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Abstract: Successful exploitation of carbonate reservoirs relies on the acid-fracturing process, while
the thickeners used in this process play a key role. It is a common engineering problem that
thickeners usually fail to function when used in high-temperature environments. Until now, no
research has ventured into the field of synthesizing thickeners which can be effectively used at
ultra-high temperatures up to 180 ◦C. In our current study, a novel high-temperature-resistant
polyacrylamide thickener named SYGT has been developed. The thermal gravimetric analysis (TGA)
reveals that SYGT is capable of withstanding temperatures of up to 300 ◦C. Both our scanning
electron microscopy (SEM) and rheological analysis demonstrate that the SYGT exhibits excellent
resistance to both temperature and shear. At 180 ◦C, the viscosity of the SYGT aqueous solution
is no lower than 61.7 mPa·s at a 20% H+ concentration or high salt concentration, and the fracture
conductivity of the thickened acid reaches 6 D·cm. For the first time, the influence of the polymer
spatial network’s structural parameters on the viscosity of polymer solutions has been evaluated
quantitatively. It was discovered that the length and surrounding area of the SNS skeleton have
a synergistic effect on the viscosity of the polymer solution. Our experiments show that SYGT
effectively reduces the acid–rock reaction rate and filtration loss under harsh working conditions such
as high temperature, strong shear, high salinity, and a high concentration of acid. The synthesized
acid-fracturing thickener (SYGT) has wide application potential in the development of carbonate
reservoirs under high-temperature conditions.

Keywords: carbonate reservoir; temperature stability; polyacrylamide; spatial network structure

1. Introduction

Carbonate reservoirs hold 60% and 40% of the world’s total oil and gas reserves,
respectively. To ensure their efficient development is vital for global energy security [1,2].
Acidizing fracturing, which constructs highly conductive fractures, can greatly boost oil
and gas production [3–6]. The effectiveness of acidizing fracturing is evaluated by the
effective action distance of acid and the conductivity of acid etch fracture [7–11]. However,
conventional acidizing fracturing is hindered by the rapid reaction between hydrochloric
acid and carbonate minerals, which results in significant wastage of hydrochloric acid in the
near-well zone, while the far-well zone experiences poor acidizing fracturing effects [12].
A slow-release acid system has been developed to address this challenge by reducing the
mass transfer coefficient of H+ and the acid–rock reaction rate by increasing the viscosity of
the acid solution or chemically generating acid. This procedure can increase the effective
acid action distance and allow the acid to penetrate deeper into the formation [13]. Gelled
acid is a form of slow-release acid that exhibits good sand carrying, drag reduction, and
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filtration loss reduction properties [14–18]. Consequently, gelled acid is widely employed
in the acid fracturing of carbonate rock.

The efficacy of thickened acid is dependent on the type of thickener used [19]. Thick-
eners are categorized as biological, cellulose, and synthetic polymers [20]. Biological
polymers are unstable in high acid concentrations, and possess low temperature resistance,
which limits their applicability [21,22]. Similarly, cellulosic-based polymers degrade easily,
have poor shear resistance, and exhibit low temperature resistance, which make them
unsuitable for use in oil fields [23]. Presently, the most widely used thickener is synthetic
polyacrylamide [24,25]. However, with the increasing use of acidizing fracturing in high
temperatures and deep wells in carbonate reservoirs, the amide group in polyacrylamide
undergoes chemical degradation, causing molecular chains to shear, reducing molecular
weight and hydrodynamic volume, and resulting in a decrease in viscosity, as seen in
Figure 1a. Therefore, the viscosity of the thickened acid is significantly reduced under
high-temperature conditions, resulting in a short effective acid action distance, a low con-
ductivity of the acid-etched fracture, and a poor acid-fracturing effect. In this context,
polyacrylamide’s temperature resistance poses new challenges. Additionally, as freshwater
resources are scarce, using high-salinity brine or seawater directly to prepare acidifying
fluids for fracturing has become a trend [26]. In deep formations, fluids typically have
high salinity, which demands higher salt resistance from the acid solution. In addition,
the adsorption of polyacrylamide in carbonate reservoirs also leads to a decrease in the
concentration of effective components in the fracturing fluid, resulting in a decrease in
viscosity [27,28].
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Figure 1. (a) Failure principle of thickener under high temperature, high salt and strong shear;
(b) Schematic diagram of partial mechanism of temperature and salt resistance of synthetic SYGT.

