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Figure S1. Molecular structures of the remaining in silico top hits that were tested in vitro against the

target enzymes. The respective origin databases as well as protein structure models that were
employed for their identification are listed.

HO

pemetrexed (2X9G)
-9.79 keal/mol

Figure S2. Co-crystallized inhibitor pemetrexed of the TOPTR1 protein structure model
“2X9G”. Complex- and target-based pharmacophore hypotheses based on the TbPTR1

(ID: “2X9G”) binding pocket can be found in the Supplementary Materials of our previous
publication [4].
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PY848 (3MCV)
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Figure S3. Co-crystallized inhibitor PY848 of the TbPTR1 protein structure model
“3MCV”. Complex- and target-based pharmacophore hypotheses based on the TWPTR1
(ID: “3MCV”) binding pocket can be found in the Supplementary Materials of our
previous publication [4].

6-(4-bromophenyl)-5-phenyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (4CM])
-9.51 kcal/mol
Figure S4. Co-crystallized inhibitor 6-(4-bromophenyl)-5-phenyl-7H-pyrrolo|[2,3-
dlpyrimidine-2,4-diamine of the TbPTR1 protein structure model “4CM]J”. Complex-
and target-based pharmacophore hypotheses based on the ThPTR1 (ID: “4CM]”) binding
pocket can be found in the Supplementary Materials of our previous publication [4].

2-amino-5-phenethyl-6-phenyl-3H-pyrrolo[2,3 d]pyrimidine-4(7H)-one (4CMK)
-8.77 kcal/mol
Figure S5. Co-crystallized inhibitor 2-amino-5-phenethyl-6-phenyl-3H-pyrrolo[2,3
dlpyrimidine-4(7H)-one of the TWPTR1 protein structure model “4CMK”. Complex- and
target-based pharmacophore hypotheses based on the TbPTR1 (ID: “4CMK”) binding
pocket can be found in the Supplementary Materials of our previous publication [4].



3,6-dihydroxy-2-(3 hydroxyphenyl)-4H-1-benzopyran-4-one (5]DI)
-7.65 kcal/mol
Figure S6. Co-crystallized inhibitor 3,6-dihydroxy-2-(3 hydroxyphenyl)-4H-1-
benzopyran-4-one of the TbPTR1 protein structure model “5]DI”. Complex- and target-
based pharmacophore hypotheses based on the TbPTR1 (ID: “5]DI”) binding pocket can
be found in the Supplementary Materials of our previous publication [4].
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Cl

pyrimethamine (3QFX)
-8.26 kcal/mol

Figure S7. Co-crystallized inhibitor pyrimethamine of the TWDHEFR protein structure
model “3QFX”. Complex- and target-based pharmacophore hypotheses based on the
TVbDHEFR (ID: “3QFX”) binding pocket can be found in the Supplementary Materials of
our previous publication [4].
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WR99210 (3RG9)
-8.66 kcal/mol
Figure S8. Co-crystallized inhibitor WR99210 of the TWDHEFR protein structure model
“3RGY9”. Complex- and target-based pharmacophore hypotheses based on the THDHFR
(ID: “3RG9”) binding pocket can be found in the Supplementary Materials of our previous
publication [4].
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methotrexate (1IE7W)
-10.59 kcal/mol

Figure S9. Complex- (a) and target-based (b) pharmacophore hypotheses based on the
LmPTR1 (ID: “1E7W”) as well as the co-crystallized inhibitor methotrexate (c). Carbon
atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of (c) in cyan. The
molecular surface is colored according to lipophilicity with lipophilic areas in yellow and
hydrophilic areas in blue. Potential interactions of the inhibitor are represented by feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige,
aromatic centers in orange, hydrophobic structures in green. Exclusion spheres are not
depicted.
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2,4,6-triaminoquinazoline (1IW0C)
-7.05 kcal/mol

Figure S10. Complex- (a) and target-based (b) pharmacophore hypotheses based on the
LmPTR1 (ID: *“1W0C”) as well as the co-crystallized inhibitor 24,6-
triaminoquinazoline (c). Carbon atoms of the co-crystallized co-substrate NADP in
yellow, carbon atoms of (c¢) in cyan. The molecular surface is colored according to
lipophilicity with lipophilic areas in yellow and hydrophilic areas in blue. Potential
interactions of the inhibitor are represented by feature spheres: H-bond donors in purple,
H-bond acceptors in cyan, ionic interactions in beige, aromatic centers in orange,
hydrophobic structures in green. Exclusion spheres are not depicted.
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trimethoprim (2BFM)
-7.76 kcal/mol

