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Abstract: A facile and efficient method has been developed for the synthesis of C3-difluoromethyl
carbinol-containing imidazo[1,2-a]pyridines at room temperature via the HFIP-promoted Friedel–
Crafts reaction of difluoroacetaldehyde ethyl hemiacetal and imidazo[1,2-a]pyridines. This strategy
could be applied to the direct C(sp2)-H hydroxydifluoromethylation of imidazo[1,2-a]pyridines and
afford a series of novel difluoromethylated carbinols in good to satisfactory yields with 29 examples.
Furthermore, gram-scale and synthetic transformation experiments have also been achieved, demon-
strating its potential applicable value in organic synthesis. This green protocol has several advantages,
including being transition metal- and oxidant-free, being carried out at room temperature, having
high efficiency, and having a wide substrate scope.
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1. Introduction

The incorporation of fluorine-containing groups within bioactive compounds is con-
sidered one of the most useful approaches to address important issues relevant to medicinal
chemistry due to their unique chemical and biological properties, such as affinity, metabolic
stability, lipophilicity, cell permeability, and bioavailability [1–3]. One of the more promi-
nent examples is the CF2H unit, which is a good hydrogen bond donor and may serve as a
bioisostere for hydroxy, thiol, and amide groups, and it has additional attractive properties
such as its ability to modulate lipophilicity, polarity, and conformational preferences [4].
For these reasons, CF2H-containing compounds may be widely applied in the fields of
pharmaceuticals, agrochemicals, and advanced functional materials [5–7]. Notably, difluo-
romethyl carbinols containing both the difluoromethyl and hydroxyl groups are prevalent
in bioactive molecules, such as antitumor agents [8], antidiabetic agents [9], Gaucher disease
inhibitors [10], farnesoid X receptor modulators [11], and estrogen receptor degraders [12]
(Figure 1). Therefore, the exploration of a facile synthetic protocol of difluoromethylated
carbinol derivatives is an undeniably important and valuable research topic in expanding
the chemical space for drug discovery [13,14].

In addition, imidazo[1,2-a]pyridines are widely found in natural products. They
are also extensively used in modern organic synthesis and pharmaceutical and materials
science [15]. Imidazo[1,2-a]pyridine is considered to be an important scaffold due to its
various biological and pharmaceutical activities, such as antiviral, antifungal, and antitu-
mor activities. The core structure of many commercially available drugs includes alpidem,
miroprofen, necopidem, olprinone, saripidem, zolpidem, and zolimidine (Figure 2) [16–21].
Therefore, the efficient and green preparation of imidazo[1,2-a]pyridine derivatives with
various substituents has also drawn considerable attention, especially C3-functionalized
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imidazo[1,2-a]pyridine derivatives [22]. Therefore, a sustained effort is being made to de-
velop new approaches to synthesize C3-functionalized imidazo[1,2-a]pyridine derivatives.
However, there are no reports on the synthesis of C3-difluoromethyl carbinol-containing
imidazo[1,2-a]pyridines.
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Figure 2. Representative drugs containing imidazo[1,2-a]pyridine scaffolds.

The strategy of C-H bond functionalization is known to be an ideal route for the
preparation of diverse imidazo[1,2-a]pyridines as it is a straightforward, atom-economical,
and synthetic step-economical method [23–25]. However, there are no reports on the
C-H hydroxydifluoromethylation of imidazo[1,2-a]pyridines. It has been reported that
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), with a much higher polarity, increased Brønsted
acidity, and strong hydrogen-bond donation [26–31], was considered to be a promising
catalyst or promoter for the Friedel–Crafts reaction. For example, as early as 2012, the
Naájera research group reported that HFIP serves as a promoter for the substitution
reaction of allylic alcohols with nucleophiles [26]. Subsequently, HFIP was studied and
applied as a catalyst or promoter in various types of Friedel–Crafts reactions. Inspired
by this strategy for HFIP-promoted Friedel–Crafts alkylation, we focused our interest
on developing facile methods for the synthesis of C3-difluoromethyl carbinol-containing
imidazo[1,2-a]pyridines at room temperature via the HFIP-promoted cross-dehydrative
coupling of difluoroacetaldehyde ethyl hemiacetal and imidazo[1,2-a]pyridines (Scheme 1).
This green protocol possesses many intrinsic advantages like operational simplicity, high
efficiency, atom economy, mild reaction conditions (e.g., at room temperature, transition
metal- and oxidant-free, without inert gas protection), and a wide substrate scope.
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Scheme 1. The synthesis of C3-difluoromethyl carbinol-containing imidazo[1,2-a]pyridines.

2. Results and Discussion
2.1. Optimization of Reaction Conditions

The hydroxydifluoromethylation of imidazo[1,2-a]pyridine (1a) and commercially
available difluoroacetaldehyde ethylacetal (2a) was selected as the model reaction for the
optimization of the reaction conditions. The results are summarized in Table 1.

Table 1. Optimization of reaction conditions [a].
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1 TFA (10%) DCM trace

2 TsOH (10%) DCM trace

3 BF3·OEt2 DCM trace

4 Y(OTf)3 (10%) DCM trace

5 Sc(OTf)3 (10%) DCM trace

6 HFIP (10%) DCM trace

7 HFIP (1.0) DCM 50
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Initially, the effect of Brønsted acids and Lewis acids, such as trifluoroacetic acid (TFA),
p-toluenesulfonic acid (TsOH), BF3

.Et2O, Y(OTf)3, and Sc(OTf)3, employed as catalysts
on the reaction was investigated (Entries 1–5); it was found that only a trace amount of
product 3a was detected. HFIP was considered to be a promising catalyst or promoter
considering its much higher polarity, increased Brønsted acidity, and strong hydrogen-bond
donation [26–31]. Therefore, we investigated the effect of HFIP as a catalyst or promoter
on this transformation. Regrettably, trace product 3a was afforded in dichloromethane
when 10 mol% HFIP was employed in the reaction, indicating that the catalytic amount of
HFIP was not enough to facilitate the hydroxydifluoromethylation process (Entry 6). We
attempted to increase the dosage of HFIP to 1.0 or 2.0 equivalents; product 3a could be
obtained in 50% and 73% yields, respectively (Entries 7 and 8). This result encouraged us
to use HFIP as a solvent for the reaction. Excitingly, the hydroxydifluoromethylation could
proceed completely to obtain 3a in 97% yield (Entry 9). Thus, using HFIP as the solvent, the
reaction of 1a (0.2 mmol) and 2a (0.4 mmol) was successfully achieved at room temperature
for 12 h to obtain 3a in satisfactory yield.