In recent years, numerous studies have been conducted to improve the temperature
and salt resistance of polyacrylamide [29–32]. Various strategies have been employed to
enhance the temperature resistance of polyacrylamide, including the incorporation of rigid
groups into the polyacrylamide backbone [33–36], such as sulfonic acid groups and cyclic
materials, as reported in previous studies. Recently, a double quaternary ammonium salt
copolymer has been synthesized [37], which exhibits remarkable temperature resistance
and maintains a viscosity of 67 mPa·s at 170 ◦C. The results suggest that the incorporation of
such groups into polyacrylamide molecules could improve their high-temperature stability,
rendering them suitable for enhanced oil recovery (EOR) applications in harsh reservoir
conditions. Despite the promising results obtained in those studies, further investigations
are required to improve the experimental temperature and evaluate the viscosity of the sys-
tem at an ultra-high ambient temperature, such as 180 ◦C, which has not yet been explored.
Furthermore, research on the salt resistance of the system is limited. The high salinity, espe-
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cially in the presence of divalent cations [38], has a significant impact on the electrostatic
shielding effect [39], resulting in the entanglement of polymer molecules and weakening
the viscosity-increasing effect. Moreover, the cations carried by polymers can disrupt the
formation of worm-like micelles in the formation of water with high salinity, leading to a
loss of viscoelasticity [40]. In this regard, some researchers have focused on improving the
performance of crosslinking agents to enhance the stability of polymers. For instance, a
covalent bond between polyethyleneimine and amide in NFT [41] can form crosslinking,
which has been shown to impart superior temperature resistance to the resulting polymer
solution. The development of various cross-linking agents to enhance polymer stability
has been carried out, and the effectiveness of the developed agents has been verified.
However, operational costs are also increased accordingly. Other researchers have focused
on developing the polymer itself, such as hydrophobically associating polyacrylamide
(HAPAM). They use acrylamide, acrylic acid, etc. as the main body, then modify them
by introducing hydrophobic monomers to improve the linear flexible chain to a certain
extent. A cationic hydrophobically associative polymer polyacrylamide [42] (C-HAPAM)
has demonstrated good temperature and salt resistance under experimental conditions.
The hydrophobic part incorporated into the main polymer chain is bonded in the water
phase through intramolecular and intermolecular interactions to enhance the stability of
the molecule. However, the experimental temperature of this study is relatively low, at
105 ◦C only. From the above discussion, it is apparent that there is a lack of research on
developing a high-temperature-resistant polyacrylamide acid thickener. While there are
several synthetic thickeners available for fracturing fluid, most polyacrylamide-based thick-
eners have poor acid resistance that has not been adequately investigated. This underscores
the pressing need for a thickener that can withstand high temperatures and minimize
viscosity loss when used in acidic fluids to address the current challenges associated with
the thickening and acid fracturing of carbonate rocks.

In our current research, we have synthesized quaternary ammonium polymers based
on AM (acrylamide), AMPS (2-acrylamido-2-methylpropanesulfonic acid), NVP (N-vinyl-
2-pyrrolidone), and SSS (sodium polystyrene sulfonate). Additionally, we have synthesized
ternary polymers using AM, AMPS, and SSS as starting materials for comparison purposes.
The structures of the obtained polymers have been confirmed by infrared spectroscopy. The
temperature and salt resistance mechanism of the copolymer are shown in Figure 1b. The
rheological properties, temperature, salt resistance, and shear resistance of the polymer are
evaluated through thermogravimetric analysis using rheometers and Brinell viscometers.
The action mechanism of the spatial network structure (SNS) on the viscosity of the polymer
solution is analyzed through SEM pictures and AutoCAD. The obtained viscosity of the
polymer under acidic conditions is compared, and the mechanism of H+ action on the
polymer is analyzed. Finally, the thixotropy, reaction kinetics, and filtration of the thickened
acid system have been evaluated. The effect of the thickened acid is analyzed through
experiments. Our investigation aims to propose a new type of high-temperature-resistant
thickened acid-fracturing thickener, and explore the specific action mechanism of SNS on
the viscosity of polymer solutions.

