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Abstract: Pain continues to be an enormous global health challenge, with millions of new untreated
or inadequately treated patients reported annually. With respect to current clinical applications,
opioids remain the mainstay for the treatment of pain, although they are often associated with serious
side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel
ligands and innovative approaches. Among them, natural products are known to be a rich source
of lead compounds for drug discovery, and they hold potential for pain management. Traditional
medicine has had a long history in clinical practice due to the fact that nature provides a rich source
of active principles. For instance, opium had been used for pain management until the 19th century
when its individual components, such as morphine, were purified and identified. In this review
article, we conducted a literature survey aimed at identifying natural products interacting either
directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor
signaling, whose structures could be interesting from a drug design perspective.

Keywords: opioid receptors; analgesic; pain; drug design; semisynthesis

1. Introduction

Modification plant-derived active principles have been widely used in the treatment
of diseases throughout human history [1]. Phytochemicals present in herbs continue
to be actively investigated not only directly as therapeutic agents but also as prototype
lead compounds for the development of new synthetic or semisynthetic drugs. In fact,
when isolated from their source organisms, natural products could possess suboptimal
pharmacological properties including poor pharmacokinetics, rapid metabolism, and low
solubility or chemical stability [2]. Thus, the investigation into the chemical composition
of medicinal plants and secondary metabolites, but especially (most of all) the structural
modification of natural bioactive components, is a dynamic research field worldwide and
plays an integral role in the process of drug discovery [3]. The literature is abundant with
examples wherein the modification of a natural product has led to the development of a
novel molecule drug with higher potency, a longer duration of action, and a better drug
delivery method having minimal toxicity effects [4].

Taxol® (Taxus baccata, Taxaceae) has been used to treat over one million patients,
making it one of the most widely employed antitumoral drugs. It was the first agent
described in the literature targeting the disruption of microtubule dynamics, thus inducing
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mitotic arrest and cell death [5]. Dimethyl fumarate (DMF) is one of the earliest discovered
inducers of the KEAP1/NRF2 pathway, which regulates the expression of networks of
genes that encode proteins with versatile cytoprotective functions, and it has essential roles
in the maintenance of redox and protein homeostasis, mitochondrial biogenesis, and the
resolution of inflammation [6]. The origins of the development of DMF as a drug date back
to the use of the plant Fumaria officinalis (Papaveraceae) in traditional medicine [7,8]. More
recently, a DMF formulation developed by Biogen has been tested in other immunological
disorders, with successful phase III trials in multiple sclerosis [9], leading to its approval by
the FDA and EMA in 2013. Thymol is a major component of essential oils from many plants.
This natural phenol is not only clinically relevant as an anti-microbial, antioxidant, and
anti-inflammatory agent, but it is also a privileged scaffold, which is diversified in natural
sources. Evidence abounds linking the overall bioactivity of thymol to its monoterpene
nucleus, specifically the hydroxyl (-OH) substituent on C1 carbon. This scaffold acts as an
obligatory template for scheming and arriving at designing some newer drug-molecules
with potential biological activities [10].

The search for active principles with analgesic properties has always been a require-
ment for man, and nature has proven to be an inexhaustible source. Opium has been
used for pain management until the 19th century, when individual components, such as
morphine, codeine and thebaine, were purified and identified. Morphine and its deriva-
tives act through the mu opioid receptor (MOR), delta opioid receptor (DOR), and kappa
opioid receptor (KOR) with differences in potency and selectivity [11]. An extensive drug
discovery program based on morphine structural simplification or complication allowed for
the development of compounds—some of which are currently used in clinic practice. Thus,
several semisynthetic or synthetic compounds based on natural pharmacophores were
introduced into the market. From these analgesic substances, the medicinal chemistry drug
discovery approach was predominantly based on a rational drug design and completely
novel synthetic efforts [12], with the aim of reducing struggles with side-effect profiles.
For instance, to overcome MOR agonists’ adverse effects, a pioneering drug discovery
approach focused on the synthesis of selective KOR and DOR agonists [11]. The dysphoric
effect of KOR agonists and the weak effect of DOR agonists to counteract nociceptive pain
led to an abrupt halt in their development, laying the foundations for the new medici-
nal chemistry paradigm “one molecule, multiple targets” [13,14]. The multitarget opioid
approach, as a strategy to overcome typical side effects associated with selective opioid
agonists, was supported by demonstrated physical and functional modulatory MOR/DOR
and MOR/KOR interactions and their co-localization [15]. Recently, a new approach in the
design of more tolerated drug candidates was based on the concept of biased agonists [16].
Moreover, apart from rational drug design and completely novel synthetic efforts, natural
products are still being investigated for novel chemical structures [17] that could interact
either directly with opioid receptors or indirectly through other mechanisms controlling
opioid receptor signaling; this could be interesting from a drug design perspective.

2. Method Section

We have therefore focused on the search for natural analgesic compounds and their
undertaken structural modifications to improve their profile. This review included the
active principles or plant extracts that interact directly or indirectly with the opioid system.
The search for appropriate papers for the purpose of this review was performed by using the
internet sources MEDLINE-PubMed and EMBASE. The first step in the search was to collect
all relevant articles by using different combinations of the following keywords: natural
plants, opioid, pain, natural products, medicinal plants. The databases were searched for
studies conducted in a period up to 2010. The papers were then screened to include any
published paper that evaluated the use of natural products for pain in order to identify
scaffolds with structural diversity and various bioactivities that could be directly developed
or used as starting points for their optimization into novel drugs.
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All electronic search titles, selected abstracts, and full-text articles were independently
reviewed by four reviewers. After the removal of duplicates, citations were limited to
animal studies, leading to the identification of about thirty natural sources. The second step
of the literature search was performed using the following keyword combinations: principle
active name, pain, semisynthetic, opioid, derivatives, and analogues. Meta-analyses,
abstracts, conference proceedings, editorials/letters, and case reports were excluded. A
systematic screening of the articles was performed according to the criteria of a) any
biological activity that was the effect of natural products or their active principles on
nociception based on animal models (acetic acid-induced abdominal writhing, formalin-
induced nociception, orofacial formalin-induced nociception tests, chronic muscle pain
tests, tail flick tests, hot plate tests, tail immersion tests, and von Frey tests) and their
antinociceptive mechanisms of action; and b) plant material and chemical elucidation. In
Table 1, the natural plant source, active principles, and synthetic analogues with tested
antinociceptive activities are reported.

Table 1. Natural plant source, active principles, and synthetic analogues described in the review.

Natural Source Active Principles Synthetic Analogues

Salvia divinorum (Lamiaceae) Salvinorin A Herkinorin
Kurkinorin

Mitragyna speciosa (Rubiaceae)
Mitragynine,

7-OH-Mitragynine,
Mitragynine pseudoindoxyl

MGM-16
MGM-9

Collybia maculate (Tricholomataceae) Collybolide,
9-Epicollybolide

Corydalis yanhusuo
Corydalis bungeana (Papaveraceae)

Corydine, Corydaline,
Corynoline,

L-tetrahydropalmatine (l-THP),
Protopine,

Dehydrocorydaline

Dehydrocorybulbine
(DHCB)

Himenaea cangaceira (Fabaceae) Germacrene D,
α-Humulene

Ageratum conyzoides (Asteraceae)

5,6,7,3′,4′,5′-
hexamethoxyflavone, Nobiletin,

5′methoxynobiletin,
Eupalestin

Arrabidaea brachypoda (Bignoniaceae) Brachydin A, Brachydin B,
Brachydin C

Nelumbo nucifera (Nymphaeaceae)

N-methylcoclaurine,
Coclaurine,

O-Methylcoclaurine
Neferine,

Clinacanthus nutans (Acanthaceae)
Gallic acid, Caffeic acid,

Ferulic acid, Vitexin,
Apigenin

Azadirachta indica (Meliaceae) Azadirachtin A

Vitex megapotamica (Lamiaceae)
p-Coumaric acid,

Isoquercitrin, Naringenin,
Caffeic acid

Salvia wagneriana (Lamiaceae) (–)-Hardwickiic

Algrizea minor (Myrtaceae)

βPinene, αPinene,
Germacrene D,

Bicyclogermacrene,
(E)-Caryophyllene, Limonene
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Table 1. Cont.

Natural Source Active Principles Synthetic Analogues

Buddlejia globosa (Buddlejiaceae) Verbascoside

Stachytarpheta
cayennensis (Verbenaceae) Ipolamiide, verbascoside

Tabernaemonta
divaricata (Apocynaceae) Conolidine DS39201083, DS54360155,

DS34942424

Spinacia oleracea (Amarantacee) Rubiscolin-6, Rubiscolin-5

Maytenus imbricata (Celastraceae) Tingenone

Choisya ternata (Rutaceae) Ternanthranin

Mansoa alliacea (Bignoniaceae) Apigenin

Amomum subulatum, Boesenbergia
pandurata, Alpinia rafflesiana,

Alpinia katsumadai,
Alpinia henryi,

Campomanesia adamantium

(Zingiberaceae)
(Myrtaceae) Cardamonin

Coptis and Berberis species (Berberidaceae) Berberine

Aconitum species (Ranunculaceae) Lappaconitine

Lantana camara,
Lisgustrum lucidum, Rosmarinus

officinalis

(Verbenaceae)
(Oleacee)

(Lamiaceae)
Oleanolic acid

Myracrodruon
urundeuva (Anacardiaceae) Urundeuvine A, B and C

Artemisia annua (Asteracee) Artemisin

Wrightia coccinea (Apocynaceae) β-Sitosterol
Wrightiadione

Nigella sativa (Ranunculaceae) Thymoquinone

Citrus bergamia,
Lavandula,
Jasminum

(Rutacee)
(Labiate)

(Oleaceae)
(–)-Linalool

Zingiber zerumbet (Zingiberaceae) Zerumbone

Salvia officinalis (Labiate) Rosmarinic acid,
Caffeic acid

3. Sources of Active Opioid Antinociceptive Principles
3.1. Salvinorin A

Salvinorin A (1, Figure 1), the major constituent of Salvia divinorum Epling and Jativa-
M (Lamiaceae, Figure 1), is a neoclerodane diterpene notable for its lack of positive charge
nitrogen, which is a crucial structural requirement for opioid receptor interaction [18,19].
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Figure 1. Salvia divinorum and its major active principle, Salvinorin A structure (1).
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Salvinorin A binds selectively to KOR with Ki values of 4.3 and 16 nM (in brain and
cloned receptors, respectively) and activates KOR with EC50 of 1.03 and 290 nM in the
adenylyl cyclase and [35S]GTPγ assays [20–22]. Salvinorin A was efficacious against various
pain animal models [23–25]. Intrathecally (i.t.) injected in mice, it reduced tail flick latencies
with an ED50 of 20.93 nM. This antinociceptive effect was reversed by KOR antagonist nor-
BNI, but it was not affected by the MOR or DOR antagonists (β-FNA and naltrindole) pre-
treatment. Salvinorin A similarly reduced hot plate latencies and the number of writhes in
acetic acid-induced abdominal constriction in mice. In these behavioral models, Salvinorin
A was a short acting agent, given the fact that the effect disappeared 20 min after its
administration. Other naturally occurring constituents were isolated from Salvia divinorum.
Salvinorin B [26] (2, Figure 2), devoid of MOR, DOR, and KOR affinity, resulted from C-2
acetate removal. The C-1 acetylated derivative Salvinorin C (3, Figure 2) (Ki

KOR = 1022 nM)
and its C-2 deacetylated analogue Salvinorin G (4, Figure 2) reported a decreased KOR
affinity, which was ultimately abolished after C-1 acetate hydrolysis [27–29]. The C-ring
lactone removal in Divinatorins D and E (5 and 6, Figure 2) (Ki

KOR = 230 nM and 418 nM,
respectively) led to a reduction in KOR affinity in comparison to Salvinorin A [30], whereas
oxadiazole 7 (Figure 2, Ke

KOR = 360 nM) and Salvidivin A (Figure 2, Ke
KOR = 440 nM),

C-12 furan-modified derivatives, were identified as the first naturally occurring KOR
antagonists [31].
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torin D, Divinatorin E, oxadiazole analogue, and Salvidivin A (2–8).

Several Salvinorin A derivatives were synthesized by modifying the acetoxy sub-
stituent at C-2 to establish the steric and physicochemical properties of this site for KOR
interaction and, above all, minimize the Salvinorin A metabolism into the inactive Salvi-
norin B [32,33]. An improved KOR efficacy profile was reported in derivative MOM-Sal
B obtained through C-2 methoxymethyl introduction into the Salvinorin B template [34].
MOM-Sal B in competition binding experiments performed in CHO cells expressing hu-
man KOR showed a three times higher KOR affinity (0.4 vs. 1.3 nM) and activated KOR
with a seven times increased potency (EC50 = 0.6 nM EMAX = 98%) than Salvinorin A
(EC50 = 1.3 nM Emax = 106%) as detected by [35S]GTPγ binding experiments. The C-2
structural modification in MOM-Sal B produced a long lasting (120 min) effect, which was
nor-BNI reversed in a rat hot plate test [35]. Mesyl Sal B [36], obtained via isosteric replace-
ment of the C-2 acetate group with a sulfonate ester, retained the KOR efficacy profile of
the lead Salvinorin A. The 22-thiocyanatosalvinorin A RB-64 and the 22-chlorosalvinorin A
RB-48 (9 and 10, Figure 3) were investigated in vitro and in vivo [37].