2.2. Scope of Reaction Substrates

Under the optimized reaction conditions, the substrate scope of this approach was
examined by using different 2-substituted imidazo[1,2-a]pyridines. The results are summa-
rized in Table 2.



Molecules 2023, 28, 7522 4 of 14

Table 2. Substrate scope of various 2-aryl imidazo[1,2-a]pyridines [a, b].
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[c] Reaction performed on a 5 mmol scale.

It was found that 2-phenyl imidazo[1,2-a]pyridine could react smoothly with 2a to
give the corresponding product 3b in 95% yield. Then, a series of substituents, such as
methyl, methoxyl, fluoro, chloro, and bromo groups on the C2-phenyl ring of 2-phenyl
imidazo[1,2-a]pyridines, were well tolerated under the standard conditions. This showed
that both methyl and methoxyl substituted substrates proceeded smoothly to give the corre-
sponding products 3c–3f in 79–92% yields. The halo-substituted substrates exhibited good
reactivity in the hydroxydifluoromethylation to obtain products 3g–3l in 82–92% yields.
Dichloro-substituted and dimethoxy-substituted substrates were also subjected to smooth
transformation to afford products 3m and 3n in 84% and 82% yields, respectively. As an-
ticipated, 2-(naphthalen-1-yl) and 2-(naphthalen-2-yl) imidazo[1,2-a]pyridines underwent
hydroxydifluoromethylation to give the desired products 3o and 3p in 78% and 80% yields,
respectively. To our delight, 2-heteroaryl imidazo[1,2-a]pyridines were also successfully em-
ployed for the synthesis of the desired products. Using 2-(2-pyridyl)imidazo[1,2-a]pyridine
and 2-(2-thienyl)imidazo[1,2-a]pyridine as substrates, corresponding products 3q and 3r
were obtained in 68% and 73% yields, respectively. Furthermore, this conversion could
be readily carried out on the 5 mmol scale to obtain the desired product 3a in 87% yield,
which proved to be easily applied to a gram-scale preparation.

To further extend the scope of this methodology, a series of imidazo[1,2-a]pyridines
with different substituents on the pyridine ring were used to evaluate the universality of
this hydroxydifluoromethylation (Table 3). As anticipated, imidazo[1,2-a]pyridines with an
electron-donating group as well as a halogen group on the pyridine rings all worked well
with 2a and afforded the desired target molecules 3aa–3ah in satisfactory yields (83–95%).
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Trifluoromethyl, as a strong electron-withdrawing group, can also be tolerated in this
conversion, giving the products in good yields (3ai, 89% and 3aj, 87%). 6-Bromo-7-methyl-
2-phenylimidazo[1,2-a]pyridine as a polysubstituted substrate was also suitable for this
conversion, resulting in the product 3ak with 90% yield.

Table 3. Substrate scope of various substituted 2-phenyl imidazo[1,2-a]pyridines [a, b].
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The structures of the desired products were confirmed by NMR (1H, 13C, and 19F) and
HM-RS data, and the structure of 3b (CCDC 2295549) was unambiguously confirmed by
single-crystal X-ray analysis, which can be seen in Supplementary Materials for details [32].

2.3. Mechanism Investigation

To gain insight into the details of the mechanism, we performed two control experi-
ments accordingly. Adding 2.0 equivalent radical scavenger 2,2,6,6-tetramethylpiperidin-1-
yloxyl (TEMPO) or BHT (butylated hydroxytoluene) to the reaction system, it was found
that the corresponding compound 3a could also be obtained in 91% and 88% isolation yields,
respectively (Scheme 2). These results indicated that the reaction may not be involved in
the pathway of radical participation.
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It has been reported that HFIP can be used to promote the generation of a C-C
bond by cleavage of a C-O bond (the substrates of aromatic aldehyde hydrate, propar-
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gyl alcohol, difluoroacetaldehyde ethyl hemiacetal, etc.) via the Friedel–Crafts alkylation
pathway [26–28,33–35]. Based on the properties of HFIP and the above-mentioned control
experimental results, a plausible mechanism of HFIP-promoted Friedel–Crafts alkylation
was put forward (Scheme 3). Initially, under the action of proton donor HFIP, the diflu-
oroacetaldehyde ethyl hemiacetal 2a has a tendency to remove one molecule of ethanol
to generate difluoroacetaldehyde A, then with proton exchange with HFIP taking place
and forming carbonium ions to active difluoroacetaldehyde A, making it more susceptible
for nucleophilic addition with imidazo[1,2-a]pyridine 1a, to generate the corresponding B.
Finally, B undergoes the dehydrogenation process to produce the final product 3a.
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2.4. Synthetic Derivatization

Moreover, the reactions are highly practical because of their wide range of applications
in pharmaceutical chemistry for the production of diversified structural scaffolds and
combinatorial libraries for drug discovery. The desired targets derivatized at hydroxyl
positions may be promising candidates for such applications in pharmaceutical chemistry
and organic synthesis. For instance, C3-difluoroacetyl imidazo[1,2-a]pyridines 4a and 4b
have been prepared through Dess–Martin periodinane oxidation with 3a and 3b with yields
of 77% and 79%, respectively (Scheme 4).
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3. Materials and Methods
3.1. General Information

Melting point (m.p.) was performed on a Büchi Melting Point B-545 instrument
without correcting. The 1H, 13C and 19F NMR spectra were collected on a BRUKER
DRX-400 spectrometer in CDCl3 using tetramethylsilane (TMS) as an internal standard.
High-resolution mass spectra (HRMS) were obtained with an LCMS-IT-TOF mass spec-
trometer. Single-crystal X-ray analysis was obtained using Bruker APEX2 Smart CCD. TLC
was performed by using commercially prepared 100–400 mesh silica gel plates (GF254),
and visualization was detected at 254 or 365 nm. All reagents and solvents were pur-
chased from commercial sources and used without further purification, The 2-substituted
imidazo[1,2-a]pyridines 1 (except for 1a) were synthesized from 2-bromoacetophenones (or
acetophenones) and various 2-aminopyridines [36,37].