2. Results and Discussion
2.1. Synthesis and Characterization of SYGT

To design functional polymers, corresponding polymer synthesis experiments were
carried out with acrylamide as the main chain, and monomers with rigid chain structures
that exhibit high temperature and acid resistance as the side chain. The focus was not
on maximizing yield but on achieving desirable properties. The formation of jelly-like
gel indicates that the polymerization between the reaction monomers is successful, and a
polymer with a viscosity-increasing effect is formed. With the progress of the reaction, the
viscosity of the produced system gradually increases. The synthetic pathway is shown in
Figure 2.
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Figure 2. Schematic diagram of synthesis principle.

After squeezing the solid powder with a press, infrared mapping scanning was
conducted using a Spectrum One FT-IR Spectrometer to verify the synthetic results of
AM/AMPS/SSS polymer and AM/AMPS/NVP/SSS polymers, as depicted in
Figures 3a and 3b, respectively.
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Figure 3. (a) Infrared spectrogram of ternary polymer; (b) Infrared spectrogram of quaternary polymer.

Generally speaking, 3429 cm−1 is the characteristic absorption peak of free −NH2,
3216 cm−1 is the characteristic absorption peak of associated −NH2, 2926 cm−1 is the
characteristic absorption peak of the methylene antisymmetric stretching vibration, and
2850 cm−1 is the characteristic absorption peak of the methylene symmetric stretching
vibration. The infrared spectra reveal that the characteristic peak of amide II (N−H bend-
ing vibration) is located at 1620 cm−1, the strong absorption peak around 1650 cm−1 is
attributed to the amide group, and the absorption peak at 1038cm−1 is associated with the
sulfonic acid groups. Furthermore, the characteristic absorption peak of the p-disubstituted
benzene appears at 800 cm−1. A significant increase in peak intensity at 1561cm−1, corre-
sponding to the secondary amide N−H bending vibration, was observed after cationization,
indicating that N−H in polyacrylamide was replaced by N−R. Additionally, the peak at
1174 cm−1 is common in cationized products; it is generally related to C−N, and confirms
that both the ternary and quaternary polymers synthesized are cationic polymers.

2.2. TGA Results and Analysis

The decomposition temperature of polymers mainly depends on the thermal stability
of macromolecular groups. The introduction of the sulfonic acid group and benzene rings
leads to an increase in the molecular weight of SYGT, and greatly enhances the temper-
ature resistance of SYGT. The TGA (thermogravimetric analysis) and DTG (differential
thermogravimetric analysis) curves of SYGT are shown in Figure 4.
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Thermogravimetric analysis was conducted to evaluate the thermal stability of the
polymer in the temperature range of 25−350 ◦C. The polymer exhibited relatively stable
thermal decomposition at the experimental temperature, with a noticeable decline in mass
occurring at 330 ◦C.

There was no obvious mass loss of the polymer at 25−100 ◦C, indicating that the
sulfonic acid and acrylamide groups in the polymer had already removed the adsorbed
water in the drying chamber. At 280−320 ◦C, the polymer mass decreased relatively
significant, at 7.4%. The most significant mass loss of 9.4% occurred near 330 ◦C. The DTG
curve indicated that the change was the largest at this temperature, and the final (348.6 ◦C)
mass residual rate was 70.64%. In order to verify the thermal stability of the polymer, the
study results of Zhang [43] are compared with the current thermal stability of SYGT. At
about 350 ◦C, the polymer weight loss rate studied by Zhang is generally lower than 70%,
around 60%. A comparative analysis of the thermal stability data proves that SYGT has
better thermal stability.