Both compounds showed equivalent affinities (Ki
KOR = 0.59 and 2.1 nM for RB-64 and

RB-48, respectively) and were similar to that of Salvinorin A. RB-64 and RB-48 were highly
potent KOR agonists with EC50 values of a hundred- and eighty-times higher (EC50 = 0.077
and 0.19 nM; Emax = 95 and 85% for RB-64 and RB-48, respectively). Moreover, White et al.
demonstrated that both derivatives are potent in activating G-protein signaling (EC50 = 5.29
and 8.82 nM for RB-64 and RB-48, respectively) and possess a high bias degree (EC50 = 391
and 143 nM for RB-64 and RB-48, respectively) [38].
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A series of Salvinorin A derivatives modified at C-2 with reactive Michael acceptor
groups has been also synthesized [39]. Synthesized acryloyl and cinnamic acid derivatives
showed a significant KOR affinity with a Ki range from 6 to 581 nM, but some of them
showed MOR and KOR affinity. In particular, the acid cinnamic derivative PR-38 (11,
Figure 3) [40], with Ki values at MOR and KOR of 52 and 9.6 nM coupled to a potent dual
MOR/KOR agonist profile, resulted a potential anti-inflammatory and analgesic agent
for gastrointestinal inflammation [41] in a mouse model of hypermotility, diarrhea, and
abdominal pain. Moreover, in the behavioral model based on the i.c. mustard oil instillation,
i.p., i.c., and p.o. PR-38 administration in mice attenuated colitis, showing a significant
anti-scratch activity reversed by β-FNA [42].

Prisinzano et al. [43] synthesized a β-tetrahydropyranyl ether of Salvinorin B (12,
Figure 3) that showed a slightly higher affinity (Ki

KOR = 6.2 nM) than Salvinorin A and had
a similar potency (EC50 = 60 nM vs. 40 nM). The tetrahydropyran group at C-2 conferred to
the compound potent antinociceptive effect in an acute thermal pain assay (5 times higher
than the KOR agonist U50,488 and equipotent to that of Salvinorin A), and it was also
able to reduce both phase 1 and 2 of formalin-induced inflammatory pain and paclitaxel-
induced neuropathic pain. However, the compound showed the classical conditioned place
aversion of KOR agonists. A 47-time loss in KOR affinity (Ki

KOR = 90 nM) and a 27-time
increase in MOR affinity (Ki

MOR = 12 nM) was reported for Herkinorin (13, Figure 4) in
comparison to Salvinorin A, obtained via replacement of the acetoxy with a phenoxy group
at C-2 [44].
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Herkinorin, a potent MOR/KOR agonist, is the first example of a non-nitrogenous
MOR agonist that does not promote β-arrestin 2 recruitment and MOR internalization [45].
What has also been evaluated is the effect of electron-donating or -withdrawing groups
at the benzyl ring or its replacement with heteroaromatic esters, as well as the spacer
introduction between the carbonyl and the phenyl ring of Herkinorin [46,47]. Through
these studies, a N-benzamido derivative of Herkinorin, named Herkamide (14, Figure 4),
emerged with improved MOR affinity and selectivity (Ki = 3.1 nM) and increased MOR
agonist potency.

The C2–C3 unsaturation introduction in the Herkinorin structure led to Kurkinorin [48]
(15, Figure 4). This conformational restriction affects the orientation of the C-2 substituent for
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the interaction of MOR and KOR, conferring a decreased KOR activity (EC50 > 10,000 nM) to
Kurkinorin but improved MOR (EC50 = 1.2 nM) and DOR (EC50 = 74 nM) activity. In a
hot water tail flick test, Kurkinorin elicited an antinociceptive effect, which was naloxone
reversed and, in a regimen of repeated administration, maintained its effect until the
ninth day of administration, resulting in a low-tolerance-inducing liability. The interesting
analgesic profile of Kurkinorin, coupled with a reduced incidence of sedation in comparison
to morphine—as assessed by a rotarod behavioral assay—was related to the low propensity
of the compound to promote β-arrestin 2 recruitment, resulting in a biased MOR agonist.
In Table 2, the most important information on Salvinorin A and its derivatives is reported.

Table 2. Binding affinities and functional activities for Salvinorin A and its analogues.

Ki (nM) ± S.D. EC50 ± S.D. (Emax ± S.D.) a

Compound
n MOR DOR KOR MOR DOR KOR REF

1 Salvinorin A >10,000 >10,000 18.74 ± 3.38 >10,000 >10,000 7 (104 ± 7) [26]
2 Salvinorin B >10,000 >10,000 >10,000 >10,000 >10,000 >10,000 [26]
13 Herkinorin 12 ± 1 1170 ± 60 90 ± 2 500± 140 (130± 4) >10,000 1320 ± 150 (140 ± 2) b [47]
14 Herkamide 3.1 ± 0.4 810 ± 30 7430 ± 880 360 ± 60 (134 ± 5) N.D. N.D. b [47]
15 Kurkinorin N.D. N.D. N.D. 1.2 ± 0.6 74 ± 10 >10,000 [48]

N.D. not determined; S.D. standard deviation. a Biological activity compared with DAMGO, SNC-80, and U50488.
b Biological activity compared with U69593.

Other synthetic Salvinorin A derivatives were also obtained from structural modifica-
tions of the tricyclic trans-decalin core. Modification of the ketone in the C-1 position of
Salvinorin A clarified its involvement in KOR interaction [28]. For instance, the reduction
of C-1 ketone to an α-alcohol (1a) or its complete removal (1b) caused both a diminution
in KOR affinity and shifted the KOR profile from full agonism to antagonism [49]. Analo-
gously, the introduction of a 1,10-alkene (1c) lowered efficacy across all opioid receptors
and a further oxidation of the C-2 position (1d) produced an α,β-unsaturated derivative
with a KOR antagonist profile. These findings, suggesting a dissimilar binding mode of
C-1 deoxo and 1,10-dehydro analogues to their C-1 keto congeners, were also reported
for Herkinorin, whose C-1 ketone modifications shifted the functional profile from MOR
agonism to antagonism.

The structural modifications of the 4-carbomethoxy group [50,51], such as its reduction
(1e) or hydrolysis (1f), conducted to derivatives with lower efficacy at KOR, reflecting the
importance of the C-18 hydrogen bond acceptor for interactions with the KOR hydrophobic
binding pocket. Modifications of the C-17 carbonyl in C-ring through its reduction (1g)
or complete removal (1h) were also unfavorable. Additionally, modifications of the C-12
furan ring through its reduction (1i), removal (1j), or replacement with other heterocycles
were deleterious [52–55] (Figure 5).

In Figure 6, the most relevant Salvinorin A SAR for the KOR activity are summarized.

3.2. Mitragynine

Mitragyna speciosa Korthals is a tree of the Rubiaceae family, which is indigenous to
Southeast Asia. Known as “Kratom” in Thailand and “Biak-Biak” in Malaysia, the leaves
have been traditionally used by natives for their opium-like effect and coca-like stimulant
ability to combat fatigue and enhance tolerance to hard work [56,57].
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Figure 5. Salvinorin A derivatives obtained through structural modifications of the tricyclic trans-
decalin core (1a–1d), 4-carbomethoxy group (1e, 1f), C-17 carbonyl group (1g, 1h) and C-12 furan
ring (1i, 1j).
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Figure 6. Salvinorin A SAR for the KOR activity.

Mitragynine and its naturally occurring oxidation product, 7-hydroxy-mitragynine
(7-OH-mitragynine), were isolated from Mitragyna speciosa (16 and 17, Figure 7). They
are monoterpene indole alkaloids, structurally not closely related to morphine. In the
homogenates of a guinea pig brain, an interesting affinity profile towards MOR, DOR, and
KOR was established for mitragynine (Ki

MOR = 7.2 nM, Ki
DOR = 60 nM, Ki

KOR > 1000 nM)
and 7-OH-mitragynine (Ki

MOR = 13 nM, Ki
DOR = 155 nM, Ki

KOR = 123 nM) [58]. In
electrically stimulated GPI preparations, mitragynine and 7-OH-mitragynine were full
agonists with 1/4 potency and 10-fold greater potency than morphine, respectively [59].
Mitragynine and 7-OH-mitragynine displayed centrally mediated (supraspinal and spinal)
antinociceptive activity in various pain models [60,61]. Through hot plate and tail pinch
tests, a dose-dependent antinociceptive activity—completely abolished by both s.c. and
i.c.v naloxone—was recorded for mitragynine, which was administered in a range of
5.0–30 mg/kg, i.p. and 1.0–10 pg/mouse, i.c.v. [62,63]. Different opioid receptor subtypes’
involvement in the antinociceptive effect of mitragynine was subsequently confirmed. I.c.v.
mitragynine-induced antinociception was antagonized by i.c.v. naloxonazine, a selective
MOR antagonist, and by the co-administration of i.c.v. naltrindole, a DOR-antagonist, in tail
pinch and hot plate tests. Nor-BNI antagonized i.c.v. mitragynine-induced antinociception
only in the tail pinch test [64]. A recent study shows that mitragynine and the oxidized
analog 7-OH-mitragynine are partial agonists of MOR (EC50 = 339 nM, Emax = 34% and
EC50 = 34.5 nM, Emax = 47%, respectively) and competitive antagonists of KOR and DOR.
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It was also shown that mitragynine and 7-OH-mitragynine are G-protein-biased agonists
of MOR, which do not recruit β-arrestin, following receptor activation.
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Descending noradrenergic and serotonergic system involvement in the antinociceptive
activity of mitragynine in mechanical noxious stimulation tests was also demonstrated,
since a slight and significant increase in the expression of the immediate early gene c-Fos
was observed following acute and chronic treatment in male Wistar rats [65].

Different evidence suggested mitragynine was useful for inflammatory conditions,
since it inhibited COX-2 mRNA and protein expression, as well as PGE2 formation, in a
dose-dependent manner in LPS-stimulated RAW264.7 macrophage cells. Mitragynine also
affects COX-1 protein expression [66]. Additionally, i.p. administration of the methanolic
extract of Mitragyna speciosa has anti-inflammatory properties that are able to inhibit the
development of a carrageenan-induced paw edema [67].

Natural mitragynine products are represented by diverse indole cores (indole, in-
dolenine, and spiro pseudoindoxyl) with opioid activity [68]. Other than the oxidize
analogue 7-OH-mitragynine (indolenine core), other constituents of Mitragyna speciosa
preparations are mitragynine pseudoindoxyl (18, Figure 8), a rearrangement product of
7-OH-mitragynine with a spiro-pseudoindoxyl core, and corynantheidine (19, Figure 8), a
9-demethoximitragynine that, as assessed by GPI, is a MOR antagonist [69].
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Mitragynine pseudoindoxyl produced a 10-fold higher analgesic effect than mitragy-
nine, with an MOR and DOR affinity profile similar to DAMGO (pIC50 = 8.18 vs. 8.77) and
DPDPE (pIC50 = 9.55 vs. 8.90), respectively, but a negligible affinity at KOR (pIC50 = 6.88)
and an efficacy profile of a MOR agonist/DOR antagonist as assessed by GPI (pD2 = 8.96),
MVD (pD2 = 7.40), and [35S]GTPγ functional assays [70]. Mitragynine pseudoindoxyl
represents an example of a mixed MOR agonist/DOR antagonist ligand that failed to
recruit β-arrestin 2. In fact, it developed analgesic tolerance more slowly than morphine
and showed effects of limited physical dependence, respiratory depression, constipation,
and rewarding or aversive behavior in a conditioned place preference paradigm. In Table 3,
the most important information on mitragynine and its derivatives is reported.
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Table 3. Binding affinities and functional activities for mitragynine and its analogues.

pKi ± S.D. a

Compound
n MOR DOR KOR REF

16 Mitragynine 8.14 ± 0.28 7.22 ± 0.21 5.96 ± 0.22 [58]
17 7-OH-Mitragynine 7.87 ± 0.16 6.81 ± 0.19 6.91 ± 0.07 [58]
18 Mitragynine pseudoindoxyl 10.06 ± 0.39 8.52 ± 0.22 7.10 ± 0.32 [58]
20 9-hydroxycorynantheidine 7.92 ± 0.05 4.51 ± 0.15 5.53 ± 0.07 [58]

S.D. standard deviation. a Radioligand [3H]DAMGO, [3H]DPDPE, and [3H]U69593.

Mitragynine and 7-OH-mitragynine structural modifications identified the major
sites for opioid receptor interaction [71,72]. The methoxy group in C-9 is crucial for
antinociception. Indeed, the demethoxymitragynine derivative, corynantheidine, lost
opioid agonistic activity. The 9-desmethyl derivative, known as 9-hydroxycorynantheidine
(20, Figure 9), showed significant affinity for MOR (pKi = 7.92) and inhibited the electrically
induced twitch contraction in GPI, indicating its partial agonist property (pD2 = 6.78) [59,73].
The elongation of the alkoxy chain in C-9 with superior homologues led to compounds
able to inhibit electrically induced contraction in GPI, an effect naloxone insensitive. Thus,
the C-9 position on the corynantheidine scaffold is important for the intrinsic activity of
these compounds.
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Building upon the 46-fold potency of 7-OH-mitragynine, the importance of C-7 for
opioid receptor interactions was underlined. MGM-16 (21, Figure 9) was suitable for acute
and chronic pain management [74]. In a competition binding assay, MGM-16 showed high
MOR, DOR, and significant KOR affinity, and in [35S]GTPγS binding, GPI and MVD assays
were potent MOR/DOR agonists. This efficacy profile was also confirmed in vivo with
a mouse tail flick test. MGM-16, p.o. and s.c. administered, produced a dose-dependent
antinociception, significantly and partially reversed by β-FNA and naltrindole, respectively.
Moreover, in SNL mice, MGM-16 produced a significant antiallodynic effect reversed by
selective MOR and DOR antagonists. MGM-9 (22, Figure 9), a C-7 ethylene glycol-bridged
and C-10-fluorinated derivative of mitragynine, showed a MOR/KOR agonist efficacy
profile (Ki

MOR = 7.30 nM, Ki
KOR = 18 nM) [75].