3.2. Experimental Procedure for Compounds 3a–3ak

The mixture of substituted imidazo[1,2-a]pyridine 1 (0.2 mmol, 1.0 equiv.) and di-
fluoroacetaldehyde ethyl hemiacetal 2a (0.30 mmol, 1.5 equiv.) in 1,1,1,3,3,3-hexafluoro-
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2-propanol (1.0 mL) was stirred at room temperature for 12 h. After the completion of
the reaction, the reaction mixture was quenched with H2O (15 mL) and extracted three
times with ethyl acetate (3 × 15 mL). Then, the organic layer was dried over anhydrous
Na2SO4. After the filtration and evaporation of the solvents under reduced pressure, the
crude products were purified by column chromatography on silica gel to afford the desired
products 3a–3ak.

3.3. Experimental Procedure for Compounds 4a and 4b

Compounds 3a or 3b (0.1 mmol, 1.0 equiv.) and Dess–Martin periodinane (0.37 mmol,
3.7 equiv.) in DCM (1.0 mL) were stirred in a ground glass test tube at room temperature
for 4 h. After monitoring the end of the reaction on TLC, the residues were purified by
column chromatography on silica gel to give the pure products 4a or 4b.

3.4. Characterization Data for All Products 3a–3ak and 4a–4b

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-imidazo[1,2-a]pyridine (3a), white solid (38 mg, 97%); m.p.
160–162 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH: 5.16–5.23 (m, 1H), 6.10 (td,
J = 55.6, 3.2 Hz, 1H), 6.85–6.90 (m, 1H), 7.23–7.28 (m, 1H), 7.49–7.56 (m, 2H), 8.41 (d,
J = 6.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC: 65.7 (t, J = 26.0 Hz),
112.7, 115.1 (t, J = 243.0 Hz), 116.9, 119.9, 125.6, 125.7, 131.8, 146.2; 19F NMR (376 MHz,
CDCl3:CD3OD = 7:1), δF, ppm: −126.14 (d, J = 285.8 Hz, 1F), 127.05 (d, J = 285.8 Hz, 1F);
ESI-HRMS, m/z: Calcd for C9H9F2N2O [M + H]+, 199.0677, found: 199.0669.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-phenyl-imidazo[1,2-a]pyridine (3b), white solid (52 mg,
95%); m.p. 161–163 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm: 5.31–5.38
(m, 1H), 6.14 (td, J = 55.6, 3.2 Hz, 1H), 7.18–7.23 (m, 1H), 7.30–7.35 (m, 3H), 7.44–7.50 (m,
3H), 8.63 (d, J = 6.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm: 66.2 (t,
J = 25.0 Hz), 112.3, 115.4 (t, J = 245.0 Hz), 115.6, 116.5, 125.9, 127.3, 128.3, 128.4, 128.8, 133.1,
145.4, 145.5; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.70 (d, J = 282.0 Hz,
1F), −124.88 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H13F2N2O [M + H]+,
275.0990, found: 275.0979.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(p-tolyl)-imidazo[1,2-a]pyridine (3c), white solid (53 mg,
92%); m.p. 187–189 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm: 2.35 (s, 3H),
5.31–5.38 (m, 1H), 6.13 (J = 55.6, 3.2 Hz, 1H), 6.75–6.80 (m, 1H), 7.13 (d, J = 7.6 Hz, 2H),
7.16–7.21 (m, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 9.2 Hz, 1H), 8.61 (d, J = 6.8 Hz,
1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm: 21.2, 66.2 (t, J = 24.6 Hz), 112.2,
115.4 (t, J = 244.0 Hz), 116.4, 125.8, 127.3, 128.6, 128.8, 129.1, 129.3, 130.1, 138.1, 145.4; 19F
NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.68 (d, J = 282.0 Hz, 1F), −124.96
(d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H15F2N2O [M + H]+, 289.1147, found:
289.1136.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(4-methoxyphenyl)-imidazo[1,2-a]pyridine (3d), white solid
(55 mg, 90%); m.p. 178–180 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm: 3.83 (s,
3H), 5.29–5.36 (m, 1H), 6.14 (td, J = 55.6, 2.4 Hz, 1H), 6.71–6.81 (m, 1H), 6.86–6.90 (m, 2H),
7.81–7.21 (m, 1H), 7.40–7.46 (m, 3H), 8.62 (d, J = 4.0 Hz, 1H); 13C-NMR (100 MHz,
CDCl3:CD3OD = 7:1), δC, ppm: 55.2, 66.2 (t, J = 25.0 Hz), 112.2, 113.9, 115.1, 115.4 (t,
J = 244.0 Hz), 116.3, 115.6, 125.8, 127.2, 130.1, 145.2, 145.4, 159.6; 19F NMR (376 MHz,
CDCl3:CD3OD = 7:1), δF, ppm: −123.74 (d, J = 282.0 Hz, 1F), −124.87 (d, J = 282.0 Hz, 1F);