2.3. Rheological and Temperature Resistance Test

The rheological properties of ternary polymers and SYGT at 120, 135, 150, 165 and
180 ◦C are shown in Figures 5a and 5b, respectively. The corresponding viscosity loss rates
at different temperatures are shown in Figure 5c.
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It can be seen from Figure 5a,b that both the rheology of terpolymer and SYGT decrease
as the temperature and shear rate increase. The molecular chain of polyacrylamide is broken
with increasing temperature, resulting in shorter molecular chains and the destruction of the
spatial network structure of the polymer. The molecular hydrodynamic volume becomes
smaller, and the viscosity of the polymer solution decreases macroscopically. Similarly, as
the shear rate increases, the mechanical shear effect becomes more pronounced, resulting
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in a shorter molecular weight and a decrease in the polymer viscosity. In comparison to
the viscosity of the existing thickeners at 180 ◦C, which is approximately 50 mPa·s, SYGT
exhibited a viscosity of 316 mPa·s, and demonstrated remarkable viscosity-increasing and
temperature resistance properties.

The viscosity of SYGT at 180 ◦C decreased by 46.45%, while the terpolymer showed a
greater decrease of 79.82% compared to that at 120 ◦C, as depicted in Figure 5c. It should
be noted that the viscosity average molecular weight of the synthesized ternary polymer is
8.23 × 105, and the molecular weight of SYGT is 8.57 × 105. The difference in molecular
weight between the two is not significant, although SYGT is a quaternary copolymer. This
result indicates that SYGT has superior temperature resistance compared to the terpolymer.
In addition, the viscosities of SYGT and the terpolymer are significantly different. Under a
shear rate of 180 ◦C and 100 s−1, the viscosity of SYGT remained 316.52 mPa·s, indicating a
remarkable viscosity-increasing effect.

To explore the temperature resistance mechanism of the polymer, its morphology was
studied using scanning electron microscopy for the polymer solutions at temperatures of
20 ◦C, 120 ◦C, 135 ◦C, 150 ◦C, 165 ◦C, and 180 ◦C, respectively, as shown in Figure 6.
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Figure 6. Polymer morphology at different temperatures.

At 20 ◦C, a distinctive “fish-scale” spatial network structure (SNS) is visible in the
polymer solution under SEM. With increasing temperature, the SNS is progressively dis-
rupted. The local “fish scales” are fractured and no longer appear as a cohesive structure,
particularly at 165 ◦C and 180 ◦C. The hydration structure formed by the polymer molecules
is destroyed, and the hydrodynamic volume is reduced.

In order to explore the shear resistance of SYGT at high temperatures, a shear test was
performed at 170 s−1 and 180 ◦C for 160 min, respectively. The experimental results show
that the viscosity loss rate is 54.01%, and the viscosity is 145.95 mPa·s. It can be seen from
the data that SYGT has competent shear resistance under high-temperature conditions, as
shown in Figure 7.

As the shear time increases, the viscosity gradually decreases and tends to reach a
stable state, indicating that the establishment and destruction of the polymer’s spatial
network structure have reached a balance, which is proven in Figure 8. After shearing the
polymer for 60 min, compared with the case of 20 min shearing, the degree of SNS damage
is greater. After 120 min of shearing, the damage degree is slightly increased compared
with the case of 60 min of shearing, but the SNS is basically stable.
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Figure 8. Morphology of polymer solution after shearing at different time.

2.4. Effect Mechanism of SNS on Viscosity

Based on our current research, it is concluded that temperature affects the size of poly-
mer molecules through the “high-temperature shear” of polymer chain, leading to changes
in the spatial network structure of polymer aqueous solutions and ultimately affecting
the viscosity of the solution. However, the impact of specific parameters related to the
distribution of the polymer’s spatial network structure on the solution’s viscosity remains
understudied. Just like the trunk and branches of a tree, the density and thickness will affect
the distribution of leaves, and the leaves will affect the flow of air. The distribution width
of the polymer solution space network framework is also fundamental to the formation
of a polymer control body by the polymer-constrained water molecules. However, the
distribution and skeleton width of the polymer molecules under different temperatures,
concentrations, and shear conditions of a shear body are different, thus showing different
levels of aqueous solution viscosity.

The SEM image presented in Figure 6 is processed using AutoCAD 2023 software to
obtain the skeleton line of the SNS, as shown in Figure 9a.

The length and surrounding area of the SNS skeleton are calculated using AutoCAD.
The magnification of the picture is inconsistent during processing, but the statistical results
of AutoCAD, including the length and area, are made to be dimensionless, which eliminates
the impact of inconsistent magnification. The statistical results are shown in Figure 9b.