Figure S11. Complex- (a) and target-based (b) pharmacophore hypotheses based on the
LmPTR1 (ID: “2BFM”) as well as the co-crystallized inhibitor trimethoprim (c). Carbon
atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of (c) in cyan. The
molecular surface is colored according to lipophilicity with lipophilic areas in yellow and
hydrophilic areas in blue. Potential interactions of the inhibitor are represented by feature



spheres: H-bond donors in purple, H-bond acceptors in cyan, aromatic centers in orange,
hydrophobic structures in green. Exclusion spheres are not depicted.
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methyl-1-(4-{[(2,4-diaminopteridin-6-yl)methyl](methyl)amino}benzoyl)piperidine-4-carboxylate

(2QHX)
-9.34 kcal/mol

HoN

Figure S12. Complex- (a) and target-based (b) pharmacophore hypotheses based on the
LmPTR1 (ID: “2QHX”) as well as the co-crystallized inhibitor methyl-1-(4-{[(2,4-
diaminopteridin-6-yl)methyl](methyl)amino}benzoyl)piperidine-4-carboxylate (c).

Carbon atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of (c) in
cyan. The molecular surface is colored according to lipophilicity with lipophilic areas in
yellow and hydrophilic areas in blue. Potential interactions of the inhibitor are
represented by feature spheres: H-bond donors in purple, H-bond acceptors in cyan,



aromatic centers in orange, hydrophobic structures in green. Exclusion spheres are not
depicted.

(a)
Pairwise Identity Matrix:
The table value at row i, column j equals the number of residue
matches between sequences 1 and j, divided by the length of
sequence J.

Chains 1 4
1:3K15.A 64,4
4:LmDHFR B6.5

3KI5.A + o« XSLFKIRMPETVAEGTRLALRAFSLVVAVDERGGIGDGRS IPWNVPEDMKFFRDVT
LmDHFR  M5RAAARFKIPMPETKADFAFPSLRAFSIVVALDMOHGIGDGESIPWRVPEDMTFFKNQT

3K15.A  TKLRGKNVKPSPAKRNAVYVMGRKTWDSIPPKFRPLPGRLMVVLSSTLTTOHL . v w v
LmDHFR  TLLRNKK.PPTEKKRNAVVMGRKTWESVPVYKFRPLKGRLNIVLSSKATVEELLAPLPEGQ

3KI5.A .. DS IVAVNGGLEQALQLLASPNYTRPSIETVY CIGGGSVYAEALRPPCVHLLOATIYR
LmDHFR  RAAAAQDVWYVVNGGLAEALRLLARPLYCSSIETAYCVGGAQVWYADAMLSPCIEKLQEVYL

3KJ5.A  TTIRASESSCSVFFRVPESGTEAAAGIEWQRETISEELTSANGMETKYYFEKLIPRNREE
LmDHFR  TRIYATAPACTRFFRFPPEMAATA. .. .WDLAS.5QGRRKSEAEGLEFEICKYVPRMHEE

3K15.A  EQYLSLVDRIIREGNVKHDRTGVGTLSIFGAQMRFSLRNMRLPLLTTKRVFWRGVCEELL
LmDHFR  RQYLELIDRIMKTGIVKEDRTGVGTISLFGAQMRFSLRDNRLPLLTTKRVFWRGVCEELL

3K15.A  WFLRGETYAKKLSDKGVHIWDDNGSRAFLDSRGLTEYEEMDLGPVYGFQWRHFGAAYTHH
LmDHFR  WFLRGETSAQLLADKDIHIWDGNGSREFLDSRGLTENKEMDLGPVYGFQWRHFGADYKGF

3K15.A  DANYDGQGVDQIKAIVETLKTNPDDRRMLFTAWNPSALPRMALPPCHLLAQFYVSN. .GE
LmDHFR  EANYDGEGVDQIKLIVETIKTNPNDRRLLVTAWNPCALQKMALPPCHLLAQFYWNTDTSE