ESI-HRMS, m/z: Calcd for C16H15F2N2O2 [M + H]+, 305.1096, found: 305.1081.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(3-methoxyphenyl)-imidazo[1,2-a]pyridine (3e), white solid
(52 mg, 85%); m.p. 176–178 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.34–5.42 (m, 1H), 6.13 (td, J = 55.6, 3.6 Hz, 1H), 6.75–6.79 (m, 1H), 6.84–6.87 (m, 1H),
7.00–7.05 (m, 2H), 7.14–7.23 (m, 2H), 7.41 (d, J = 7.2 Hz, 1H), 8.61 (d, J = 6.8 Hz, 1H); 13C-
NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm: 55.2, 66.3 (t, J = 26.0 Hz), 112.3, 112.9,
114.1, 114.2, 115.4 (t, J = 245.0 Hz), 115.5, 116.6, 1221.2, 125.9, 127.3, 129.5, 134.4, 145.3, 145.4,
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159.4; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.62 (d, J = 282.0 Hz, 1F),
−124.75 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H15F2N2O2 [M + H]+, 305.1096,
found: 305.1081.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(2-methoxyphenyl)-imidazo[1,2-a]pyridine (3f), white solid
(48 mg, 79%); m.p. 177–179 ◦C; 1H-NMR (400 MHz, CDCl3), δH, ppm: 3.56 (s, 1H), 5.07–5.14
(m, 1H), 5.91 (td, J = 55.6, 1.6 Hz, 1H), 6.70–6.77 (m, 2H), 6.81 (d, J = 8.4 Hz, 1H), 7.09–7.16 (m,
2H), 7.21–7.25 (m, 1H), 7.37 (d, J = 8.8 Hz, 1H), 8.57 (d, J = 6.8 Hz, 1H); 13C-NMR (100 MHz,
CDCl3), δC, ppm: 55.2, 66.5 (t, J = 24.0 Hz), 111.0, 112.1, 115.7 (t, J = 246.0 Hz)„ 116.6, 116.9,
120.8, 122.1, 125.4, 127.2, 130.0, 132.1, 141.3, 145.6, 156.3; 19F NMR (376 MHz, CDCl3), δF,
ppm: −123.06 (d, J = 278.2 Hz, 1F), −127.67 (d, J = 278.2 Hz, 1F); ESI-HRMS, m/z: Calcd for
C16H15F2N2O2 [M + H]+, 305.1096, found: 305.1081.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(4-fluorophenyl)-imidazo[1,2-a]pyridine 2,2- (3g), white
solid (49 mg, 85%); m.p. 208–210 ◦C; 1H-NMR (400 MHz, CD3OD), δH, ppm: 5.28–5.35
(m, 1H), 6.33 (td, J = 55.6, 3.6 Hz, 1H), 6.92–6.96 (m, 1H), 7.18–7.24 (m, 2H), 7.35–7.39 (m,
1H), 7.55 (d, J = 9.2 Hz, 1H), 7.63–7.67 (m, 2H), 8.75 (d, J = 6.8 Hz, 1H); 13C-NMR (100 MHz,
CD3OD), δC, ppm: 66.1 (t, J = 25.0 Hz), 112.3, 115.1 (t, J = 22.0 Hz), 115.7 (t, J = 243.0 Hz),
115.8, 116.1, 126.4, 127.5, 129.6 (d, J = 3.0 Hz), 130.8 (d, J = 9.0 Hz), 145.5, 144.2, 163.0 (d,
J = 246.0 Hz); 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −115.40, −125.45 (d,
J = 285.8 Hz, 1F), −126.28 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H12F3N2O
[M + H]+, 293.0896, found: 293.0885.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(2-fluorophenyl)-imidazo[1,2-a]pyridine (3h), white solid
(48 mg, 82%); m.p. 173–175 ◦C; 1H-NMR (400 MHz, CDCl3), δH, ppm: 5.04–5.11 (m, 1H),
5.95 (td, J = 55.6, 2.0 Hz, 1H), 6.68–6.72 (m, 1H), 6.92–7.00 (m, 2H), 7.09–7.13 (m, 1H),
7.17–7.23 (m, 1H), 7.26–7.31 (m, 1H), 8.37 (d, J = 9.2 Hz, 1H), 8.57 (d, J = 6.0 Hz, 1H); 13C-
NMR (100 MHz, CDCl3), δC, ppm: 66.4 (t, J = 24.0 Hz), 112.4, 115.4 (t, J = 246.0 Hz), 115.6,
115.8, 116.6, 120.9 (d, J = 15.0 Hz), 124.3 (d, J = 4.0 Hz), 126.0, 127.5, 130.4 (d, J = 8.0 Hz),
132.0, 138.9, 145.9, 159.4 (d, J = 245.0 Hz); 19F NMR (376 MHz, CDCl3), δF, ppm: −123.88 (d,
J = 285.8 Hz, 1F), −124.66 (d, J = 285.8 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H12F3N2O
[M + H]+, 293.0896, found: 293.0885.

(±)-2-(4-Chlorophenyl)-3-(2,2-difluoro-1-hydroxy)ethyl-imidazo[1,2-a]pyridine (3i), white solid
(55 mg, 90%); m.p. 198–200 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.26–5.32 (m, 1H), 6.16 (td, J = 55.6, 3.2 Hz, 1H), 6.80–6.85 (m, 1H), 7.22–7.31 (m, 3H), 7.40
(d, J = 8.0 Hz, 2H), 7.46 (d, J = 9.2 Hz, 1H), 8.60 (d, J = 6.8 Hz, 1H); 13C-NMR (100 MHz,
CDCl3:CD3OD = 7:1), δC, ppm: 66.3 (t, J = 26.0 Hz), 112.6, 115.2 (t, J = 245.0 Hz), 115.6, 116.6,
126.2, 127.3, 128.7, 129.9, 131.5, 134.4, 144.2, 145.5; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1),
δF, ppm: −123.74 (d, J = 282.0 Hz, 1F), −124.57 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd
for C15H12ClF2N2O [M + H]+, 309.0601, found: 309.0616.