It is seen from Figure 9b that the skeleton length of SNS decreases with increasing
temperature, and its value at 180 ◦C is only 17.27% of that at 120 ◦C. The polymer molecular
chain is continuously sheared with increasing temperature. The control ability of the fluid
is continuously reduced, which leads to continuous reduction in the skeleton length of the
airborne network structure. The overall distribution also continuously becomes sparse.
From a two-dimensional perspective, the utilization of the plane is reduced, as shown in
Figure 9a.
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Figure 9. (a) SEM image of the SNS skeleton; (b) Length and area statistics of the SNS skeleton.

The are surrounding the skeleton also shows a negative correlation with the increase
in temperature. However, there was a certain increase at 165 ◦C. The drawn SNS skeleton is
basically composed of closed lines. Although the enclosing area is large at 165 ◦C, as can be
seen from Figure 6, the actual fluid control in the area of the polymer is not the same as in
its enclosing area. Therefore, the enclosing area at 165 ◦C is overestimated in the calculation
process. This also indicates the existence of a certain synergistic effect between the length
and enclosing area of the SNS. Even if the SNS area is large enough, it still requires a long
enough skeleton to support it, and a reasonable spatial layout is needed; otherwise, it is
difficult to form a continuous and effective water molecule control body.

From the above analysis, it is evident that the length and surrounding area of the SNS
skeleton have a synergistic effect on the viscosity of the polymer solution. Therefore, in
future research, it will be necessary to refine the influence of the SNS skeleton parameters on
the viscosity of the polymer solution. This includes expanding the parameters, quantifying
their effects, and ultimately deriving a consensus on the relationship between the SNS
skeleton and the viscosity of the polymer solution.

2.5. Acid and Salt Resistance Test

The acid concentration used on the field is typically 20%, but with the reaction between
acid and rock, the acid concentration gradually decreases. To investigate the effect of acid
concentration on the viscosity of SYGT solution, 1 g of the SYGT was dissolved in 100 mL
acid solution with varying concentrations. The upper limit of acid solution concentration is
set at 20%. The viscosity was measured at 180 ◦C with a shear rate of 170 s−1. The results
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showed that the viscosity of SYGT solution decreased with the increasing acid concentration,
and then leveled off. At an acid concentration of 20% HCl, the solution viscosity of
SYGT was 61.7 mPa·s, as shown in Figure 10a. Hydrogen ions induce the crimping of the
molecular chains of SYGT, leading to an improvement in hydrogen bond interaction (within
the molecules) and a reduction in the hydrodynamic radius. Additionally, the oxidation
of H+ attracts the electrons in the shared electron pair, thereby affecting the stability of
the shared electron pair. From Figure 10c, the spatial structure was significantly damaged,
changing from mesh to rod, resulting in a decrease in the polymer viscosity.
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Figure 10. (a) Variation in viscosity with acid concentration; (b) Viscosity verses inorganic salt
concentration; (c) SEM images of SYGT under different conditions.

As mentioned in the introduction, due to a shortage of fresh water resources, it has
become a trend to prepare acid solutions with seawater. To evaluate the salt resistance of
SYGT, the salinity (0.32 g/L) of the seawater in Liaodong Bay of Bohai Sea [44] was taken
as the upper limit.

The viscosity of the SYGT solution gradually decreased and finally stabilized with the
increasing inorganic salt ion concentration, as seen in Figure 10b. High-valence calcium and
magnesium ions act as charged salt ions that shield the electrostatic repulsion between SYGT
molecules, causing the macromolecular chain to curl. The dehydration of inorganic salt ions
removes the hydration water from the copolymer chain, reducing its hydrodynamic volume.

The lowest viscosity values (110.1 mPa·s, 114.88 mPa·s, and 146.59 mPa·s) were
obtained with calcium salt, magnesium salt, and sodium salt concentrations of 3200 mg/L,
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respectively. The corresponding viscosity loss rates were 61.4%, 60.65%, and 51.63%. These
results indicate that the SYGT solution maintains a high viscosity even under high inorganic
salt concentrations, with a relatively low viscosity loss rate.