3KI5.A LSCMLYQRSCDMGLGVPFNIASYALLTILIAKATGLRPGELVHTLGDAHVYSNHVEPCNE
LmDHFR LSCMLYQRSCDMGLGYPFNIASYALLTILIAKATGLRPGELVHT LGDAHVYRNHVDALKA

3K15.A  QLKRVPRAFPYLVFRREREFLEDYEEGDMEVIDYAPYPPIX.....
LmDHFR  QLERVPHAFPTLIFKEERQYLEDYELTDMEVIDYVPHPAIKMEMAY

(b)
Pairwise Similarity Matrix:
The table value at row 1, column j eguals the number of positive
matches between sequences 1 and j, divided by the length of
sequence j. A residue substitution is positive if the BLOSUMG2Z
substitution score is greater than zero

Chains 1 4
1:3K15.4 74.8
4:LmDHFR 77.2

3KI5.A o XSLFKIRMPETVAEGTRLALRAFSLVVAVDERGGIGDGRSIPWNYPEDMKFFRDVT
LmDHFR M5RAAARFKIPMPETKADFAFPSLRAFSIVVALDMOHGIGDGESIPWRVPEDMTFFKNQT

3K15.A TKLRGKNVKPSPAKRNAVVMGRK TWDSIPPKFRPLPGRLNVVLSSTLTTOHL . v v w v v u s
LmDHFR TLLRMKK . PPTEKKRNAVVMGRK TWESVPYKFRPLKGRLNIVLSSKATVEELLAPLPEGQ

3KI5.A - HXDSIVAVNGGLEQALQLLASPNYTPSIETVYCIGGGSVYAEALRPPCVHLLOATYR
LmDHFR RAAAAQDVVVYNGGLAEALRLLARPLYCSSIETAYCVGRAQVYADAMLSPCIEKLQEVYL

3K15.A TTIRASESSCSVFFRVPESGTEAAAGIEWQRETISEELTSANGNETKYYFEKLIPRNREE
LmDHFR TRIYATAPACTRFFPFPPENAATA. . . .WDLAS . SQGRRKSEAEGLEFEICKYVPRNHEE

3KI5.A EQYLSLVDRIIREGNVKHDRTGVGTLSIFGAQMRFSLRNNRLPLLTTKRVFWRGVCEELL
LmDHFR ROYLELIDRIMKTGIVKEDRTGVGTISLFGAQMRFSLRDNRLPLLTTKRVFWRGVCEELL

3K15.A  WFLRGETYAKKLSDKGVHIWDDHGSRAFLDSRGLTEYEEMDLGPVYGFOWRHFGAAYTHH
LmDHFR  WFLRGETSAQLLADKDIHIWDGNGSREFLDSRGLTENKEMDLGPVYGFQWRHFGADYKGF

3KI5.A DANYDGQGVDQIKAIVETLKTNPDDRRMLF TAWNPSALPRMALPPCHLLAQFYVSN. . GE
LmDHFR EANYDGEGVDQIKLIVETIKTNPNDRRLLVTAWNPCALQKMALPPCHLLAQFYVNTDTSE

3KI5.A LSCMLYQRSCDMGLGYVPFNIASYALLTILIAKATGLRPGELVHTLGDAHVYSNHVEPCNE
LmDHFR LSCMLYQRSCDMGLGYVPFNIASYALLTILIAKATGLRPGELVHTLGDAHVYRNHVDALKA

3KJS.A  QLKRVPRAFPYLVFRREREFLEDYEEGDMEVIDYAPYPPIX.....
LMDHFR  QLERVPHAFPTLIFKEERQYLEDYELTDMEVIDYVPHPAIKMEMAY
Figure S13. Sequence alignment of the TcDHFR-TS chain A ("3KJS.A") and the LmDHFR-TS
("LmDHEFR"). Percent sequence identity (a) and similarity (b) is calculated by dividing the number
of identical amino acids between the two chains by the total number of amino acids. The relative



sequence similarity and sequence identity compared to the template structure amounted to 76.8 %
and 66.3 %, respectively.

(a) (b)

Figure S14. Ribbon diagram of the secondary structural elements of the TcDHFR-TS template
"3KJS.A" (a) and the homology model of LmDHFR-TS (b). The secondary structures are color-
coded (ribbon loop: white; a-, mt-, 31-helix: red; strand: yellow; turn: blue).