(±)-2-(3-Chlorophenyl)-3-(2,2-difluoro-1-hydroxy)ethyl-imidazo[1,2-a]pyridine (3j), white solid
(57 mg, 92%); m.p. 174–176 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.28–5.26 (m, 1H), 6.15 (td, J = 55.6, 3.6 Hz, 1H), 6.78–6.83 (m, 1H), 7.20–7.23 (m, 1H),
7.25–7.32 (m, 2H), 7.35–7.38 (m, 1H), 7.44–7.51 (m, 2H), 8.63 (d, J = 6.8 Hz, 1H); 13C-NMR
(100 MHz, CDCl3:CD3OD = 7:1), δC, ppm: 66.1 (t, J = 25.0 Hz), 112.6, 115.3 (t, J = 245.0 Hz),
115.9, 116.5, 126.2, 126.9, 127.4, 128.3, 128.7, 129.7, 134.3, 134.9, 143.8, 145.5; 19F NMR
(376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.86 (d, J = 285.8 Hz, 1F), −124.63 (d,
J = 285.8 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H12ClF2N2O [M + H]+, 309.0601, found:
309.0616.

(±)-2-(4-Bromophenyl)-3-(2,2-difluoro-1-hydroxy)ethyl-imidazo[1,2-a]pyridine (3k), white solid
(60 mg, 86%); m.p. 190–192 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.24–5.31 (m, 1H), 6.16 (td, J = 55.6, 3.6 Hz, 1H), 6.80–6.85 (m, 1H), 7.22–7.26 (m, 1H), 7.32 (d,
J = 8.4 Hz, 2H), 7.43–7.47 (m, 3H), 8.59 (d, J = 6.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD
= 7:1), δC, ppm: 66.2 (t, J = 25.0 Hz), 112.5, 115.2 (t, J = 245.0 Hz), 115.7, 116.6, 122.7, 126.2,
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127.3, 130.2, 131.6, 131.9, 144.2, 145.5; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm:
−123.74 (d, J = 282.0 Hz, 1F), −124.56 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for
C16H15BrF2N2O [M + H]+, 353.0096, found: 353.0107.

(±)-2-(3-Bromophenyl)-3-(2,2-difluoro-1-hydroxy)ethyl-imidazo[1,2-a]pyridine (3l), white solid
(59 mg, 84%); m.p. 186–188 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.27–5.35 (m, 1H), 6.01–6.16 (m, 1H), 6.78–6.82 (m, 1H), 7.17–7.22 (m, 2H), 7.38–7.45 (m, 3H),
7.67 (s, 1H), 8.62 (d, J = 6.4 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm:
66.22 (t, J = 25.0 Hz), 112.6, 115.3 (t, J = 245.0 Hz), 115.9, 116.6, 122.5, 126.3, 127.4, 130.0, 131.3,
131.7, 135.2, 143.7, 145.6; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.88 (d,
J = 285.8 Hz, 1F), −124.66 (d, J = 285.8 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H12BrF2N2O
[M + H]+, 353.0096, found: 353.0107.