Structural derivatization of the Nb lone pair and β-methoxyacrylate moiety were con-
ducted to mitragynine derivatives with no or weak opioid receptor activity [72], suggesting
β-methoxyacrylate residue was needed for opioid receptor interactions and confirming the
Nb lone pair essential feature of the opioid pharmacophore [76].

Váradi et al. [77] designed pseudoindoxyl and semisynthetic analogues. Differently
from other derivatives in which C-9 mitragynine modifications altered efficacy at MOR,
C-9 mitragynine pseudoindoxyl substituents maintained a full MOR functional profile. C-9-
substituted derivatives were DOR antagonists, except for 9-phenyl analogue (23, Figure 9),
which was a DOR agonist. The 9-phenyl analogue is a MOR agonist/DOR antagonist,
which produces a similar antinociception of the parent mitragynine pseudoindoxyl with a
low incidence of side effects.
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3.3. Collybolide

The natural product collybolide (24, Figure 10), extracted from the fungus Collybia
maculate (Figure 10), is a sesquiterpene sharing a furyl-δ-lactone core with Salvinorin A.
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Figure 10. Collybia maculate and its most relevant active principles Collybolide (24) and 9-epicollybolide (25).

Other isolated constituents include 9-epicollybolide (25, Figure 10), isocollybolide,
and neocollybolide, as well as a few other collybolide-like sesquiterpenes. Collybolide
is a highly potent and selective KOR agonist. In competition binding experiments, per-
formed in HEK-293 cells expressing human MOR, DOR, or KOR, collybolide binds KOR
(Ki = 10−10 M) with a high degree of selectivity. Collybolide dose-dependently increases
[35S]GTPγ binding (EC50 of 2 nM, Emax of 124%) and decreases adenylyl cyclase activity
with an IC50 of 0.9 nM. Moreover, as tested by an ERK1,2 phosphorylation assay, collybolide
was a biased KOR agonist. Collybolide decreased tail flick latencies in mice and showed
the same effects in a forced swim test and an elevated plus-maze test of Salvinorin A.
Collybolide differs from Salvinorin A in blocking chloroquine-mediated itch. Analogous
investigations performed with the C9 collybolide epimer showed the importance of this
position for KOR interaction, since 9-epicollybolide featured reduced KOR binding, efficacy,
and signaling [78,79].

3.4. Corydine, Corydaline, Dehydrocorybulbine (DHCB)

Corydalis yanhusuo W.T. Wang (Figure 11) is a perennial herb in the Papaveraceae family.
It was investigated in different animal models of acute, inflammatory, and chronic pain.
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Kaserer et al. [80], using a collection of models for pharmacophore-based virtual
screening, identified structural analogues reported as natural products isolated from Cory-
dalis and Berberis species [81–83], such as corydine and corydaline (26 and 27, Figure 11).
The in vitro screening established for both compounded a functional profile of biased MOR
agonists. Through competition binding experiments performed in CHO cells expressing
human MOR, corydine and corydaline were able to displace more than 50% of [3H]-
DAMGO binding showing a moderate but selective MOR affinity (Ki = 2.82 and 1.23 µM,
respectively). By using the same cell line, both compounds increased the [35S]GTPγ bind-
ing in a concentration-dependent manner, becoming full MOR agonists with corydine
(EC50 = 0.51 µM) that was 3 times more potent than corydaline (EC50 = 1.50 µM); however,
both were 34 times less potent than DAMGO (MOR reference compound). Unlike DAMGO,
both compounds failed to promote β-arrestin 2 recruitment as assessed in the PathHunter
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β-arrestin 2 recruitment assay. In Table 4, the most important information on Corydalis
yanhusuo active principles is presented.

Table 4. Binding affinities and functional activities for corydine and corydaline.

Ki (µM) ± S.D. a EC50 ± S.D. (Emax ± S.D.) b

Compound
n MOR DOR KOR MOR REF

26 Corydine 2.82 ± 0.61 N.D. N.D. 0.51 ± 0.11
(102 ± 6) [80]

27 Corydaline 1.23 ± 0.29 N.D. N.D. 1.50 ± 0.44
(104 ± 6) [80]

N.D. not determined; S.D. standard deviation. a Radioligand [3H]DAMGO. b Biological activity compared
with DAMGO.

AN interesting functional profile delineated in vitro for corydine and corydaline was
also evaluated in vivo through the writhing test. Compared to morphine, corydine and
corydaline administered in mice at doses of 5 and 10 mg/kg s.c. were 10 and 20 times, re-
spectively, less effective in reducing the number of writhes. Their antinociceptive effect was
naloxone reversed and, at tested doses, corydine and corydaline did not show alterations
for locomotor activity and sedation in mice.

The antinociceptive effect of corynoline (28, Figure 12), a phytochemical compound
isolated from Corydalis bungeana Turcz., has been evaluated in several pain models [84].
Corynoline was found to effectively suppress nociception in hot plate, tail immersion,
glutamate, acetic acid, and capsaicin tests in mice. Corynoline was also observed to inhibit
carrageenan-induced inflammation.
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The water extract of the tuber of Corydalis yanhusuo W.T. Wang contains several alka-
loids [85,86] such as berberine [87], palmatine, columbamine, and glaucine [88]. Injected in
mice in doses of a 100–500 mg/kg range, it significantly increased tail flick latencies at the
highest tested dose without affecting locomotor activity, as assessed with a rotarod test [89];
a formalin test at a dose of 200 mg/kg reduced both phase I and II. Additionally, an extract
injection produced a significant antiallodynic and antihyperalgesic effect in the SNL model
of neuropathic pain at the same dose. Moreover, the extract could present advantages
over morphine in chronic pain treatment since, after repeated administration, it did not
lead to tolerance development. Thus, the antinociceptive properties of the water extract
of Corydalis yanhusuo W.T. Wang could be the result of additive or synergistic effects of all
alkaloids and other unidentified active components contained in it.

By screening on cells expressing MOR, Zhang et al. [90] isolated a fraction of Corydalis
yanhusuo that induced a significant receptor-dependent calcium mobilization. After efficient
HPLC purification, the active component—dehydrocorybulbine (DHCB) (29, Figure 12)—
was isolated, and its structure was established by UV, mass spectroscopy, NMR, and X-ray
crystallography. DHCB behaves as a weak MOR agonist and dopamine receptor antagonist.
In a tail flick test, the antinociceptive effect of DHCB at the highest dose (40 mg/kg, i.p) was
similar to that of morphine, and indeed DHCB produced a naloxone-resistant antinocicep-
tive response consistent with its weak MOR affinity.Indeed, its dopamine receptor affinity
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(more than one hundred times higher than the MOR affinity) and its involvement in the
DHCB effect was established in the same experimental model, via pretreatment with the
D2 receptor agonist quinpirole, which affected the tail flick response. Analogous results
resulted from performing the tail flick test in D2 receptor KO mice. Consistent with its
mechanism of action, DHCB did not show tolerance-inducing capabilities in a regimen
of repeated administration (10 mg/kg daily for 7 consecutive days). DHCB was also ef-
fective in both phase I and II of formalin- induced inflammatory pain and injury-induced
neuropathic pain.

In another study [91], the primary active components of Corydalis yanhusuo, L-
tetrahydropalmatine (l-THP), protopine, dehydrocorydaline (30–32, Figure 13), and cory-
daline (27) were tested. Through whole-cell voltage-clamp experiments, where all four
alkaloids exhibit strong inhibitory effects upon Nav1.7. and showed antinociceptive effects
in both phase I and phase II, with l-THP more efficacious in phase I and protopine more
efficacious in phase II of the formalin test.
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In earlier studies, a relatively high D1 and D2 receptor and low 5-HT1A binding
affinity [92] and a dopamine D2 receptor-mediated antinociception via rat radiant tail flick
test was established for l-THP [93]. l-THP was also investigated in a mouse model of
oxaliplatin-induced neuropathic pain [94]. The alkaloid produces a robust dose-dependent
(1–4 mg/kg) antihyperalgesic effect primarily mediated by D1 receptors since the selective
D1 receptor antagonist SCH23390 significantly attenuated the antihyperalgesic effects of
l-THP. Analogous evidence emerged in complete Freund’s adjuvant-induced inflammatory
pain [95]. Importantly, in the regimen of repeated daily l-THP treatment with 4 mg/kg,
a dose that completely reversed mechanical hyperalgesia, the compound maintained its
antihyperalgesic effect without significant antinociceptive tolerance development over a
period of 10 days. The antihyperalgesic effects of pre- and post-treatment with l-THP in the
bee venom pain model has also been demonstrated [96]. Through immunohistochemistry
studies, l-THP-induced antihyperalgesic effects have been also related to its capability to
down-regulate P2X3 and TRPV1 protein receptor expression in the spinal cord, whose
levels were markedly increased following an s.c. bee venom injection. Moreover, l-THP
did not significantly alter the locomotor activity in mice. Kang et al. [97] designed a
study that was performed to elucidate the l-THP mechanism in the spinal cord and was
related to its antinociceptive effects in acute and chronic pain [98]. Through formalin
test, it was demonstrated the capability of i.p.-injected l-THP to counteract phase II of
the formalin test, which, differently from phase I, is dependent on the combination of an
inflammatory reaction in the peripheral tissue and functional changes in the dorsal horn of
the spinal cord. To demonstrate the l-THP mechanism in the spinal cord, an in vivo model
of mechanical allodynia, induced by spinal sigma1 receptor (Sig-1R) activation through i.t.
administration once a day for 10 consecutive days of the Sig-1R agonist PRE084, was used.
I.p. l-THP administration led to mechanical allodynia reduction that was Sig-1R activation
induced. In CCI-rats, i.t. treatment with l-THP combined with the Sig-1R antagonist,
BD1047, synergistically blocked mechanical allodynia, suggesting that l-THP modulates
spinal Sig-1R activation.
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Obtained by replacing the methoxy group at the C-10 position of l-THP with a phenolic
hydroxyl group, levo-corydalmine (33, Figure 14), antinociceptive effects and underlying
mechanisms were evaluated in a model of neuropathic pain induced by vincristine [99].
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In the same study, the levo-corydalmine capability to reduce the prevalence of atypical
mitochondria induced by vincristine in both A- and C-fibers was demonstrated. More-
over, levo-corydalmine protects against nerve damage and attenuates vincristine-induced
neuroinflammation by upregulating Nrf2/HO-1/CO to inhibit Cx43 expression. Several
alkaloids from the Corydalis govaniana Wall with antioxidant, anticancer, and pain relief
were isolated and characterized. Among them, the potential antinociceptive effect of go-
vaniadine (34, Figure 14) was in vivo tested [100]. Similarly to diclofenac, govaniadine
reduced nociception in a dose-dependent manner via acetic acid-writhing test, a pain model
that implied the release of arachidonic acid and cyclooxygenase products. As presented by
a docking study, govaniadine fit into the binding pocket of a COX-2 enzyme. I.p.-injected
govaniadine elicited significant antinociception, which was naloxone-reversed in a hot
plate test, suggesting a central effect for the alkaloid.

3.5. Essential Oil of Himenaea cangaceira

Essential oil extracted from fresh leaves of Himenaea cangaceira (Figure 15) was investi-
gated for its chemical composition and antinociceptive activity [101].
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Himenaea cangaceira, distributed in Central and South America and in Brazil, is con-
sumed for food and disease treatment [102]. In the essential oil, obtained via hydrodistil-
lation and analyzed by GC-MS, 15 compounds, reported in the literature as biologically
active, were found to have a prominent percentage (about 80%) of sesquiterpenes, such
as (E)-caryophyllene, germacrene D, α-guaiene, β-elemene, α-copaene, and α-humulene.
Germacrene D (35) is reported to be antitumoral and analgesic; α-guaiene is reported
as an inhibitor of cyclo- and lipo-oxygenase and acetylcholinesterase; β-elemene and α-
copaene are described for their antimicrobial activity; α-humulene (36) is detected for its
anti-inflammatory, analgesic, and anti-allergic activity. Based on this evidence, the essential
oil was in vivo tested for its potential analgesic effect. The essential oil was able to reduce
the number of writhes in an acetic acid-induced pain model. Moreover, in both phase I
and II of the formalin test, it reversed behavioral signs of inflammatory pain, suggesting
the involvement of central and peripheral pathways and, given that naloxone reversed its
effects in phase II, opioid receptor involvement.
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3.6. Polymethoxyflavones of Ageratum conyzoides

The annual herbaceous Ageratum conyzoides (Figure 16), widely distributed in tropical
and subtropical regions, is used in popular Brazilian medicine to treat pain, fever, and
inflammatory chronic disease such as rheumatoid arthritis.
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Figure 16. Ageratum conyzoides.

Literature data [103] reported significant effects of the water extract of Ageratum
conyzoides leaves in a rat carrageenan assay [104], as well as reduction of acute and chronic
pain effects of the ethanolic extract in cotton-induced granuloma and in formaldehyde-
induced arthritis in rats. Chromenes, chromones, benzofurans, coumarins, monoterpenes,
pyrrolizidine alkaloids, steroids, and flavonoids are the major phytochemicals found
in Ageratum conyzoides. For all of them, a contribution to inflammation pathways was
reported, with the exception of pyrrolizidine alkaloids, for which serious hepatotoxicity,
carcinogenicity, genotoxicity, and teratogenicity was reported. A qualitative analysis of the
standardized extract of polymethoxyflavones, performed through UHPLC/MS, detected
5,6,7,3′,4′,5′-hexamethoxyflavone, nobiletin, 5′methoxynobiletin, and eupalestin (37–40,
Figure 17) as major peaks, and the absence of pyrrolizidine alkaloids was also detected [105].
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Figure 17. Major polymethoxyflavones (37–40) in Ageratum conyzoides standardized extract.