Figure S15. Structural superposition of the TcDHFR-TS template "3KJS.A" (gray) and the homology
model of LmDHFR-TS (yellow) as ribbon diagram.
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Figure S16. Experimental determination of the saturating conditions of folic acid and NADPH
for TbPTR1. (a) Constant concentration of the co-substrate NADPH (200 uM) while varying the
concentrations of the substrate folic acid (3 uM —50 puM). In the concentration range above the
saturation (8-10 uM), substrate inhibition was observed. (b) Constant concentration of the substrate
folic acid (8 uM) while varying the concentrations of the co-substrate NADPH (10 uM — 200 pM).
The determination was carried out according to 4.2.4, using buffer A (50 mM Tris/HCl (pH 7.6), 250
mM NaCl) at 340 nm and a constant temperature of 30 °C.
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Figure S17. Experimental determination of the saturating conditions of dihydrofolate (DHF) and
NADPH for TbDHFR. (a) Constant concentration of the co-substrate NADPH (200 uM) while
varying the concentrations of the substrate DHF (5 uM — 150 uM). In the concentration range above
saturation (>40 uM), substrate inhibition was observed. (b) Constant concentration of the substrate
DHEF (50 uM) while varying the concentrations of the co-substrate NADPH (10 pM - 200 uM). The
determination was carried out according to 4.2.4, using buffer C (50 mM Tris/HCl (pH 7.6), 250 mM
NaCl, 10 mM BME) at 340 nm and a constant temperature of 30 °C.
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Figure S18. Experimental determination of the saturating conditions of folic acid and NADPH
for LmPTR1. (a) Constant concentration of the co-substrate NADPH (200 uM) while varying the
concentrations of the substrate folic acid (5 uM — 100 uM). In the concentration range above
saturation (>50 uM), substrate inhibition was observed. (b) Constant concentration of the substrate
folic acid (50 uM) while varying the concentrations of the co-substrate NADPH (20 uM — 200 uM).
The determination was carried out according to 4.2.4, using buffer B (50 mM NaH2POu (pH 6.0), 100
mM NaCl) at 340 nm and a constant temperature of 30 °C.
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Figure S19. Experimental determination of the saturating conditions of dihydrofolate (DHF) and
NADPH for LmDHFR. (a) Constant concentration of the co-substrate NADPH (150 uM) while
varying the concentrations of the substrate DHF (10 uM - 250 uM). In the concentration range above
saturation (>100 pM), substrate inhibition was observed. (b) Constant concentration of the substrate
DHEF (50 uM) while varying the concentrations of the co-substrate NADPH (20 uM - 200 uM). The
determination was carried out according to 4.2.4, using buffer C (50 mM Tris/HCl (pH 7.6), 250 mM
NaCl, 10 mM BME) at 340 nm and a constant temperature of 30 °C.
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Figure S20. Experimental determination of the saturating conditions of dihydrofolate (DHF) and
NADPH for hDHFR. (a) Constant concentration of the co-substrate NADPH (150 uM) while
varying the concentrations of the substrate DHF (10 uM - 200 uM). In the concentration range above
saturation (>100 pM), substrate inhibition was observed. (b) Constant concentration of the substrate
DHE (100 uM) while varying the concentrations of the co-substrate NADPH (10 uM - 150 uM). The
determination was carried out according to 4.2.4, using buffer C (50 mM Tris/HCl (pH 7.6), 250 mM
NaCl, 10 mM BME) at 340 nm and a constant temperature of 30 °C.
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Figure S21. Determination of the ICso/ECso0 value of compound 1 against TbPTR1 through
nonlinear regression analysis using the software GraphPad Prism 8 (Table 1).
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Figure S22. Determination of the ICso/ECs0 values of compound 2 against TbPTR1 (a) and
TbDHER (b) through nonlinear regression analysis using the software GraphPad Prism 8
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Figure $23. Determination of the ICs0/ECso values of compound 3 against LmDHEFR (a) and
hDHER (b) through nonlinear regression analysis using the software GraphPad Prism 8