(±)-2-(3,4-Dichlorophenyl)-3-(2,2-difluoro-1-hydroxy)ethyl-imidazo[1,2-a]pyridine (3m), white
solid (57 mg, 84%); m.p. 205–207 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH,
ppm: 5.26–5.34 (m, 1H), 6.18 (td, J = 55.6, 3.6 Hz, 1H), 6.83–6.87 (m, 1H), 7.25–7.30 (m, 1H),
7.38–7.53 (m, 3H), 7.68 (s, 1H), 8.63 (d, J = 6.4 Hz, 1H);13C-NMR (100 MHz, CDCl3:CD3OD=7:1),
δC, ppm: 66.2 (t, J = 26.0 Hz), 112.7, 115.2 (t, J = 245.0 Hz), 116.0, 116.6, 126.5, 127.4, 128.0,
130.5, 132.5, 132.6, 133.2, 142.9, 145.6; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm:
−123.85 (d, J = 285.8 Hz, 1F), −124.66 (d, J = 285.8 Hz, 1F); ESI-HRMS, m/z: Calcd for
C15H11Cl2F2N2O [M + H]+, 343.0211, found: 343.0213.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(3,4-dimethoxyphenyl)-imidazo[1,2-a]pyridine (3n), white
solid (55 mg, 82%); m.p. 178–180 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
3.86 (s, 3H), 3.90 (s, 3H), 5.35–5.42 (m, 1H), 6.19 (td, J = 55.6, 3.6 Hz, 1H), 6.78–6.86 (m, 2H),
7.04 (d, J = 8.0 Hz, 1H), 7.16 (s, 1H), 7.19–7.23 (m, 1H), 7.46 (d, J = 8.8 Hz, 1H), 8.61 (d,
J = 6.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm: 55.7, 55.7, 66.3 (t,
J = 25.0 Hz), 110.9, 112.1, 112.3, 115.1, 115.4 (t, J = 245.0 Hz), 116.3, 121.2, 125.8, 125.9, 127.2,
145.3, 145.4, 148.7, 149.0; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.54 (d,
J = 282.0 Hz, 1F), −124.53 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C17H17F2N2O3
[M + H]+, 335.1202, found: 335.1195.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(naphthalen-1-yl)-imidazo[1,2-a]pyridine (3o), white solid
(51 mg, 78%); m.p. 212–214 ◦C; 1H-NMR (400 MHz, CDCl3), δH, ppm: 4.68–4.76 (m, 1H),
5.45 (td, J = 55.6, 2.8 Hz, 1H), 6.67–6.71 (m, 1H), 6.94–6.99 (m, 2H), 7.06–7.10 (m, 1H),
7.15–7.19 (m, 1H), 7.25–7.30 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 8.46 (d,
J = 6.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3), δC, ppm: 66.0 (t, J = 25.0 Hz), 112.3, 115.2 (t,
J = 245.0 Hz), 116.4, 117.2, 124.9, 125.6, 125.9, 125.9, 126.2, 127.3, 128.0, 128.3, 129.0, 130.2,
132.2, 133.4, 143.8, 145.3; ESI-HRMS, m/z: Calcd for C19H15F2N2O [M + H]+, 325.1147,
found: 325.1154.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(naphthalen-2-yl)-imidazo[1,2-a]pyridine (3p), white solid
(52 mg, 80%); m.p. 210–212 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.38–5.42 (m, 1H), 6.14 (td, J = 55.6, 3.2 Hz, 1H), 6.57–6.61 (m, 1H), 6.96–7.01 (m, 1H), 7.33 (d,
J = 8.8 Hz, 1H), 7.47–7.51 (m, 3H), 7.65 (d, J = 8.4 Hz, 1H), 7.73–7.77 (m, 2H), 7.85 (s, 1H), 8.53
(d, J = 6.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD=7:1), δC, ppm: 66.3 (t, J = 25.0 Hz),
112.2, 115.4 (t, J = 245.0 Hz), 115.8, 116.3, 125.8, 126.3, 126.3, 126.4, 127.2, 127.6, 127.8, 128.1,
128.3, 130.4, 132.9, 133.0, 145.2, 145.5; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm:
−123.52 (d, J = 285.8 Hz, 1F), −124.60 (d, J = 285.8 Hz, 1F); ESI-HRMS, m/z: Calcd for
C19H15F2N2O [M + H]+, 325.1147, found: 325.1154.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(pyridin-2-yl)-imidazo[1,2-a]pyridine (3q), white solid
(37 mg, 68%); m.p. 165–167 ◦C; 1H-NMR (400 MHz, CDCl3), δH, ppm: 5.25–5.32 (m, 1H),
5.87 (td, J = 55.6, 5.6 Hz, 1H), 6.78–6.82 (m, 1H), 7.14–7.23 (m, 2H), 7.56 (d, J = 9.2 Hz, 1H),
7.78–7.82 (m, 1H), 8.03 (d, J = 6.8 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 4.0 Hz, 1H),
9.82 (br, 1H); 13C-NMR (100 MHz, CDCl3), δC, ppm: 65.8 (t, J = 26.0 Hz), 113.3, 115.9 (t,
J = 244.0 Hz), 118.0, 120.1, 123.0, 123.0, 124.0, 125.6, 138.4, 142.6, 145.1, 147.2, 152.6; 19F
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NMR (376 MHz, CDCl3), δF, ppm: −123.20 (d, J = 282.0 Hz, 1F), −127.07 (d, J = 282.0 Hz,
1F); ESI-HRMS, m/z: Calcd for C14H12F2N3O [M + H]+, 276.0943, found: 276.0962.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-(thiophen-2-yl)-imidazo[1,2-a]pyridine (3r), white solid
(41 mg, 73%); m.p. 163–165 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.46–5.54 (m, 1H), 6.10 (td, J = 55.6, 3.2 Hz, 1H), 6.69–6.73 (m, 1H), 6.96–6.99 (m, 1H),
7.11–7.16 (m, 1H), 7.19 (d, J = 3.6 Hz, 1H), 7.27 (d, J = 5.2 Hz, 1H), 7.40 (d, J = 9.2 Hz,
1H), 8.57 (d, J = 7.2 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm: 66.4 (t,
J = 25.0 Hz), 112.4, 114.9, 115.4 (t, J = 246.0 Hz), 116.4, 126.2, 126.3, 126.7, 127.4, 127.6, 135.5,
139.1, 145.7; 19F NMR (376 MHz, CDCl3), δF, ppm: −123.44 (d, J = 282.0 Hz, 1F), −127.37
(d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C13H11F2N2OS [M + H]+, 281.0555, found:
281.0566.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-6-methyl-2-phenyl-imidazo[1,2-a]pyridine (3aa), white solid
(54 mg, 93%); m.p. 212–214 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm: 2.30 (s,
3H), 5.28–5.36 (m, 1H), 6.13 (td, J = 55.6, 4.0 Hz, 1H), 7.00 (d, J = 9.2 Hz, 1H), 7.26–7.31 (m,
4H), 7.38–7.41 (m, 2H), 8.35 (s, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm:
18.4, 66.3 (t, J = 25.0 Hz), 115.1, 115.2 (t, J = 245.0 Hz), 115.8, 122.0, 124.8, 128.0, 128.4, 128.7,
129.0, 133.1, 144.5, 145.2; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.27 (d,
J = 282.0 Hz, 1F), −124.93 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H15F2N2O
[M + H]+, 289.1147, found: 289.1136.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-7-methyl-2-phenyl-imidazo[1,2-a]pyridine (3ab), white solid
(55 mg, 95%); m.p. 186–188 ◦C; 1H-NMR (400 MHz, CDCl3), δH, ppm: 2.32 (s, 3H), 5.26–5.34
(m, 1H), 6.18 (td, J = 55.6, 3.6 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.17–7.29 (m, 6H), 8.43 (d,
J = 9.2 Hz, 1H); 13C-NMR (100 MHz, CDCl3), δC, ppm: 21.3, 66.4 (t, J = 25.0 Hz), 114.8,
115.1, 115.3 (t, J = 245.0 Hz), 126.5, 128.1, 128.4, 128.6, 132.7, 137.3, 144.8, 145.7; 19F NMR
(376 MHz, CDCl3), δF, ppm: −123.73 (d, J = 282.0 Hz, 1F), −124.81 (d, J = 282.0 Hz, 1F);
ESI-HRMS, m/z: Calcd for C16H15F2N2O [M + H]+, 289.1147, found: 289.1136.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-8-methyl-2-phenyl-imidazo[1,2-a]pyridine (3ac), white solid
(49 mg, 84%); m.p. 184–186 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
2.53 (s, 3H), 5.21–5.28 (m, 1H), 6.08 (td, J = 55.6, 1.6 Hz, 1H), 6.70–6.74 (m, 1H), 7.03
(d, J = 6.0 Hz, 1H), 7.28–7.32 (m, 3H), 7.45–7.48 (m, 2H), 8.48 (d, J = 6.8 Hz, 1H); 13C-
NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm: 16.9, 66.2 (t, J = 25.0 Hz), 112.4, 115.2
(t, J = 245.0 Hz), 115.9, 124.8, 124.9, 126.7, 128.1, 128.3, 129.1, 133.3, 145.2, 145.9; 19F
NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.51 (d, J = 282.0 Hz, 1F), −124.57 (d,
J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H15F2N2O [M + H]+, 289.1147, found:
289.1136.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-7-methoxy-2-phenyl-imidazo[1,2-a]pyridine (3ad), white
solid (52 mg, 85%); m.p. 201–203 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
3.86 (s, 3H), 5.27–5.32 (m, 1H), 5.99–6.28 (m, 1H), 6.78–6.81 (m, 1H), 7.31–7.42 (m, 3H),
7.49–7.59 (m, 2H), 8.46 (d, J = 4.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC,
ppm: 55.5, 66.2 (t, J = 25.0 Hz), 93.7, 107.3, 114.3, 115.4 (t, J = 245.0 Hz), 127.8, 128.1, 128.4,
128.7, 133.3, 145.0, 147.3, 158.8; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.98
(d, J = 282.0 Hz, 1F),−125.18 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H15F2N2O2
[M + H]+, 305.1096, found: 305.1081.