2.6. Kinetics of Reaction

Using a rotating disk reaction system in a dynamic environment, the kinetic equations
of the acid–rock reaction at various temperatures (120–180 ◦C) and acid concentrations
(2.7–6 mol/L) were determined. The speeds of acid–rock reactions at various temperatures
were contrasted. As an illustration, the data fitting of reaction kinetic parameters at 150 ◦C
was used in Figure 11a. The J in the figure refers to the diffusion rate, which is the number
of moles of material flowing through unit rock area per unit of time. The fitting effect was
fair, and the fitting precision was 0.9599.
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The rate constant of the thickened acid solution added with SYGT and carbonate
rock increased with increasing temperature, as shown in Figure 11b. The reaction order
decreases with the increase in temperature, as shown in Figure 11c. Compared with
1.15 reaction order of VES at 120 ◦C [45], the reaction order of SYGT was 1.8 at 120 ◦C
from the reaction results. At 180 ◦C, the acid–rock reaction order was 1.5, the rate constant
was 1.82, and the reaction rate of 6 mol/L was 5.03 × 10−5 mol/(L·s). The thickening acid
effectively controlled the reaction.

According to the physical meaning of the reaction order, the larger the reaction order,
the greater the effect of concentration on the reaction rate [46]. The reaction order of the
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thickened acid added to SYGT is higher than that of VES, which indicates that the acid
concentration has a more obvious influence on it. The concentration of the acid solution
increases the collision probability of the activated molecules. The more dependent it is on
the concentration, the better its effect in slowing down the reaction.

The Arrhenius formula was used to determine the acid–rock reaction activation energy,
as illustrated in Figure 11d. The graphic shows that as the acid concentration increases,
the activation energy of the acid–rock interaction falls. The normal theory states that the
activation energy of a reaction is a physical property that is independent of the concentration
of the reactants. The acid–rock reaction, however, is an exothermic reaction, meaning that
as it proceeds, a significant quantity of heat is generated, warming the surrounding area
and increasing the acid–rock reaction. The acid concentration and the temperature cause
the reaction to proceed in a positive-feedback way. The reaction speed is accelerated, as
shown in Figure 11e.

2.7. Filtration of SYGT

Experiments were carried out to study the effect of static fluid loss on the thickening
of acid over a temperature range of 120−180 ◦C. Linear regression analysis was performed
on the experimental data to obtain the slope of the curve, and the parameters C3 and
vc in Equations (6) and (7) were calculated under different temperature conditions. The
core before and after the experiment is shown in Figure 12. The core after the experiment
clearly demonstrates the dissolution fractures that have undergone filtration and the acid
solution that is being filtered. At 180 ◦C, the filtration coefficient and filtration velocity of
the thickened acid were 0.1747 × 10−4 m/min0.5 and 0.2912 × 10−5 m/min, respectively. It
can be seen from the calculation results in Table 1 that the filtration loss of the acid solution
under high-temperature conditions is well controlled.
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Table 1. Filtration coefficient and filtration rate.

Temperature 120 ◦C 135 ◦C 150 ◦C 165 ◦C 180 ◦C

Filtration coefficient × 10−4 (m/min0.5) 0.1031 0.1187 0.145 0.165 0.1747
Filtration rate × 10−5 (m/min) 0.1718 0.1978 0.2417 0.275 0.2912

2.8. Evaluation of the Conductivity of Acid-Etched Fractures

An acidizing fracturing conductivity tester was used to measure the acidizing fractur-
ing conductivity of the natural core samples of Tadong Oilfield after being dissolved for
20 min using the thickened acid (10 mL/min injection rate, 180 ◦C ambient temperature).
The measured results were compared with those of the field thickener after acidizing
fracturing. The experimental results are shown in Figure 13.
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Figure 13. Conductivity of the thickened acid-etched fractures.

It can be seen from Figure 13 that after the SYGT-thickened acid dissolution, there are
obvious acid-etched wormholes. In addition, the fracture conductivity of the SYGT-type
thickened acid after dissolution is significantly higher than that of the on-site thickened
acid, with the highest conductivity reaching 6 D·cm. The etching effect is significant after
acid fracturing.