I.p. administration of this standardized extract (10–300 mg/kg) reduced both neu-
rogenic and inflammatory phases of formalin-induced nociceptive behavior, although its
effect was marked in phase II. Moreover, at the highest tested dose, the standardized extract
reduced paw edema induced by a formalin i.p. injection. In agreement with literature
data [106], the extract reduced nociception elicited by the i.p. injection of PGE2. The
essential oil of Ageratum conyzoides, obtained through steam distillation and characterized
through GC-MS, contains 60 compounds [107]. In a CCI rat model of neuropathic pain, the
essential oil (100 mg/kg) produced significant anti-hyperalgesic and anti-allodynic effects,
which were naloxone reversed.

3.7. Brachydin A, Brachydin B, and Brachydin C

Arrabidaea brachypoda (D.C.) (Figure 18) is a shrub native to the Brazilian region of
Cerrado. It belongs to the Bignoniaceae family, which includes 120 genera and nearly
800 species of different plants scattered in tropical and subtropical regions worldwide. It is
used in traditional medicine to treat pain and inflammation, and its roots are used for the
treatment of joint pain in particular [108–110].
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Figure 18. Arrabidaea brachypoda (D.C.).

Extracts from the roots, leaves, and flowers [111] have been explored. The ethano-
lic extract of root, whose phytochemical analysis revealed the presence of flavonoids,
saponins, coumarins, tannins, cardiac glycosides, steroids, and phenolic compounds, pos-
sess analgesic and anti-inflammatory activity which supports its traditional use [112]. In
acetic acid-induced writhing test, the ethanolic extract, p.o. administered in mice in a
dose range of 30–300 mg/kg, reduced the amount of writhing, and in a formalin test it
was able to counteract phase II of inflammatory pain. Moreover, it significantly reduced
carrageenan-induced paw edema and, in the rat model of peritonitis induced by LPS, it
inhibited leukocyte recruitment into the peritoneal cavity in rats. In a later study, the
dichloromethane fraction extracted from the ethanolic root extract was characterized and
in vivo evaluated [113]. HPLC–PDA analysis [114] revealed only three major compounds
that were identified and fully characterized as three unusual dimeric flavonoids: brachydin
A, brachydin B, and brachydin C (41–43, Figure 19).
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Figure 19. Major constituents (41–43) detected in the dichloromethane fraction extracted from the
ethanolic root extract of Arrabidaea brachypoda (D.C.).

The antinociceptive effect was evaluated in formalin and hot plate tests (10–100 mg/kg
p.o.) in mice, after verifying that the dichloromethane extract did not impair locomotor ac-
tivity, through a rotarod apparatus. Differently from ethanolic extract, the dichloromethane
extract induced antinociception during both neurogenic and inflammatory phases of the
formalin test. Further investigation via hot plate test showed no antinociceptive effect of the
extract vs. supraspinal response. It was also demonstrated that the dichloromethane extract
was effective in reverse nociceptive behavior induced by methanol, an activator of TRPM8,
and by acidified saline, which is an activator of ASIC, but it was ineffective in reverse noci-
ceptive behavior induced by capsaicin and cinnamaldehyde (which are activators of TRPV1
and TRPA1, respectively). Moreover, complete naloxone-induced antinociceptive reversion
revealed opioid receptor involvement in the antinociceptive effect of the dichloromethane
extract. In vitro anti-inflammatory activity in the arthritic synoviocytes of the ethanolic
extract, dichloromethane extract, and three dimeric flavonoids was evaluated [115]. In this
investigation, ethanolic extract’s lack of effectiveness was probably because the test setup
did not allow for the releasing of aglycones deriving from glucoronated forms of not only
brachydins A, B, and C, but also other molecules of the extract. Dichloromethane extract
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instead showed an effect against the release of pro-inflammatory cytokine IL-6 as well as
brachydins. However, brachydin A was less active than B and C alone, probably due to
differences in polarity that can affect bioavailability and bioactivity.

3.8. Nuciferine and N-Nornuciferine

Nelumbo nucifera Gaertn (Nymphaeaceae, Figure 20), known as sacred lotus, is an
aquatic plant with a wide array of traditional, medicinal, and therapeutic uses [116,117]
such as nervous disorder, high fever with restlessness, insomnia, hypertension, can-
cer, weakness, body heat imbalance [118], stress, depression, pain, and cognitive disor-
ders [119–121]. Moreover, smoking the plant creates a feeling of well-being and controlled
stress [122].
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Figure 20. Nelumbo nucifera Gaertn.

Kumarihamy et al. [123] investigated the in vitro cannabinoid and opioid receptor
binding affinities and the in vivo behavioral actions of Nelumbo flower extracts in order to
isolate potential compounds that could treat CNS-associated disorders. White and pink
flowers of Nelumbo nucifera were extracted with ethanol, followed by acid-base partition-
ing to yield benzyltetrahydroisoquinoline (BTIQ) alkaloids and long chain fatty acids,
identified by physical and spectroscopic methods. A UHPLC/APCI-MS analysis of basic
partitions revealed seven major peaks that matched with nuciferine (44), N-nornuciferine
(45), asimilobine (46), N-methylasimilobine (47), O-methylasimilobine (48), armepavine
(49), O-methylcoclaurine (50), N-methylcoclaurine (51), and coclaurine (52) (Figure 21) and
three minor peaks, of which two matched with the dimeric bis-BTIQ alkaloids liensinine or
isoliensinine and neferine (53, Figure 21); the third has not been identified. UHPLC/APCI-
MS analysis of acid partitions revealed the presence of nuciferine (44) and N-nornuciferine
(45) linoleic and palmitic acids, as well as stigmasterol.
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Figure 21. Benzyltetrahydroisoquinoline alkaloid structures (44–53) detected in the basic partition of
Nelumbo nucifera ethanol extract.

Radioligand displacement and [35S] GTPγ binding assays demonstrated that ethanol
extract, acid and basic partitions, and each isolated compound had no affinity for the
CB-1 and CB-2 receptors. The acid and basic partitions, nuciferine (44), coclaurine (52), O-
methylcoclaurine (50), and N-methylcoclaurine (51), were subjected to a tetrad assay, which
is an indicator of classical cannabimimetic activity that induces hypomotility, catalepsy,
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hypothermia, and analgesia and is manifested by ∆9-THC and other cannabinoids. The
in vivo mild cannabimimetic-type effect observed for the acid partition, as well as decreased
locomotion and increased antinociception and hypothermia of the basic partition suggested
the involvement of other CNS mechanisms. Moreover, while the acid partition was found
inactive, basic partition and armepavine (49), O-methylcoclaurine (50), N-methylcoclaurine
(51), coclaurine (52), and neferine (53) showed strong MOR and KOR displacement with the
highest Ki values for N-methylcoclaurine (48, Ki = 0.9 µM), coclaurine (49, Ki = 2.2 µM), and
O-methylcoclaurine (47, Ki = 3.5 µM). Neferine (50) displayed affinities for DOR and MOR
with Ki values of 0.7 and 1.8 µM, respectively, and a weak DOR agonist (EC50 = 7.9 µM),
weak MOR partial agonist (EC50 = 21 µM) profile. In Table 5, the affinity profiles of Nelumbo
nucifera active principles are presented.

Table 5. Binding affinities of Nelumbo nucifera active principles.

Ki (µM) ± S.D. a

Compound
n MOR DOR KOR REF

47 O-methylcoclaurine 2.0 ± 0.3 22.6 ± 3.9 3.5 ± 0.3 [123]

48 N-methylcoclaurine 2.82 ± 0.61 20.1 ± 3.1 0.9 ± 0.1 [123]

49 Coclaurine 5.0 ± 0.7 21.1 ± 2.0 2.2 ± 0.2 [123]
50 Neferine 1.8±0.2 0.7 ± 0.1 3.3 ± 0.4 [123]

S.D. standard deviation. a Radioligand [3H]DAMGO, [3H]DPDPE, and [3H]U69593.

3.9. Clinacanthus nutans

Clinacanthus nutans (Figure 22) Lindau, a plant belonging to the Acanthaceae family,
known as “Belalai Gajah”, is a shrub native to tropical Southeast Asian countries.
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Its stem and leaves are commonly used in folk medicine to treat several conditions
such as rheumatism, hematoma, anemia, and menstrual pain, but they are also used against
herpes simplex virus infections or snake bites. The methanolic extract of Clinacanthus
nutans contains several flavonoids, as detected by UHPLC-ESI, that belong to the fam-
ily of flavone C-glycoside, and the extract contains 16 phenolic compounds such as allic
acid, 4-hydroxybenzoic acid, caffeic acid, coumaric acid, ferulic acid, schaftoside, vitexin,
orientin, isoorientin, isovitexin, luteolin, apigenin, forsythosides H, forsythosides I, dios-
metin glycoside, and diosmetin. Among them, at least gallic acid [124], caffeic acid [125],
ferulic acid [126], vitexin [127], and apigenin [128] have been reported to exert antinoci-
ceptive activity. The attenuation of acetic acid-induced abdominal constriction, thermal
response in hot plate tests, and reversion of the response latency in both phases of the
formalin test suggested peripheral and central antinociceptive activity for the methano-
lic extract [129]. Pretreatment with naloxone blocked its effects in all three pain models,
suggesting the involvement of opioid receptors. The lipid-soluble fraction of methanolic
extract, obtained after its sequential extraction in a petroleum ether, was also investigated
to determine the possible involvement of a non-opioid mechanism [130]. P.o.-tested, it
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showed the possible involvement of TRPV1-, NMDA-, B2-receptors, and a PKC-activated
TRPV1 receptor pathway because of the petroleum ether extract’s capability to attenuate
capsaicin-, glutamate-, PMA-, and bradykinin-induced nociception. This assumption was
also supported by the partial reversion of petroleum ether antinociception by pretreatment
with yohimbine, pindolol, caffeine haloperidol, and atropine, which are the antagonists
of α2-adrenergic, β-adrenergic, adenosinergic, dopaminergic, or muscarinic receptors,
respectively. Analogously, the methanolic extract of Clinacanthus nutans reversed, in a dose-
dependent manner, the nociceptive effect of capsaicin-, glutamate-, phorbol 12-myristate
13-acetate-, and bradykinin-induced nociception models. This effect was inhibited by antag-
onists of MOR, DOR, KOR, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic,
and cholinergic receptors, as well as different K+ channels blockers [131].

3.10. Azadirachta indica Extracts and Oleum Azadirachti

Azadirachta indica (Figure 23), a plant from Ayurveda, has been evaluated for a wide
spectrum of diseases including cancer [132,133], inflammation [134], ulcers [135], immune
disorders, hyperlipidemia [136], and liver disease [137].
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Kanagasanthosh et al. [138] also reported the antinociceptive effect of the ethanolic
extract of Azadirachta indica leaves. Batista et al. [139], using a zebrafish model of pain,
demonstrated the effectiveness of an Azadirachta indica fruit ethanolic extract in nocicep-
tive pain. This extract produced a ketamine-reversed dose-dependent antinociceptive
action on glutamate-induced nociception, indicating the possible modulatory action of
the glutamatergic system. Moreover, the fruit extract decreased the nociceptive behavior
in both phase I and II of a formalin test; this effect was completely reversed by naloxone,
suggesting opioid receptor modulation. The ethanolic extract of the Azadirachta indica
fruit also inhibited pain signs generated by the peripheral injection of acidic saline; its
effect was reversed by amiloride (acid-sensitive ion channels antagonist) pre-treatment,
indicating acid-sensitive ion channels as putative targets in this pain modulation. The
potential capability of Azadirachta indica leaf extract to counteract typical behavior signs
of neuropathic pain was also examined [140] by using a PSNL model. Further in vitro
investigation established that the Azadirachta indica leaf extract attenuated increased levels
of TNF-α, IL-1β, and NF-κB, as well as the mRNA expression of Bax, Caspase-3, and iNOs
in neuropathic pain. The extract composition of several parts of the plant and the oil ob-
tained from its dried seeds are different. Phenolic compounds and flavonoids are the major
constituents of the extract, whereas oxidized tetranortriterpenes, including azadirachtin
A (54, Figure 24), azadiriadione, epoxyazadiradione, azadirone, nimbidin, nimbin (55,
Figure 24), deacetylnimbin, salannin, gedunin, mahmoodin, 17-hydroxydiradione, and
related derivatives are the major constituents of the oil, also known as oleum azadirachti,
obtained from its dried seeds.



Molecules 2023, 28, 7089 20 of 48

Molecules 2023, 28, 7089 20 of 48 
 

 

capability of Azadirachta indica leaf extract to counteract typical behavior signs of neuro-

pathic pain was also examined [140] by using a PSNL model. Further in vitro investigation 

established that the Azadirachta indica leaf extract attenuated increased levels of TNF-α, 

IL-1β, and NF-κB, as well as the mRNA expression of Bax, Caspase-3, and iNOs in neuro-

pathic pain. The extract composition of several parts of the plant and the oil obtained from 

its dried seeds are different. Phenolic compounds and flavonoids are the major constitu-

ents of the extract, whereas oxidized tetranortriterpenes, including azadirachtin A (54, 

Figure 24), azadiriadione, epoxyazadiradione, azadirone, nimbidin, nimbin (55, Figure 

24), deacetylnimbin, salannin, gedunin, mahmoodin, 17-hydroxydiradione, and related 

derivatives are the major constituents of the oil, also known as oleum azadirachti, ob-

tained from its dried seeds.  

 

Figure 24. Major constituents (54 and 55) obtained from dried seeds oil of Azadirachta indica. 