(±)-6-Chloro-3-(2,2-difluoro-1-hydroxy)ethyl-2-phenyl-imidazo[1,2-a]pyridine (3ae), white solid
(57 mg, 92%); m.p. 215–217 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.30–5.38 (m, 1H), 6.16 (td, J = 55.6, 3.2 Hz, 1H), 7.18–7.22 (m, 1H), 7.36–7.42 (m, 3H), 7.46 (d,
J = 9.2 Hz, 1H), 7.51–7.54 (m, 2H), 8.72 (s, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1),
δC, ppm: 66.3 (t, J = 25.0 Hz), 115.3 (t, J = 245.0 Hz), 116.2, 116.9, 120.5, 125.3, 127.2,
128.5, 128.6, 128.8, 132.8, 144.0, 146.3; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm:
−123.99 (d, J = 282.0 Hz, 1F), −124.97 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for
C15H12ClF2N2O [M + H]+, 309.0601, found: 309.0616.
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(±)-7-Chloro-3-(2,2-difluoro-1-hydroxy)ethyl-7-chloro-2-phenyl-imidazo[1,2-a]pyridine (3af), white
solid (56mg, 91%); m.p. 219–221 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.34–5.41 (m, 1H), 6.16 (t, J = 55.6 Hz, 1H), 6.83 (d, J = 7.2 Hz, 1H), 7.33–7.47 (m, 3H); 7.59 (d,
J = 4.4 Hz, 2H), 8.62 (d, J = 7.2 Hz, 1H); 13C-NMR (100 MHz, DMSO-d6), δC, ppm: 65.8 (t,
J = 24.0 Hz), 113.8, 116.0, 116.3 (t, J = 243.0 Hz), 116.8, 128.8, 128.9, 129.0, 129.2, 131.3, 133.8,
145.2, 146.0; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −124.13 (d, J = 285.8 Hz,
1F), −125.03 (d, d, J = 285.8 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H12ClF2N2O [M + H]+,
309.0601, found: 309.0616.

(±)-8-Chloro-3-(2,2-difluoro-1-hydroxy)ethyl-8-chloro-2-phenyl-imidazo[1,2-a]pyridine (3ag), white
solid (55 mg, 89%); m.p. 233–235 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.32–5.39 (m, 1H), 6.08 (td, J = 55.6, 3.2 Hz, 1H), 6.78–6.82 (m, 1H), 7.34–7.45 (m, 4H), 7.62 (d,
J = 6.4 Hz, 2H), 8.64 (d, J = 7.2 Hz, 1H); 13C-NMR (100 MHz, DMSO-d6), δC, ppm: 65.9 (t,
J = 25.0 Hz), 112.5, 116.2 (t, J = 243.0 Hz), 118.4, 121.8, 125.2, 127.2, 128.9, 129.2, 129.2, 133.8,
142.5, 145.6; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −124.06 (d, J = 282.0 Hz,
1F), −125.11 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H12ClF2N2O [M + H]+,
309.0601, found: 309.0616.

(±)-8-Bromo-3-(2,2-difluoro-1-hydroxy)ethyl-2-phenyl-imidazo[1,2-a]pyridine (3ah), white solid
(58 mg, 83%); m.p. 259–261 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH, ppm:
5.32–5.38 (m, 1H), 6.01–6.30 (m, 1H), 6.73–6.77 (m, 1H), 7.41–7.46 (m, 3H), 7.55 (d, J = 6.8 Hz,
1H), 7.64 (d, J = 6.8 Hz, 2H), 8.69 (d, J = 6.0 Hz, 1H); 13C-NMR (100 MHz, DMSO-d6), δC,
ppm: 66.0 (t, J = 25.0 Hz), 110.6, 113.0, 116.2 (t, J = 243.0 Hz), 118.4, 127.6, 128.6, 128.8, 129.1,
129.2, 133.8, 143.1, 145.6; 19F NMR (376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −123.98 (d,
J = 282.0 Hz, 1F), −125.16 (d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C15H12BrF2N2O
[M + H]+, 353.0096, found: 353.0107.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-phenyl-6-(trifluoromethyl)-imidazo[1,2-a]pyridine (3ai),
white solid (61 mg, 89%); m.p. 193–195 ◦C; 1H-NMR (400 MHz, CDCl3:CD3OD = 7:1), δH,
ppm: 5.35–5.43 (m, 1H), 6.17 (td, J = 55.6, 2.8 Hz, 1H), 7.33–7.39 (m, 4H), 7.48–7.51 (m, 2H),
7.59 (d, J = 9.8 Hz, 1H), 9.02 (s, 1H); 13C-NMR (100 MHz, CDCl3:CD3OD = 7:1), δC, ppm:
66.1 (t, J = 25.0 Hz), 115.5 (t, J = 245.0 Hz), 116.5 (q, J = 34.0 Hz), 116.9, 117.3, 121.6–121.8 (m),
123.5 (q, J = 270.0 Hz), 126.8 (q, J = 5.0 Hz), 128.6, 128.7, 128.7, 132.4, 145.4, 147.1; 19F NMR
(376 MHz, CDCl3:CD3OD = 7:1), δF, ppm: −62.05, −123.79 (d, J = 282.0 Hz, 1F), −125.09
(d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H12F5N2O [M + H]+, 343.0864, found:
343.0857.