3. Material and Methods
3.1. Materials

AM, AMPS, and NVP were sourced from Shanghai McLean Biochemical Technology
Co., Ltd. (Shanghai, China). SSS was purchased from Beijing Datian Fengtuo Co., Ltd.
(Beijing, China). Analytically pure reagents including NaOH, NaCl, CaCl2, and MgCl2
were provided by Tianjin Yongda Chemical Reagent Factory, Tianjin, China. Deionized
water was self-made in the laboratory. All chemicals and reagents were used without
further purification.

3.2. Synthesis of SYGT

In order to solve the problem of acid thickener failure under high-temperature con-
ditions, AM, AMPS, NVP and SSS were used for polymerization in a water bath. The
monomer ratio was designed to be 4AM:1AMPS:0.3NVP:0.3SSS for quaternary polymeriza-
tion and 4AM:1AMPS:0.3SSS for ternary polymerization.

AM, AMPS, and NVP were mixed in deionized water, and NaOH solution was used to
adjust the pH to 6 after stirring evenly. The temperature of the water bath was set at 40 ◦C.
The rate of the agitator was adjusted to 300–350 r/min, and nitrogen was used to remove
oxygen. After that, the temperature was set at 60 ◦C. During the heating process, K2S2O8
was added to the three-neck flask. After the temperature reached 60 ◦C, the rotating rate
was set at 150 r/min. After 2 h, a certain amount of SSS monomer was added to the flask
and reacted for 12 h. Finally, the solution was purified in ethanol and dried in a vacuum
for 12 h in an oven at 50 ◦C.

3.3. Polymer Performance Evaluation
3.3.1. Determination of Viscosity Average Molecular Weight

(1) A total of 15 mL of the prepared 1000 mg/L polymer solution should be drawn with a
pipette; it should be injected from viscometer tube A in Figure 14, and the temperature
should be kept at 30.05 ◦C for 5 min.
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Figure 14. Schematic diagram of the Ubbelohde viscometer.

(2) After constant temperature for 5 min, tube C should be pressed by hand, the ear ball
should be placed at the mouth of tube B, the solution should be drawn into ball G,
and it should be released.

(3) When the solution drops to line a, the time should be recorded by pressing the
stopwatch, and when the solution drops to line b, the experiment should be ended by
pressing the stopwatch.

(4) The measurement should be repeated three times, and the time difference between
each time should not exceed 0.2 s.

(5) After measuring the polymer solution with a concentration of 1000 mg/L, 1 mol/L
NaCl solution should be sucked into the volumetric flask in a constant temperature
bath using a pipette, and it should be added from tube a. Tube C should be pressed
and held, and the solution should be repeatedly pressed and sucked from the orifice
of tube B using a suction ear ball to make the mixture uniform.

(6) The determination method is shown in (3) and (4).
(7) Some 2 mL, 2 mL, and 4 mL of 1 mol/L NaCl solution should be added successively,

and measured according to steps (5) and (6).
(8) The relative viscosity of the sample solution should be calculated according to

Formula (1):

ηr =
t
t0

(1)

where: ηr—relative viscosity;
t—flow time of sample solution, s;
t0—flow time of 1 mol/L sodium chloride solution, s.
The corresponding [ηr]·C value can be found from the obtained ηr, and the [ηr]·C

value can be divided by the sample concentration C to obtain [ηr].

(9) The molecular weight is calculated according to Formula (2):

[η] = KMα (2)

where: M—average value of relative molecular weight of polymer;
K—proportional constant, K = 3.34 × 10−4;
α—empirical parameters related to the morphology of polymers in solution, α = 0.708.

3.3.2. Thermogravimetric Analysis (TGA)

To investigate the thermal stability of SYGT, TGA experiments were conducted using
STA449 F5 Jupiter, which is manufactured by NETZSCH in Selb, Germany). Nitrogen
was used as both the purge gas and the protection gas at a flow rate of 60 mL/min. The
temperature of SYGT was increased at a rate of 10 ◦C/min, ranging from 25 ◦C to 350 ◦C.
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3.3.3. Infrared Spectrum Scanning

To confirm the successful synthesis of polymer SYGT, infrared scanning experiments
were conducted using a Spectrum One FT-IR Spectrometer.