Oleum azadirachti is widely used in folk medicine to treat many body disorders like 

gastric ulcers, cardiovascular disease, malaria, and rheumatism. Moreover, potential use 

of the oil as a contraceptive for intravaginal use, mosquito repellent, vaginal infections, 

gastric ulcers, cardiovascular disease, malaria, rheumatism and skin disorders, allergic 

skin reactions, asthma, bruises, colic, conjunctivitis, dysmenorrhoea, fever, gout, head-

ache, itching due to varicella, kidney stones, psoriasis, and scabies has emerged from the 

literature [141]. Importantly, oleum azadirachti anti-inflammatory effects were also inves-

tigated. Nimbidin (40 mg/kg i.m.) reduced carrageenan-induced paw edema, formalin-

induced arthritis in ankle joints, granuloma fluid exudation induced by croton oil, and 

granuloma induced by cotton pellets [142]. The major bioactive compound, Azadirachtin 

A (54, Figure 24), a compound belonging to the limonoid group, was found to inhibit the 

nociceptive responses of zymosan-induced writhing and hot plate tests in the extracts 

[143] at the dose of 120 mg/kg, and pre-treatment with the nonselective opioid antagonist, 

naltrexone (10 mg/kg, i.p.)—but not by a nonselective serotonergic antagonist, cyprohep-

tadine—reversed its activity. Moreover, azadirachtin significantly reduced the acute car-

rageenan-induced paw edema and the proliferative phase of the inflammatory response, 

as demonstrated by the reduced formation of fibrovascular tissue induced by s.c. cotton 

pellet implantation [144]. 

3.11. Vitex megapotamica Extracts 

Folk medicine reports Vitex megapotamica (Figure 25)—popularly known in Brazil as 
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Oleum azadirachti is widely used in folk medicine to treat many body disorders like
gastric ulcers, cardiovascular disease, malaria, and rheumatism. Moreover, potential use of
the oil as a contraceptive for intravaginal use, mosquito repellent, vaginal infections, gastric
ulcers, cardiovascular disease, malaria, rheumatism and skin disorders, allergic skin reac-
tions, asthma, bruises, colic, conjunctivitis, dysmenorrhoea, fever, gout, headache, itching
due to varicella, kidney stones, psoriasis, and scabies has emerged from the literature [141].
Importantly, oleum azadirachti anti-inflammatory effects were also investigated. Nimbidin
(40 mg/kg i.m.) reduced carrageenan-induced paw edema, formalin-induced arthritis in
ankle joints, granuloma fluid exudation induced by croton oil, and granuloma induced by
cotton pellets [142]. The major bioactive compound, Azadirachtin A (54, Figure 24), a com-
pound belonging to the limonoid group, was found to inhibit the nociceptive responses of
zymosan-induced writhing and hot plate tests in the extracts [143] at the dose of 120 mg/kg,
and pre-treatment with the nonselective opioid antagonist, naltrexone (10 mg/kg, i.p.)—but
not by a nonselective serotonergic antagonist, cyproheptadine—reversed its activity. More-
over, azadirachtin significantly reduced the acute carrageenan-induced paw edema and
the proliferative phase of the inflammatory response, as demonstrated by the reduced
formation of fibrovascular tissue induced by s.c. cotton pellet implantation [144].

3.11. Vitex megapotamica Extracts

Folk medicine reports Vitex megapotamica (Figure 25)—popularly known in Brazil as
“tarumã”, a native tree from Brazil, Uruguay, Paraguay, and Argentina—leaf infusion to
treat inflammatory diseases.
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The UHPLC-ESI-MS/MS method identified phenolic compounds, especially p-coumaric
acid (56, 9.3–61.8 mg g−1), isoquercitrin (57, 14.6–55.5 mg g−1), naringenin (58, 7.5–30.1 mg g−1),
and caffeic acid (59, 12.7–18.3 mg g−1), as bioactive compounds in the extracts of Vitex
megapotamica [145]. Obtained evidence suggested the crude extract functioned as an anal-
gesic and antidepressant. Hamann et al. investigated the crude leaf extract in a p.o.-
administered (10 mg/kg) Freund’s adjuvant-induced chronic inflammation and depression
model [146], where it inhibited mechanical allodynia and thermal hyperalgesia without,
however, reducing paw edema. In addition, the crude extract decreased immobility time
in the forced swimming test. Both antinociception and antidepressant-like effects were
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prevented by naloxone. Moreover, the crude extract of the plant showed a safe profile; it
did not alter locomotor activity and gastrointestinal function and, in a regimen of repeated
administration, did not cause hyperalgesia.

3.12. (–)-Hardwickiic Acid

(–)-hardwickiic acid (60, Figure 26) is extracted from the aerial parts of Salvia wagneriana
(Figure 26).
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An i.t. (–)-hardwickiic acid injection (2 µg/5 µL) reversed mechanical allodynia
on HIV- and paclitaxel-induced neuropathy through TTX-S voltage-gated sodium chan-
nels [147], starting from 1–2 h after the administration and lasting for 2–3 h. Moreover, it
was shown to facilitate K+-evoked hippocampal NA but not dopamine, an effect prevented
by NTI and nor-BNI, but not from the selective MOR antagonist CTAP, thus indicating
(–)-hardwiickic acid action on a hippocampal NA overflow, evoked by mild depolarizing
stimuli on presynaptic opioid receptor subtypes [148]. The (–)-hardwiickic acid enantiomer,
ent-hardwiick acid (61, Figure 26), is found in the oleoresins of different species of Co-
paifera, popularly known as “copaíbas, copaibeiras, copaívas or oil stick”. Raw oleoresins
have demonstrated traditional anti-inflammatory activity and are mostly composed of
nonvolatile acid diterpenes and volatile sesquiterpenes [149]. A study conducted by Simaro
et al. demonstrated that ent-hardwiickic acid inhibits the production of inflammatory
cytokines that suppress the NF-κB pathway and exerts anti-inflammatory and analgesic
effects in carrageenan-induced paw edema, formalin-induced pain, acetic-acid-induced
abdominal writhing and tail flick tests.

3.13. Algrizea minor Essential Oil

Recently, research identified essential oils produced by different species of the Myr-
taceae family as potential candidates for the development of new drugs, with different
antifungal, anti-bacterial, antiparasitic, and antinociceptive profiles [150]. In 2019, Olveira
et al. developed a study with the aim of investigating the chemical composition, antimicro-
bial activity, antinociceptive activity, acute toxicity, and antioxidant activity of the essential
oil of Algrizea minor (EOAm) [151]. It is composed of βpinene (62, 56.99%), αpinene (63,
16.57%), germacrene D (64, 4.67%), bicyclogermacrene (65, 4.66%), (E)-caryophyllene (66
3.76%), and limonene (67, 1.71%) (Figure 27).
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It was demonstrated that the essential oil did not show acute toxicity in its maximum
dose, and it was confirmed that it reduced pain with an opioid mechanism of action.

3.14. Verbascoside

Verbascoside (68, acteoside, Figure 28) is a phenylpropanoid glycoside isolated from
different medicinal plants that belong to various families such as Verbenaceae, Oleaceae,
Buddlejaceae, Lamiaceae, Scrophulariaceae, and plants from traditional Chinese medicine.
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The methanol and ethanol extracts of Buddlejia globosa from the Buddlejiaceae family
did not show any differences in chemical compounds, among which verbascoside and
7-O-luteolin glycoside are the major chemical constituents. Verbascoside possesses exten-
sive biological activity [152]: the anti-ulcerogenic and antispasmodic, immunomodulatory,
antiproliferative, and inhibitory activity of telomerase. Moreover, it is known as an ROS-
scavenging and antioxidant agent. Several studies confirmed its antinociceptive propriety
after both i.p. and p.o. (300 mg/kg) administration [153–155] in a CCI model and in an
intra-articular injection of sodium monoiodoacetate. The experiments in the CCI model
showed a significant anti-hyperalgesic effect starting from 3 days and lasting up to 14 days
post ligatures. It decreased cold allodynia and heat hyperalgesia. Verbascoside restored
Bax/Bcl2 balancing, especially 3 dpl, and it reduced GFAP and Iba 1, 3, and 7 dpl; it
increased GSH and MDA levels in the ipsilateral spinal cord of CCI animals, highlighting
its immunomodulatory activity and antioxidant action. The data obtained reveal that
the analgesic effect of verbascoside was comparable to that of gabapentin employed as a
reference compound. Recently, Hara et al. demonstrated that its analgesic effect, when
i.t.-administered, is mediated by MOR activation, because it was reverted only by naloxone
and not by another antagonist such as atropine, bicuculline, or yohimbine. This finding
was supported by previous studies that indicated a binding profile vs. MOR for this com-
pound [156]. Indeed, verbascoside dose-dependently displaced DAMGO and was able to
directly interact with MOR. Moreover, the effects of caffeic acid and hydroxytyrosol on
neuropathic pain were studied to determine the verbascoside component that mediates its
antihyperalgesic effects. They were administered via i.t., and results showed that caffeic
acid suppressed hyperalgesia only at a high dose—an effect that was not affected by nalox-
one while hydroxytyrosol possessed no effect. Verbascoside has also anti-inflammatory and
antinociceptive activities as was demonstrated in carrageenan-induced hind paw edema
and p-benzoquinone-induced abdominal constriction. On the other hand, to overcome
verbascoside limits in clinical application due to its poor chemical stability depending
on pH, Isacchi et al. optimized an unilamellar liposomal formulation of verbascoside
(100 mg/kg), demonstrating a significant persistent anti-hyperalgesic activity in paw pres-
sure tests in CCI animals when compared to a same dose of a free drug. Interestingly, the
main difference was recorded starting from 45 min after administration [157].

Luteolin, which chemically belongs to flavonoids (69, Figure 29), is largely found in
many parts such as the leaves, bark, and seeds of several plants; indeed, it is concentrated
in fruits and vegetables present in a human diet.
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Luteolin has different proprieties like anticancer, anti-diabetic, and antioxidant effects,
and these include the inhibition of iNOS expression and activity and reduction of TNF-α,
IL-6 mRNA, and protein levels, in addition to analgesic and anti-inflammatory activity
through NF-kB signaling inhibition, as showed by several studies [158–161]. Hara et al.
reported the anti-hyperalgesic effect of luteolin, i.t.-injected at a dose of 1.5 µg in mechanical,
lower in thermal, and especially in heat hyperalgesia. Interestingly, i.t. pretreatment with
naloxone and bicuculline significantly inhibited the effect of luteolin. On the other hand,
their experiments displayed the fact that i.c.v. injection did not show the same effect,
indicating a different action between supraspinal and spinal levels [158]. Anti-inflammatory
activity for luteolin’s derivates was also reported; for example, luteolin-5-O-glycoside can
decrease COX-2 [162], while luteolin-7-O-glycoside inhibits leukotriene C4 production in
macrophages [163].

3.15. Aqueous Extracts of Stachytarpheta cayennensis

Stachytarpheta cayennensis (Figure 30) (L.C. Rich.) Vahl (Verbenaceae) is a purple flower
diffused mainly in Brazil. It is used in Brazilian folk medicine for its anti-inflammatory,
analgesic, antipyretic, hepatoprotective, and laxative properties. In the literature, it is
reported that freeze-dried aqueous extracts (AEs) obtained from entire or selected parts of
the plant were tested for their effects on inflammation and pain in rodents.
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AE-Total significantly reduced abdominal writhing induced by acetic acid without
altering the writhes induced by acetylcholine. AE-Total did not show analgesic effects in
different models of pain such as formalin and capsaicin or tail flick tests [164]. To evaluate
the alcoholic and n-butanolic extracts of the dried leaves of Stachytarpheta cayennensis in
anti-inflammatory and antinociceptive models, the fraction (F5), characterized by the pres-
ence of the iridoid glycoside ipolamiide (70),] and the phenylethanoid glycoside acteoside
o verbascoside (68), showed the highest anti-inflammatory activity-inhibiting chemical
mediators of the inflammatory process, as well as the histamine and bradykinin-induced
contractions of GPI. These glycosides, via p.o. administration, also demonstrated positive
responses vs. edema formation, demonstrating that the anti-inflammatory effect of Stachy-
tarpheta cayennensis was not due to an irritating action. All the assayed extracts also showed
an antinociceptive activity in the hot plate test [165].
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3.16. Conolidine

Conolidine (71, Figure 31) isolated from the bark of the flowering shrub Tabernaemonta
divaricata is mainly employed in traditional Chinese and Thai medicine for pain and fever
treatment. It contains different alkaloids that possess a carbon-based framework similar
to opioids.
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Conolidine is able to induce analgesia, and it does not cause the adverse effects
of classic opioid drugs. Experimental studies highlighted that its effects are due to the
chemokine receptor (ACK3), a broad-spectrum scavenger of opioid peptides and the dynor-
phin, enkephalin, and nociceptin families [166]. Recently, ACK3 modulation has been
proposed as a different opioid system target, and studies carried out by Szpakowska
et al. reported that it could be highly responsive to conolidine. Therefore, conolidine is
defined as a potent non-opioid compound lacking opioid analgesic side effects such as
nausea, respiratory depression, constipation, tolerance, and physical dependence [167]. In
recent years, different varieties of conolidine derivatives were synthesized. In particular,
a novel compound, 5-methyl-1,4,5,7-tetrahydro-2,5-ethanoazocino[4,3-b]indol-6(3H)-one
sulfuric acid salt (DS39201083, 72, Figure 31), was obtained. It possesses a unique bi-
cyclic skeleton and shows a more potent analgesic effect than conolidine in an acetic
acid-induced writhing test and formalin test in ddY mice but did not show any agonist
activity at MOR [168]. Similarly, another conolidine derivative, (5S)-6-methyl-1,3,4,5,6,8-
hexahydro-7H-2,5-methano[1,5]diazonino[7,8-b]indol-7-one sulfate salt (DS54360155, 73,
Figure 31), was discovered. It had a unique and bicyclic skeleton and was an anal-
gesic more potent than conolidine, but it did not exhibit MOR agonist activity. Re-
cently, a novel compound, (5′S)-10′-fluoro-6′-methyl-5′,6′-dihydro-3′H-spiro[cyclopropane-
1,4′-[2,6]diaza[2,5]methano[2,6]benzodiazonin]-7′(1′H)-one, was identified and named
DS34942424 (74, Figure 31). It was characterized by a simple benzene scaffold and the origi-
nal bicyclic structure consisting of an amide bond and a pyrrolidine ring. This compound
showed potent analgesic efficacy after p.o. administration in mice, as revealed by both the
acetic acid-induced writhing test and the formalin test. It had a good safety profile, but its
mechanism of action is still unknown.