(±)-3-(2,2-Difluoro-1-hydroxy)ethyl-2-phenyl-7-(trifluoromethyl)-imidazo[1,2-a]pyridine (3aj),
white solid (60 mg, 87%); m.p. 206–208 ◦C; 1H-NMR (400 MHz, CD3OD), δH, ppm:
5.37–5.45 (m, 1H), 6.36 (td, J = 55.6, 3.6 Hz, 1H), 7.18 (dd, J = 6.4, 3.2 Hz, 1H), 7.44–7.54 (m,
3H), 7.66–7.69 (m, 2H); 7.93 (s, 1H), 8.96 (d, J = 7.2 Hz, 1H); 13C-NMR (CD3OD), δC, ppm:
66.1 (t, J = 25.0 Hz), 107.6–107.7 (m), 113.8 (q, J = 4.0 Hz), 115.8 (t, J = 245.0 Hz), 118.0 (t,
J = 3.0 Hz), 123.4 (q, J = 272.0 Hz), 127.5 (q, J = 34.0 Hz), 128.4, 128.6, 128.8, 129.0, 132.7,
143.7, 147.3; 19F NMR (376 MHz, CD3OD), δF, ppm: −65.30, −125.65 (d, J = 285.8 Hz, 1F),
−126.62 (d, J = 285.8 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H12F5N2O [M + H]+, 343.0864,
found: 343.0857.

(±)-6-Bromo-3-(2,2-difluoro-1-hydroxy)ethyl-7-methyl-2-phenyl-6-(trifluoro-methyl)-imidazo[1,2-
a]pyridine (3ak), white solid (66 mg, 90%); m.p. 237–239 ◦C; 1H-NMR (400 MHz, DMSO-d6),
δH, ppm: 5.32–5.39 (m, 1H), 6.59 (t, J = 53.2 Hz, 1H), 6.86–6.88 (m, 1H), 7.40–7.51 (m, 3H),
7.54–7.70 (m, 3H), 8.85 (s, 1H); 13C-NMR (100 MHz, DMSO-d6), δC, ppm: 22.4, 65.8 (t, J =
24.0 Hz), 110.5, 116.0, 116.3 (t, J = 243.0 Hz), 116.6, 127.4, 127.7, 129.0, 129.1, 134.0, 135.7,
144.7, 145.6; 19F NMR (376 MHz, DMSO-d6), δF, ppm: −123.85 (d, J = 282.0 Hz, 1F),−124.80
(d, J = 282.0 Hz, 1F); ESI-HRMS, m/z: Calcd for C16H14BrF2N2O [M + H]+, 367.0252, found:
367.0244.
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3-(2,2-Difluoroacetyl)-imidazo[1,2-a]pyridine (4a), white solid (15 mg, 77%); m.p. 102–104 ◦C;
1H-NMR (400 MHz, CDCl3), δH, ppm: 6.26 (t, J = 53.6 Hz, 1H), 7.21–7.25 (m, 1H), 7.63–7.68
(m, 1H), 7.87 (d, J = 9.2 Hz, 1H), 8.63 (s, 1H), 9.62 (d, J = 6.8 Hz, 1H); 13C-NMR (100 MHz,
CDCl3), δC, ppm: 111.1 (t, J = 252.0 Hz), 116.2, 118.1, 119.9, 129.0, 131.0, 146.0 (t, J = 6.0 Hz),
149.7, 177.0 (t, J = 26.0 Hz); 19F NMR (376 MHz, CDCl3), δ, ppm: −121.40; ESI-HRMS, m/z:
Calcd for C9H7F2N2O [M + H]+, 197.0521, found: 197.0539.

3-(2,2-Difluoroacetyl)-2-phenyl-imidazo[1,2-a]pyridine (4b), white solid (22 mg, 79%); m.p.
121–123 ◦C; 1H-NMR (400 MHz, CDCl3), δH, ppm: 5.91 (t, J = 53.2 Hz, 1H), 7.23–7.26 (m,
1H), 7.52–7.58 (m, 3H), 7.62–7.65 (m, 2H), 7.66–7.72 (m, 1H), 7.85 (d, J = 8.8 Hz, 1H), 9.78 (d,
J = 6.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3), δC, ppm: 106.0 (t, J = 244.0 Hz), 116.2, 117.7,
119.0, 128.8, 129.4, 129.7, 130.2, 131.6, 133.7, 148.5, 157.5, 177.2 (t, J = 25.0 Hz); 19F NMR
(376 MHz, CDCl3), δF, ppm: −124.48; ESI-HRMS, m/z: Calcd for C15H11F2N2O [M + H]+,
273.0834, found: 273.0830.

4. Conclusions

In conclusion, we have developed a facile and efficient method for the synthesis of
C3-difluoromethyl carbinol-containing imidazo[1,2-a]pyridines via HFIP-promoted direct
C(sp2)-H hydroxydifluoromethylation. A small library of difluoromethylated carbinols
were prepared at room temperature in good to high yields by the practical green method.
This HFIP-promoted strategy exhibited some definite benefits, such as being transition
metal- and oxidant-free and having wide substrate generality, excellent functional group tol-
erance and mild reaction conditions. In addition, gram-scale and synthetic transformation
experiments have also been demonstrated. Therefore, this simple and green synthesis strat-
egy might be attractive for the further design and rapid synthesis of potentially bioactive
fluorinated heterocyclic derivatives with multifunctional groups.
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