After the KBr powder was dried, 1 spoonful of SYGT solid was mixed with 3 spoonfuls
KBr powder, and the two were uniformly mixed by grinding in a mortar. Finallythe powder
was pressed with a punch and scanned with the Spectrum One FT-IR Spectrometer.

3.3.4. Rheological Testing and Viscosity Testing of SYGT Aqueous Solution

The current thickener is ineffective when the viscosity keeps increasing at high tem-
peratures. To investigate the physical mechanism of the phenomenon, the viscosity of
its aqueous solution was measured using a HAAKE RheoStress 6000 (Thermo Fisher:
Waltham, MA, USA) rotating rheometer at high temperatures (120–180 ◦C) under vary-
ing conditions, such as different shearing times and properties. The viscosity-increasing
effects of both the SYGT and ternary polymers (AM/AMPS/SSS) were compared at
high temperatures.

3.3.5. Reaction Kinetics of SYGT

The acid–rock reaction was conducted in a rotating disk system at temperatures
ranging from 120 ◦C to 180 ◦C to determine the kinetics and activation energy of the
reaction. This experiment aimed to investigate the reaction rate of the acid and rock with
the synthetic thickener, and to explore the retarding effect of SYGT.

Data processing method:
In the processing of the actual test data, the reaction speed after correction of the face

volume ratio is adopted:

J = −(∂C
∂t

)
V
S

(3)

Its principle formula is as follows:

J = kCm (4)

The C value and J value of Equation (2) can be measured under a certain temperature,
pressure, and rotating speed using a rotating disc device. The acid rock reaction rate is
determined using a differential method, and the relation curve is drawn:

J =
(

C2 − C1

∆t

)
V
S

(5)

For Formula (3), we obtained the following:

lgJ = lgk + mlgC (6)

The reaction rate constant k and the reaction rate order m are constants under certain
conditions. Therefore, a straight line is drawn using lgJ and lgC, and the linear regression
of lgJ and lgC is carried out using the least-squares method to obtain the values of k and m,
so as to determine the acid–rock reaction kinetic equation.

3.3.6. Static Fluid-Loss Test

At 120 ◦C, 150 ◦C, and 180 ◦C, static filter loss tests were performed, respectively,
using six-link water loss equipment.

The filter loss factor is governed by the filter cake (C3), and the filter rate (vc) can be deter-
mined after sketching the static filtration curve of the fracturing fluid using
Equations (7) and (8).

C3 = 0.005× m
A

(7)
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νc =
C3√

t
(8)

where: C3—filter loss factor controlled by filter cake, m/
√

min;
m—the slop of the filter loss curve, mL/

√
min;

A—the filtration area, cm2;
vc—the filter rate, m/min;
t—the filtration time, min.

4. Conclusions

The synthesized SYGT is a cationic polyacrylamide with quaternary ammonium salt
side chains. After conducting various experimental tests and analyzing the obtained results,
the following conclusions may be drawn:

(1) SEM and rheological analysis indicate that SYGT has good temperature and shear
resistance. At 180 ◦C (100 s−1), the viscosity of the SYGT aqueous solution is
316.52 mPa·s. Even after 160 min of shear, it still maintains a viscosity of
145.95 mPa·s. The thermogravimetric analysis shows that SYGT can withstand high
temperatures up to 300 ◦C.

(2) At 180 ◦C, the SYGT aqueous solution still has a minimum viscosity of 61.7 mPa·s at
a 20% H+ concentration or high salt concentration. The reaction kinetics test proves
that the SYGT-thickened acid effectively controls the reaction.

(3) It was found that the polymer spatial network parameters have a substantial influence
on the viscosity of polymer solutions. For the first time, the length and surrounding
area of the SNS skeleton have been quantified. Our research demonstrates that there
is a synergistic effect of the length and surrounding area on viscosity.

The synthesized SYGT has good temperature resistance, acid resistance, salt resistance,
and shear resistance. SYGT can effectively fill the gap in the high-temperature field of
carbonate-rock-thickening and acid-fracturing technology. In our future work, we will
further explore the influence of SNS on the viscosity of polymer solutions.
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