3.17. Rubiscolin

Rubiscolin is a bio-active peptide derived from the D-ribulose-1,5-bisphosphate car-
boxylase/oxygenase (RuBIsCO), which is the major protein responsible for carbon dioxide
fixation and photorespiration in the green leaves of plants. In recent years, rubiscolin-6
(75, YPLDLF, Figure 32) and rubiscolin-5 (76, YPLDL, Figure 32) have been identified as
bioactive peptides derived via digestion of RuBIsCO from spinach leaves.

Differently from opioid peptides that have aromatic amino acids in the third position
and are MOR selective, rubiscolins structurally characterized by an aliphatic amino acid in
the third position are DOR selective and exhibited an antinociceptive effect in mice even
after p.o. administration [169]. Recently, the SAR of rubiscolin analogues were studied
by using 3D- QSAR analysis, and traditional CoMFA and CoMSIA approaches have been
employed to derive quantitative relationships between the structure of rubiscolin analogues
and their activity towards DOR. This model suggested that the DOR activity of rubiscolin
analogues exhibited a relevant relationship with the local hydrophobic and hydrophilic
characteristics of amino acids at positions 3, 4, 5, and 6. Other studies highlighted that
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rubiscolin-6 is more potent and has a stronger affinity for DOR than rubiscolin-5. Ru-
biscolin peptides are characterized by oral bioavailability, and in particular, rubiscolin-6
produced analgesia in a tail pinch assay with few side effects [170]. The opioid activities
of those derivatives were tested by MVD and GPI assays. The results displayed that their
effects in MVD and GPI assays were reversed by naloxone, confirming opioid receptor
involvement [171].
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3.18. Tingenone

The celastraceae family, which comprise 1220 species growing in tropical regions
of the world, was used in folk medicine to treat several inflammatory diseases, such as
gastric disorders, fever, and cancer. In particular, the hexane and ethyl acetate extract of
Maytenus ilicifolia showed an antinociceptive effect, while the chloroform extract of Maytenus
senegalensis displayed anti-edema action [172–174]. Several types of the root extract of
Maytenus imbricata showed antinociceptive effects, but only the hexane/ethyl ether extract
was able to reduce licking time in both phases of the formalin test and edema formation in
the carrageenan paw test, also indicating an anti-inflammatory action, probably through
prostaglandin synthesis inhibition. The antinociceptive effect of tingenone, a pentacyclic
triterpene (77, Figure 33) isolated from Maytenus imbricata roots, was also investigated.
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Veloso et al. demonstrated that the opioid system is involved in tingenone’s peripheral
antinociceptive activity but not directly via opioid receptors—rather, through endogenous
opioid peptide release by immune cells. Moreover, it was found that tingenone’s peripheral
analgesic activity was also related to CB2 receptor activation [175,176]. Both systems act
through the L-arginine/NO/cGMP/K+ATP pathway, as demonstrated via treatments with
several inhibitors.

3.19. Esters of N-Methylanthranilic Acid

Esters of N-methylanthranilic acid are chemical compounds present in several plants
with an important role in plant–plant or plant–insect interactions. These are the skimmia-
nine, or evoxine alkaloids, which are used as sedatives and spasmolytics. Choisya ternata
Kunt, also called “Mexican orange” is a very popular plant in Mexico and North America,
which emits a pungent smell when its leaves are brushed (Figure 34).
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Using fresh and air-dried plants, Radulovic et al. obtained and characterized two
essential oils, the second containing a high concentration of sesquiterpenoids. They focused
their attention on methyl- and isopropyl-N-methylanthranilates, sometimes difficult to
detect. To test their antinociceptive effect, they synthetized methyl-, propyl-, and iso-
propyl N-methylanthranilates and evaluated both in an acetic acid-induced writhing model
and in the hot plate test, comparing them with the essential oil and ethanol extract of
Choisya ternata Kunt. Their results indicated that in both models, substitution played a
pivotal role; indeed, the methyl derivate showed the least activity, whereas the essential
oil and ethanol extract exhibited about a hundred times less activity [177]. To deepen the
antinociceptive mechanism of these derivates, they assayed isopropyl, propyl, and methyl
N-methylanthranilates in capsaicin and glutamate-induced nociception via formalin and
hot plate tests after oral administration at doses between 0.3 and 3 mg/kg. The compounds
significantly reduced the time animals spent licking in the second phase of the formalin
test, while in the first phase, this was only achieved with the highest dose (30 mg/kg). In
capsaicin and glutamate-induced nociception, they produced a significant inhibition of
the nociceptive response, indicating the involvement of vanilloid and glutamate receptors.
The results from the hot plate test also showed a supraspinal antinociceptive effect for all
three derivates, which was reverted by naloxone and yohimbine pre-treatment, confirming
a synergic activity between opioid and adrenergic systems in controlling pain [178,179].
These results were corroborated by another study in which the same authors demonstrated
the anti-inflammatory effect of essential oil from Choisya ternata Kunt and isopropyl- (also
known ternanthranin, 78), methyl-, and propryl-N-methylanthranilate in an SAP model
and the reduction of leukocyte migration, protein leakage, and the level of several pro-
inflammatory cytokines such as NO, IL-1β, and TNF-α. Interestingly, they confirmed the
antiedematogenic action of ternanthranin and methyl- and propyl-N-methylanthranilate
trough direct interaction with serotonin, bradykinin and prostaglandin receptors [180].

3.20. Mansoa alliacea Extract

Mansoa alliacea (Figure 35), also known as “false garlic” because of the smell produced
by its crushed leaves, is a typical plant of Southern Mexico used in traditional medicine as
an infusion to treat fever and rheumatic pain. Despite its common use, there are limited
studies focusing on its analgesic activity. Valle-Dorado et al. evaluated the ethanolic and
aqueous extract of Mansoa alliacea in both formalin and hot plate tests, comparing both i.p.
(30, 100 and 300 mg/kg) and oral (300 mg/kg) administration. Generally, both extracts
showed a dose-dependent antinociceptive effect, but ethanol extract was more efficacious
in both phases of the formalin test. Moreover, in the hot plate test, only the ethanolic
extract at the dose of 300 mg/kg i.p. significantly increased latency, starting from 60 min,
while the aqueous extract showed the same effect at 600 mg/kg. Furthermore, only the
antinociceptive action of the ethanol extract was inhibited by naloxone pre-treatment in
both phases of the formalin test, in agreement with previous studies that confirmed an
opioid binding profile, especially for DOR, by apigenin (79, Figure 35)—the major con-
stituent of this extract. This confirms that different concentrations and types of constituents,
depending on the polar nature of extracts, can influence the antinociceptive mechanism of
action [181]. These results were confirmed in the studies of Hamman et al., which evaluated
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the antinociceptive effect of hydroethanolic extract in CFA-induced mechanical allodynia
through a tail flick test [182].
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3.21. Cardamonin

Cardamonin, or 2′,4′-dihydroxy-6′-methoxychalcone (80, Figure 36), is a naturally
occurring chalcone isolated from the seeds of several plant species such as Amomum
subulatum, Boesenbergia pandurata, Alpinia rafflesiana, Alpinia katsumadai, Alpinia henryi, and
Campomanesia adamantium.
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Literature data reported a sequela of biological activity for Cardamonin [183–190]
As is common for phenolic compounds, it in vitro inhibits NO and PGE2 expression via
interruption of the NF-κB pathway [191,192]. The capability of Cardamonin to suppress
the expression of COX-2 and transglutaminase-2, PBQ-induced writhing, and carrageenan-
induced hyperalgesia has also been demonstrated [193]. Cardamonin exerts significant
peripheral and central antinociception in chemical- and thermal-induced nociception in
mice, as assessed by acid acetic–induced abdominal writhing, formalin, and hot plate
tests (i.p.- and p.o.-administered at the range doses of 0.3–10 mg/kg) [194]. The absence
of a myorelaxant or sedative effect in the antinociception effect was verified through a
rotarod assay. The involvement of TRPV1 in cardamonin antinociceptive activity was
demonstrated by using a capsaicin-induced paw licking model, where the compound was
effective at the dose of 3 mg/kg. In vitro investigations found cardamonin to be a selective
blocker of TRPA1 but not of TRPV1 nor TRPV4 channels [195]. At all dosages, cardamonin
produced significant antinociceptive activities in glutamate-induced nociception. The
effect of cardamonin in phase I of the formalin test was reversed by pre-treatment with
naloxone, indicating the involvement of opioid receptors. Analogous evidence emerged in
a study conducted by Sambasevam et al. [196], which showed cardemonin’s (3–30 mg/kg)
anti-hyperalgesic and anti-allodynic effects reversed by pre-treatment with naloxone and
naloxone methiodide in a CCI model of neuropathic pain. The serotonergic pathway seems
to play a central role in cardamonin anti-neuropathic effects through the involvement
of the 5-HT1A receptor subtype. Indeed, the administration for four consecutive days
before cardamonin treatment of the inhibitor of serotonin synthesis, ρ-chlorophenylalanine,
reversed cardamonin-induced antihyperalgesic and antiallodynic effects Moreover, mice
pretreatment with several 5-HT receptor subtype antagonists abolished the anti-neuropathic
effects of the compound, which also showed the capability to upregulate 5-HT1A expression
in the brainstem and spinal cord [197].
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3.22. Berberine

Berberine (81, Figure 37) is an isoquinoline alkaloid present in the Coptis and Berberis
species and features a variety of properties such as anti-oxidant [198], anti-tumor, anti-
bacterial [199], hepatoprotective [200], anti-cholinesterase [201], anti-inflammatory [202],
and pain-relieving [203] effects.
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Berberine is effective in different pain models [204]. In a rat model of STZ-induced dia-
betic neuropathy, berberine anti-allodynic and anti-hyperalgesic effects were related to the
increased expression of MOR mRNA coupled with decreases of ROS, TNF-α, IL-6, and SOD
levels [205]. Berberine pain-relieving activity was exerted primarily via down-regulation
of TRPV-1 and suppression of NF-κB. Anti-allodynic and anti-hyperalgesic effects shown
by berberine in chemotherapy-induced neuropathic pain were mediated by Nrf2 gene ex-
pression increase. In SNL neuropathic pain, berberine antinociceptive effects, coupled with
its low tolerance inducing capability, were related to TRPV1 expression decrease in dorsal
root ganglion neurons [206]. Berberine, via MOR and DOR modulation, alleviates murine
models of visceral pain, increasing protein receptor expression [207,208]. Berberine’s re-
pression of inflammatory markers was related to its capability to reduce inflammatory
chronic pain [209,210]. Several papers report its anti-cholinesterase activity as a putative ad-
ditional analgesic mechanism [211,212]. Despite its fascinating pharmacological fingerprint,
berberine therapeutic use is compromised by its unfavorable pharmacokinetic properties.
Indeed, the quaternary ammonium cation in berberine structure confers to alkaloid low
water solubility, reflecting poor absorption and bioavailability. Thus, to improve berber-
ine therapeutic potential, several modifications were performed in its nucleus to obtain
derivatives with improved pharmacodynamic and pharmacokinetic profiles [213]. Wang
et al. synthesized berberine derivatives by modifying the substituents of the D ring. Newly
synthesized derivatives were evaluated for their capability to suppress TNF-α-induced
NF-κB activation. Emerging from SAR studies, tertiary/quaternary carbon substitutions
at position 9 or rigid fragments at position 10 enhanced its anti-inflammatory potency.
Among them, compounds 82–85, 86, and 87 (Figure 37) were the most potent, whereas
compounds with amino or amido groups were less potent than berberine [214].

To evaluate the influence of the carboxylic group in berberine-induced anti-inflammatory
effects, 9-O-substituted derivatives (Figure 38) were synthesized and evaluated in vivo
using a xylene-induced animal pain model [215]. Higher anti-inflammatory effects, in
comparison to berberine, were reported for 88 and 89 (Figure 38) where the carboxylic group
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was esterified with ibuprofen and naproxen, respectively. Compounds 88 and 89, similarly
to berberine, reduced TNF-α and IL-6 levels in serum. Other 9-O-modified berberine
derivatives were synthesized and in vitro and in vivo evaluated by Huang et al. [216].
These compounds significantly inhibited NO release and reduced IL-6 and TNF-α level
production in transgenic zebrafish larvae injuries. Moreover, 90 and 91 (Figure 38) were
able to reduce the migration of primitive macrophages and neutrophils in in vivo models
of zebrafish larvae.
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3.23. Lappaconitine

Lappaconitine (LA, 92, Figure 39) is a monoester diterpene alkaloid extracted from
the root of a natural plant belonging to the Aconitum species [216]. It has been clinically
employed for the treatment of different types of pain such as cancer pain, post-surgical,
and sciatic pain because of its analgesic effects. Due to its poor solubility, it is used via
p.o. and i.v. administration in the form of Lappaconitine Hydrobromide (LAH, 92·HBr,
Figure 39), obtained by LA reacting with hydrobromic acid. Because the presence of
fluorinated substituents in the process of drug design are able to improve drug absorption,
Lappaconitine trifluoroacetate (LAF), with an increased fat solubility, was synthesized by
introducing an organofluorine group to LA [217].
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Literature studies report that this new compound had a lower toxicity and was demon-
strated to have an improved analgesic effect and a longer half-life in comparison with LAH.
Moreover, in a recent study, it was reported that the in vitro transdermal permeation of
LAF was higher than LAH, indicating that LAF can be conveniently used for transdermal
drug delivery (TDD). It was observed that LA, administered either systemically or via
i.t, attenuated mechanical allodynia and thermal hyperalgesia in neuropathic and bone
cancer pain. LA induced dynorphin A expression in cultured primary microglia and in
the spinal cord of neuropathic rats, and its antinociceptive effect was completely blocked
by an i.t. injection of the specific dynorphin A antibody and KOR antagonist. Therefore,
these results suggest that LA produces antinociception through the stimulation of spinal
microglial dynorphin A expression [218]. Recently, it was demonstrated that LA exerted an
inhibitory effect on the nociceptive behaviors induced by CCI, decreasing the expression
of the P2X3 receptors in the dorsal root ganglion neurons of CCI rats [219]. LA effects
were also evaluated by the writhing response to acetic acid and formalin and hot plate
tests. Obtained data revealed that LA possessed a notable central dose-dependent analgesic
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effect, and that it could significantly suppress egg albumen-induced paw edema in rats and
xylene-induced ear swelling in mice, showing a good anti-inflammatory effect [220,221].

