | In vitro | [173] |
Nanoparticles | Curcumin | Not specified | In vitro; in vivo | [174] |
Nanoparticles | Resveratrol | Colorectal carcinoma | In vitro | [175] |
Albumin-Sericin nanoparticles | Small interfering RNA | Laryngeal cancer | In vitro | [176] |
Nanoparticles | Doxorubicin | Breast cancer | In vitro; in vivo | [177] |
Mulberry Species | Compound | Target Cancer | Molecular Cell Death Basis | Reference |
---|---|---|---|---|
M. nigra | Total flavonoids, phenolic compounds | Colon cancer | Enhanced expression level of Bax/Bcl-2 genes and a decrease expression ratio of p53 gene | [184] |
M. alba | Anthocyanins | Thyroid cancer | Apoptosis and autophagy | [185] |
M. alba | Albanol B | Lung cancer | Mitochondrial reactive oxygen species production | [186] |
M. alba | Cyanidin-3-glucoside | Breast cancer | Caspase-3 cleavage, DNA fragmentation | [187] |
M. alba | Polyphenols | Hepatocellular carcinoma | Apoptosis; autophagy, PI2K/Akt pathway | [188] |
M. alba | Indole acetic acid | Cervical cancer | Caspase-8 and -9 activation | [189] |
M. nigra | Phenolic compounds | Prostate adenocarcinoma | Enhanced caspase activity; low mitochondrial membrane potential | [190] |
M. alba | Lectin | Breast cancer | Caspase dependent pathway | [191] |
M. alba | Polysaccharides | Breast cancer | Not applicable | [192] |
M. nigra | Morniga G, chalcone 4 hydrate | Colorectal cancer | Not applicable | [193] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baci, G.-M.; Baciu, E.-D.; Cucu, A.-A.; Muscă, A.-S.; Giurgiu, A.I.; Moise, A.R.; Zăhan, M.; Dezmirean, D.S. Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design. Molecules 2023, 28, 850. https://doi.org/10.3390/molecules28020850
Baci G-M, Baciu E-D, Cucu A-A, Muscă A-S, Giurgiu AI, Moise AR, Zăhan M, Dezmirean DS. Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design. Molecules. 2023; 28(2):850. https://doi.org/10.3390/molecules28020850
Chicago/Turabian StyleBaci, Gabriela-Maria, Ecaterina-Daniela Baciu, Alexandra-Antonia Cucu, Adriana-Sebastiana Muscă, Alexandru Ioan Giurgiu, Adela Ramona Moise, Marius Zăhan, and Daniel Severus Dezmirean. 2023. "Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design" Molecules 28, no. 2: 850. https://doi.org/10.3390/molecules28020850
APA StyleBaci, G. -M., Baciu, E. -D., Cucu, A. -A., Muscă, A. -S., Giurgiu, A. I., Moise, A. R., Zăhan, M., & Dezmirean, D. S. (2023). Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design. Molecules, 28(2), 850. https://doi.org/10.3390/molecules28020850