3.24. Oleanolic Acid

Oleanolic acid is a pentacyclic triterpenoid compound (93, Figure 40), found as
a free acid or as an aglycone with its isomer, ursolic acid, in more of 1620 medicinal
plants—especially in their fruits, such as Lantana camara and Lisgustrum lucidum—but also
in Rosmarinus officinalis and in other species of the Lamiaceae family.
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This compound was widely used for different chronic diseases such as cancer, liver
injury, atherosclerosis, and inflammation thanks to its potent effects, which caught the
interest of several researchers. Maia L.J. et al. investigated oleanolic acid extract from aerial
parts of Eriope blanchetii (Lamiaceae) in a model of visceral pain induced by an intracolonic
instillation of mustard oil, which is an algogenic substance that induces both pain-related
behavior and inflammatory reactions in mice. They found that p.o. oleanolic acid (3, 10
and 30 mg/kg) demonstrated an antinociceptive effect, reversed only by naloxone pre-
treatment, indicating an opioid involvement in its mechanism. Moreover, in treated mice,
oleanolic acid did not affect locomotion; rather, it reverted mustard oil-induced hypoloco-
motion [222]. Opioid involvement in oleanolic analgesic effects was also confirmed by Park
S. H. et al., who also demonstrated its serotoninergic—but non-adrenergic—involvement
in its antinociceptive action in various pain models like acetic acid-induced writhing and
formalin tests [223]. Recently, Li X. et al. evaluated the analgesic effect of oleanolic acid—i.p.
administered—in a model of SNL neuropathic pain in a dose ranging from 2 to 10 mg/kg.
Oleanolic acid dose-dependently showed an antihyperalgesic effect both in mechanical and
thermal hyperalgesia. Interestingly, they discovered that oleanolic acid restored altered
M1/M2 microglia polarization, decreased IL-6, TNF-α and IL-1β levels, and increased
IL-10 levels. In addition, it was able to suppress inflammatory responses in LPS-treated
microglia by blocking the TRL4-NF-kB pathway, corroborating its anti-inflammatory ac-
tion [224]. Despite its properties, low water solubility and instability slow its development
as a pharmaceutical product. For this purpose, Rali et al. tried to improve its bioavail-
ability by synthetizing some acetate and ester derivates. They demonstrated that, in a tail
flick test, trifluoroacetyl derivates did not display a better analgesic profile compared to
oleanolic acid, which showed an earlier onset of action. On the other hand, in the first
phase of a formalin test, only the 28-methylester and 3-acetyloleanane derivate significantly
increased pain thresholds, while in the second phase, only trifluoroacetyl derivates showed
a significantly better analgesic activity than oleanolic acid. In albumin-induced inflam-
mation, trifluoroacetyl derivates showed anti-inflammatory effects that were better than
other compounds, indicating that the trifluoroacetyl group can influence oleanolic acid
proprieties [225].

3.25. Urundeuvine A, B and C

Myracrodruon urundeuva Allemao, belonging to the Anacardiaceae family, is a tree
common in several regions of Brazil, especially in the North-East region (Figure 41), and is
used in popular medicine to treat female genital tract inflammation, respiratory diseases,
and wounds in the skin.
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Figure 41. Myracrodruon urundeuva Allemao.

Ethyl acetate extract contains up to seven different chemical compounds—chalcone-
and tannin-enriched fractions showing interesting pharmacological activity in pain condi-
tions, among these. Chalcones are chemical compounds belonging to the flavonoid class
and are widely used for their antioxidant and anti-inflammatory activities, but they are
also used to obtain stronger capillary walls and prevent bleeding. In the Myracrodruon
urundeuva extract, there are three dimeric chalcones: urundeuvine A, B, and C (94–96,
Figure 42).
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Figure 42. Structures of urundeuvine A, B and C (94–96).

Viana et al. first demonstrated the antinociceptive effect of chalcone-enriched fractions
obtained from the ethyl acetate extraction of Myracrodruon urundeuva stem bark in several
pharmacological tests, which were evaluated in doses ranging from 5 to 20 mg/kg and
administered via both i.p. and p.o. In acid-acetic induced writhing, the formalin test,
and hot plate test, they found a better analgesic activity for i.p. with respect to oral
administration, which demonstrated irregular absorption. In the formalin test, the extract
especially reduced pain behavior in the second phase, and it was partially reverted via
naloxone pretreatment, while in the hot plate test, a significant increase of latency was
observed for a dose of 10 and 20 mg/kg i.p. after 30 and 60 min. Furthermore, they found
a significant anti-edematogenic activity for 40 mg/kg, administered via both i.p. and oral
administration, after 3 and 4 h from a carrageenan injection [226]. Tannins, like flavonoids,
are polyphenol compounds produced by plants as protective agents and can be found
condensed with protein or other macromolecules like cellulose and minerals. Holding a
polyphenol structure, they have a strong antioxidant activity. Considering the analgesic
action, Souza S.M.C. et al. tested tannin-enriched fractions at doses of 5, 10, and 50 mg/kg
i.p. in a formalin test, showing a dose-dependent antinociceptive action predominately
in the second test phase, which was not reverted by naloxone pretreatment, indicating a
non-opioid analgesic action for this extract. Moreover, they also demonstrated a significant
anti-inflammatory action for an i.p.-administered dose of 10 mg/kg, starting from 3 h after
carrageenan injection, which became less evident after p.o. administration [227].

3.26. Artemisia annua L.

Artemisia annua L. is an Asiatic medicinal plant that was widely spread after being
imported in Europe and the U.S. In ancient times, it was mainly used to treat fever and
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chills caused by malaria infection but was also used for tuberculosis, scabies, and dysen-
tery. In 1971, artemisinin, the most active pharmacological compound of Artemisia annua
against malaria, was isolated. Chemically, it is an endoperoxide sesquiterpene lactone (97,
Figure 43).
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Over the years, it was studied in other diseases for its immunoregulatory, anti-
inflammatory, analgesic, anti-cancer, and anti-bacterial activities. De Faveri Favero et al.
firstly tested the sesquiterpene lactone-enriched fraction from Artemisia annua leaves (1.72%
of artemisin and 0.31% of deoxiartemisinin) in doses ranging from 30 to 100 mg/kg, by i.p.
administration and in a formalin test, where 100 mg/kg exhibited a significant antinocicep-
tive effect in the second phase in particular. These results were also corroborated by those
obtained via CFA-induced inflammation, both in acute (4 h after CFA injection) and sub-
chronic phases (24 h after CFA injection). They also demonstrated the antiedematogenic
action of the fraction in carrageenan-induced paw edema, and the antinociceptive effect
in the tail flick test, demonstrating opioid involvement due to naloxone’s pretreatment
inhibition of an antinociceptive effect [228]. Ying M. et al. focused their experiment on a
P2X4 purinergic receptors, which is expressed in satellite glial cells and dorsal root ganglion
neurons—both involved in neuropathic pain conditions [229]. They demonstrated that
artemisinin, at dose of 5 mg/kg i.p., exhibited a significantly antiallodynic effect starting
from 7 days after CCI and summed up to an increase of thermal withdrawal latency, a
reduction of both P2X4 mRNA level receptors, and protein expression in the dorsal root gan-
glion of CCI rats. They also found a reduction of P2X4 receptors and GFAP co-expression
in the artemisinin-treated group compared to the CCI vehicle group [230]. On the other
hand, Dehkordi et al. found GABAA receptor involvement in the artemisinin (10 mg/kg
i.p.) mechanism of action, because only bicuculline’s pretreatment significantly reverted its
antinociceptive effects in an acetic acid-induced writhing test [231].

3.27. Sitosterole and Wrightiadione of Wrightia coccinea

Wrightia coccinea (Roxb. Ex Hornem, Figure 44) is an indigenous plant (the less
investigated in the Wrightia genus) of Southern Asia, also found in tropical Africa and
China, and is widely used in folk medicine to treat snakebites, psoriasis, chest infections,
and colic.
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Its bark and seed pulp extract were studied by Jannat et al. to characterize their
principal phytochemical compounds and their pharmacological proprieties [230]. They
compared 200 mg/kg and 400 mg/kg methanolic extracts of bark and fruit coats, orally
administered both in mice tail immersion tests to evaluate central analgesic activity and
in acetic acid-induced writhing tests to evaluate peripheral analgesic activity. In both
tests, the extracts exhibited a dose-dependent analgesic action. Considering phytochemical
compounds, they found that β-sitosterol (98) and wrightiadione (99, Figure 44) showed
better affinity vs. MOR and COX-2 enzymes, suggesting that they mainly determined
the analgesic effect of the extracts [232], in line with other studies [233] on phytochemical
compounds isolated by other Wrightia species.

3.28. Thymoquinone

Nigella sativa, also known as black cumin due to the color of seeds, is one of the most
popular medicinal plants (Figure 45). Belonging to the Ranunculaceae family, it is an annual
plant that grows in different regions of Europe and Asia. In ancient medicine, its seed
oil was used to treat abscesses, nasal ulcers, and asthmatic diseases like bronchospasm.
Nigella sativa was also used as an analgesic, diuretic, and hepatoprotective agent and for
energy recovery.
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Considering seed phytochemical compounds, several studies indicate alkaloids
(nigellimine-N-oxide, nigellicine and nigellidine), thymol, limonene, carvacol, p-cymene,
and thymoquinone (100, Figure 45), which also is the most active compound. Litera-
ture studies indicate its hepatoprotective, anti-inflammatory, and nephroprotective ac-
tions [234–237].

Different studies indicate the inhibition of cyclooxygenase, 5-lypooxygenase, and
leukotriene B4 but also of iNOS and MMP-1, MMP-3, and the reduction of pro-inflammatory
cytokines such as IL-6 and TNF-α [238–240], confirming its anti-inflammatory activity.
Through oral administration, Abdel-Fattah et al. firstly evaluated the antinociceptive effect
of Nigella sativa oil (50–400 mg/kg) and tymoquinone (2.5–10 mg/kg, also i.p. injected
1–6 mg/kg). They discovered a significant antinociceptive effect of Nigella sativa oil in ther-
mal, mechanical, and chemical nociceptive tests and the supraspinal action of tymoquinone
mediated by the opioid system—probably by MOR and KOR [241]. In CCI test, Celik et al.
evaluated the tymoquinone analgesic effects (100, 200 and 400 mg/kg p.o. and i.p.) demon-
strating an anti-allodynic, not dose-dependent effect, which was not reverted by an opioid
antagonist pre-treatment [242]. Their results, added with others obtained by Amin B., were
in accordance with Abdel-Fattah et al., who discovered a supraspinal opioid involvement
in tymoquinone action—only in the first phase of formalin tests—anti-inflammatory, and
antioxidant effects in late phases and in neuropathic pain conditions [243].

3.29. (–)-Linalool

(–)-Linalool, a natural enantiomer monoterpene (101, Figure 46), is a widely volatile
compound found in the essential oils of several plant such as Citrus bergamia, Lavandula,
and Jasminum, and it is traditionally used to treat acute and chronic disease thanks to its
anti-bacterial, anti-convulsant, and anxiolytic actions.
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Peana et al. firstly described (–)-linalool anti-inflammatory action at a s.c.-injected dose
of 50 mg/kg in carrageenan-induced edema as well as an anti-nociceptive effect both in
acetic acid-writhing and hot plate tests, which was antagonized by naloxone and atropine
pretreatment, showing opioid and cholinergic neurotransmission involvement [244,245].
Successively different mechanisms of action to explain linalool anti-nociceptive effects,
like NMDA and adenosine receptor antagonism [246], were proposed. In neuropathic
pain conditions, Berilocchi L. et al. firstly found that only repeated s.c. administration
(100 mg/kg for 7 days) attenuated mechanical allodynia, starting from 3 days after L5
SNL, with a descreasing effect around 14 days after SNL, suggesting an anti-allodynic
role for (-)-linalool only in the early phase of central sensitization. On the other hand,
they did not find any significant changes in several pro-inflammatory cytokine’s levels
and in glial activation [247]. Katsuyama et al. reported a better anti-nociceptive effect in
both phases of a formalin test for (-)-linalool (2.5 and 5 µg) compared to Citrus bergamia
essential oil (2.5, 5 and 10 µg). Moreover, they also confirmed opioid involvement in
(-)-linalool antinociceptive action and discovered a peripheral site action trough naloxone
methiodide administration [248]. Souto-Maior et al. focused their attention on linalool
oxide, a minor component of essential oil formed from linalool natural oxidation, evaluating
its antinociceptive effect at a dosage of 50, 100 and 150 mg/kg i.p. both in acetic acid-
induced writhing tests and in both phases of the formalin test with linalool-comparable
results [249]. After their results with the capsaicin test [250], Sakurada et al. evaluated the
analgesic action of Citrus bergamia essential oil (5, 10 and 20 µg/paw) and linalool (2.5, 5
and 10 µg/paw) after i.pl. administration in SNL mice. The obtained results showed a
significantly anti-allodynic effect starting from 5 min after injection for linalool, which were
faster, stronger, and longer than oil, especially at 5 and 10 µg/paw. Moreover, they also
discovered the inhibition of spinal ERK phosphorylation in bergamote essential oil and
linalool anti-allodynic mechanism [251].

3.30. Zerumbone

Zerumbone is the main component isolated from Zingiber zerumbet, a typical plant
found in Malaysia rainforests. Chemically, it is a sesquiterpenoid (102, Figure 47), and it is
used to treat stomachache, swelling, and muscle sprain.
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Figure 47. Structure of zerumbone (102), the major component from Zingiber zerumbet.

Several studies reported its anti-inflammatory activity related to cyclooxygenase-2
inhibition. Firstly, Sulaiman et al. evaluated a dose-dependent antinociceptive effect both in
acetic acid-induced abdominal writhing and in hot plate tests, suggesting a peripheral and
central antinociceptive effect. They also found that naloxone pre-treatment significantly
reverted its effect, indicating an opioid involvement [252]. Later, they confirmed its anti-
inflammatory action on acute and chronic inflammation mice models [253]. In neuropathic
pain conditions (CCI model), Zulazmi et al. firstly demonstrated the dose-dependent anti-
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allodynic and anti-hyperalgesic effect of zerumbone at doses of 10, 50 and 100 mg/kg i.p.,
which were probably related to the reduction of pro-inflammatory cytokines levels such as
TNF-α and the desensitization of TRPV1 and TRPA1 channels [254–256]. Zerumbone anti-
inflammatory effects in a CCI model were also confirmed by Gopalsamy et al., who also
found a reduction of IL-6 and IL-1ß levels in the treated group [257]. They also confirmed
both opioid system and K+ channel involvement in zerumbone’s analgesia in CCI-induced
neuropathic pain [258,259]. On the other hand, Chia et al. focused their attention on
cannabinoid and PPARs as the pharmacological targets of zerumbone’s analgesic action in
CCI neuropathic pain, confirming molecular docking studies [260]. Previously, they also
demonstrated that the anti-allodynic and anti-hyperalgesic effects of zerumbone treatment
was related to a descending serotonin system, evaluated via serotonin depletion and with
different subtype receptor antagonists [261].

3.31. Salvia officinalis

Salvia officinalis (Figure 48) has been widely used for the antioxidant and anti-inflammatory
properties of some of its active ingredients. The main components of Salvia officinalis leaves
and hydroalcoholic extract are flavonoids and phenolic acids, in particular Rosmarinic
acid (Ros) and Caffeic acid (Caf), respectively (103, 104, Figure 48). They have a variety of
pharmacological activities, including a proven analgesic effect; therefore, they have been
recently studied in neuropathic pain models. The antinociceptive effects of the hydroal-
coholic extract of Salvia officinalis were demonstrated in vincristine-induced neuropathic
pain in mice in comparison with morphine, suggesting that Salvia officinalis extract could
be useful in the treatment of peripheral neuropathic pain [262].

Molecules 2023, 28, 7089 36 of 48 
 

 

 
 

Figure 47. Structure of zerumbone (102), the major component from Zingiber zerumbet. 

Several studies reported its anti-inflammatory activity related to cyclooxygenase-2 

inhibition. Firstly, Sulaiman et al. evaluated a dose-dependent antinociceptive effect both 

in acetic acid-induced abdominal writhing and in hot plate tests, suggesting a peripheral 

and central antinociceptive effect. They also found that naloxone pre-treatment signifi-

cantly reverted its effect, indicating an opioid involvement [252]. Later, they confirmed its 

anti-inflammatory action on acute and chronic inflammation mice models [253]. In neu-

ropathic pain conditions (CCI model), Zulazmi et al. firstly demonstrated the dose-de-

pendent anti-allodynic and anti-hyperalgesic effect of zerumbone at doses of 10, 50 and 

100 mg/kg i.p., which were probably related to the reduction of pro-inflammatory cyto-

kines levels such as TNF-α and the desensitization of TRPV1 and TRPA1 channels [254–

256]. Zerumbone anti-inflammatory effects in a CCI model were also confirmed by Go-

palsamy et al., who also found a reduction of IL-6 and IL-1ß levels in the treated group 

[257]. They also confirmed both opioid system and K+ channel involvement in 

zerumbone’s analgesia in CCI-induced neuropathic pain [258,259]. On the other hand, 

Chia et al. focused their attention on cannabinoid and PPARs as the pharmacological tar-

gets of zerumbone’s analgesic action in CCI neuropathic pain, confirming molecular dock-

ing studies [260]. Previously, they also demonstrated that the anti-allodynic and anti-hy-

peralgesic effects of zerumbone treatment was related to a descending serotonin system, 

evaluated via serotonin depletion and with different subtype receptor antagonists [261]. 

3.31. Salvia officinalis 

Salvia officinalis (Figure 48) has been widely used for the antioxidant and anti-inflam-

matory properties of some of its active ingredients. The main components of Salvia offici-

nalis leaves and hydroalcoholic extract are flavonoids and phenolic acids, in particular 

Rosmarinic acid (Ros) and Caffeic acid (Caf), respectively (103, 104, Figure 48). They have 

a variety of pharmacological activities, including a proven analgesic effect; therefore, they 

have been recently studied in neuropathic pain models. The antinociceptive effects of the 

hydroalcoholic extract of Salvia officinalis were demonstrated in vincristine-induced neu-

ropathic pain in mice in comparison with morphine, suggesting that Salvia officinalis ex-

tract could be useful in the treatment of peripheral neuropathic pain [262]. 

  

Figure 48. Salvia officinalis and structure of Rosmarinic acid and Caffeic acid (102 and 103). 

In a study conducted by Gabbas et al. [262], Salvia officinalis extract (100 and 200 

mg/kg, p.o.), Ros (10 and 20 mg/kg, i.p.), Caf (30 and 40 mg/kg, i.p.), and Clomipramine 

(Clo, 5 mg/kg, i.p., a positive control) were given for 21 days after surgery in a CCI model, 

Figure 48. Salvia officinalis and structure of Rosmarinic acid and Caffeic acid (102 and 103).

In a study conducted by Gabbas et al. [262], Salvia officinalis extract (100 and 200 mg/kg,
p.o.), Ros (10 and 20 mg/kg, i.p.), Caf (30 and 40 mg/kg, i.p.), and Clomipramine (Clo,
5 mg/kg, i.p., a positive control) were given for 21 days after surgery in a CCI model, and
these significantly and intermediately increased the reaction time to pain in animals 7 days
after the induction of neuropathic pain and for the following 21 days [263]. It was also
proven that Salvia officinalis extract exerts its analgesic activity through interaction with the
opioid system. Bauer et al. [264] previously reported that Salvia officinalis extract compounds
have analgesic effects via COX2 inhibitory effects. Caffeic acid has been proven to relieve
neuropathic pain through the inhibition of proinflammatory cytokine expression such as IL-
1β, IL-6, and TNF [265]. The analgesic efficacy of Salvia officinalis extract in neuropathic pain
could be attributed to its anti-inflammatory activity. This hypothesis is corroborated by the
observation that treatment with Salvia officinalis extract and its major compounds increased
RBC levels and lowered CRP serum levels, indicating the remission of inflammation.
Additionally, Salvia officinalis extract, Ros, and Caf promoted the motor function recovery
of injured sciatic nerves and axonal regeneration, which was observed through an increase
in the sciatic function index and histopathological analyses. These beneficial effects were
attributed to its antioxidative, anti-inflammatory, and neuroprotective properties.

4. Discussion and Conclusions

Natural products, often characterized by enormous scaffold diversity and structural
complexity, offer advantages and challenges for the drug discovery process. Natural prod-
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uct drug discovery is an articulated process. In the beginning, it consists of extraction
from natural sources. This is a crucial phase, since the method of choice determines which
compound classes will be present in the extract; for instance, polar solvents imply a higher
percentage of polar compounds in the crude extract. Performing the extraction with sev-
eral solvents at different polarities could maximize the diversity of the extracted natural
products. Then, the biological screening of ‘crude’ extracts could identify a bioactive
‘hit’ extract, which is further fractionated to isolate bioactive compounds. After bioac-
tive compound identification, molecular target identification follows. At this stage, a
hit or lead compound could emerge that could be semi-synthetically optimized for its
pharmacodynamic/pharmacokinetic properties.

In this review, we summarize recent efforts in natural product-based drug discovery
in the therapeutic field of pain management, taking on the challenge of showing several
compounds, which are different in structure and structural complexity, that could represent
hit or lead compounds for further medicinal chemistry optimization.

Compared to classical synthetic drugs used for pain management, most of the bioactive
compounds listed in this review have a higher molecular mass, higher numbers of H-bond
acceptors and donors, higher hydrophilicity, fewer halogen atoms, and—for some of
them—a lack of basic nitrogen and greater molecular rigidity.

For instance, Herkinorin is a potent MOR/KOR agonist derived by an intensive SAR
study from Salvinorin A, the major constituent of Salvia divinorum Epling, and Jativa-
M—both featured for their lack of positive charge nitrogen, which is a crucial structural
requirement for opioid receptor interaction. Collybolide is also a non-nitrogenous KOR
agonist with a higher effect/side effect ratio. Other non-nitrogenous bioactive compounds
effective for persistent inflammatory pain are the primary active components of Corydalis
yanhusuo, L-tetrahydropalmatine (l-THP), and protopine.

Moreover, different active principles examined showed a G-protein-biased profile,
which is an improved approach to search for more tolerated drug candidates. Kurkinorin
indeed was a biased MOR agonist as was Mitragynine, 7-OH-mitragynine and Corydaline.
Nevertheless, Collybolide was instead a biased KOR agonist.

In conclusion, natural products represent an important tool for the discovery of
scaffolds that can be developed or used as starting points for optimization into drugs.
The “nature” laboratory continually contributes to knowledge underlying nociceptive
modulation and remains a promising pool for the discovery of scaffolds with high structural
diversity as well as various bioactivities that can be directly developed or used as starting
points for optimization into novel drugs.

However, further research is needed to better establish the efficacy of different active
principles with analgesic activity in humans so that many of these natural molecules can be
useful for the development of new analgesics to continue making major contributions to
human health and longevity.

Author Contributions: Investigation: R.T., S.P., G.C. and S.S.; data curation: R.T., S.P., G.C. and S.S.;
writing—original draft: R.T., S.P., G.C., S.S., L.R., L.P. and C.P.; writing—review and editing: R.T., L.P.
and C.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Catania, PIA.CE.RI. 2020–2022-Linea di
intervento 2-Project DETTAGLI (UPB 57722172125).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following DMF Dimethyl fumarate; FDA food and drug administration; EMA European

medicinal agency; MOR mu-opioid receptor; DOR delta-opioid receptor; KOR kappa-opioid receptor;
i.t. intrathecal; i.p. intraperitoneal; i.c. intracisternal; p.o. oral; GPI guinea pig ileum; s.c. subcuta-
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neous; i.c.v. intracerebroventricular; PGE2 prostaglandin E2; LPS lipopolysaccharide; MVD mouse
vas deferens; SNL sciatic nerve ligation; HPLC high performance liquid chromatography; DHCB
dehydrocorybulbine; l-THP L-tetrahydropalmatine; Sig-1R sigma1 receptor; CCI chronic constric-
tion injury; GC-MS gas chromatography-mass spectroscopy; UHPLC/MS ultra-high performance
liquid chromatography-mass spectroscopy; i.g. intragastric; i.pl. intraplantar; HPLC–PDA high-
performance liquid chromatography-photodiode array detection; TRPM8 transient receptor potential
melastatin 8; ASIC acid-sensing ion channel; TRPV1 transient receptor potential vanilloid 1; TRPA1
transient receptor potential ankyrin 1; IL-6 interleukin-6; CNS central nervous system; BTIQ benzylte-
trahydroisoquinoline; CB-1 cannabinoid-1; CB-2 cannabinoid-2; NMDA N-methyl-D-aspartate; PKC
protein kinase C; PSNL partial sciatic nerve ligation; NA noradrenaline; DA dopamine; ROS reactive
oxygen species; ACK3 chemokine receptor; 3D-QSAR Three dimensional-quantitative structure-
activity relationships; CoMFA comparative molecular field analysis; CoMSIA comparative molecular
similarity indices analysis; NO nitric oxide; COX-1 cyclooxygenase-1; COX-2 cyclooxygenase-2; PBQ
1,4-benzoquinone; 5-HT1A 5-hydroxytryptamine; STZ streptozotocin; mRNA messenger ribonu-
cleic acid; TNF-α tumour necrosis factor-α; IL-6 interleukin-6; SOD superoxide dismutase; GPx
glutathione peroxidase; CAT catalase; NF-κB nuclear factor κB; SAR structure–activity relationship;
TDD transdermal drug delivery; GFAP glial fibrillary acidic protein; GABAA gamma amino butyric
acid-A; iNOS inhibitor nitric oxide synthetase; MMP-1 matrix metalloproteinase-1; MMP-3 matrix
metalloproteinase-3; PPARs peroxisome proliferator-activated receptors; RBC Red Blood cells; CRP C
reactive protein; CFA complete Freund’s adjuvant; Iba 1 ionized binding protein 1, SAP s.c.air pouch.
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