(Table 1).
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Figure S24. Determination of the ICso/ECso values of compound 4 against LmDHEFR (a) and
hDHER (b) through nonlinear regression analysis using the software GraphPad Prism 8
(Table 1).
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Figure S25. Determination of the ICso/ECso values of compound 5 against ThPTR1 (a),
TbDHER (b) and hDHEFR (c) through nonlinear regression analysis using the software
GraphPad Prism 8 (Table 1).
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Figure $26. Determination of the ICso/ECso values of compound 6 against LmDHEFR (a) and
hDHER (b) through nonlinear regression analysis using the software GraphPad Prism 8
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Figure 527. Determination of the ICs0/ECso value of compound 7 against LmDHER through
nonlinear regression analysis using the software GraphPad Prism 8 (Table 1).
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Figure S28. Determination of the ICso/ECso value of compound 8 against TWDHFR (a) and
LmDHER (b) through nonlinear regression analysis using the software GraphPad Prism 8

(Table 1).



THPTR1 Inhibition [%]

LmDHEFR Inhibition [%]

100

[
(=]
1

(=N
o
1

[
(=]
1

N
[=]
1

o

T
0.8 1.0

T T T 1
1.2 1.4 1.6 1.8

log(c(compound 9)) [uM]

150

100+

50

(a)

0 T

0.0 0.5

1.0 1.5 2.0

log(c(compound 9)) [uM]

()

100

= (=] [
o o [=]
1 1 1
[ |
[ ]

THbDHER Inhibition [%]
N
S
]

(=]
o
o

0.5 1.0 1.5
log(c(compound 9)) [uM]

(b)

o]
(=]
]

(=]
(=]
1
@

hDHEFR Inhibition [%]
) '
S S
] 1
ro-

0 T T T 1
1.2 14 1.6 1.8 2.0

log(c(compound 9)) [uM]

(d)

Figure 529. Determination of the ICso/ECso values of compound 9 against ThPTR1 (a),
TVDHER (b), LmDHER (c) and "DHEFR (d) through nonlinear regression analysis using the
software GraphPad Prism 8 (Table 1).
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Figure $30. Determination of the ICso/ECso value of compound 10 against TvPTR1 through
nonlinear regression analysis using the software GraphPad Prism 8 (Table 1).
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Figure S31. Determination of the ICs0/ECs0 values of compound 11 against ToPTR1 (a),
TvDHFR (b), LmPTR1 (c), LmDHFR (d) and hDHFR (e) through nonlinear regression
analysis using the software GraphPad Prism 8 (Table 1).
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Figure $32. Determination of the ICso/ECso value of compound 12 against TvPTR1 through
nonlinear regression analysis using the software GraphPad Prism 8 (Table 1).
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Figure S$33. Determination of the ICs0/ECso values of compound 13 against TWPTR1 (a) and
TbDHER (b) through nonlinear regression analysis using the software GraphPad Prism 8
(Table 1).
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Figure S34. Determination of the ICs0/ECs0 values of compound 14 against TbPTR1 (a),
TbDHEFR (b), LmPTR1 (c), LmDHFR (d) and hDHFR (e) through nonlinear regression
analysis using the software GraphPad Prism 8 (Table 1).
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Figure 535. Determination of the ICso/ECso0 value of compound 15 against TvPTR1 (a) and
TVbDHEFR (b) through nonlinear regression analysis using the software GraphPad Prism 8
(Table 1).
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Figure 536. Determination of the ICso/ECso value of compound 16 against TvPTR1 (a) and
TVDHEFR (b) through nonlinear regression analysis using the software GraphPad Prism 8
(Table 1).
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Figure S37. Determination of the ICs0/ECs0 values of compound 17 against TbPTR1 (a),
TVbDHEFR (b) and hDHFR (c) through nonlinear regression analysis using the software
GraphPad Prism 8 (Table 1).
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Figure 538. Determination of the ICso/ECso value of compound 18 against T0PTR1 through
nonlinear regression analysis using the software GraphPad Prism 8 (Table 1).
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Figure $39. Determination of the ICso/ECso value of compound 19 against TvPTR1 through
nonlinear regression analysis using the software GraphPad Prism 8 (Table 1).
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Figure S40. Determination of the ICso/ECs0 values of compound 20 against ToPTR1 (a),
TVbDHEFR (b), LmPTR1 (c) and LmDHFR (d) through nonlinear regression analysis using
the software GraphPad Prism 8 (Table 1).
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Figure S41. Determination of the ICs0/ECs0 values of compound 21 against ToPTR1 (a),
TVbDHEFR (b) and hDHFR (c) through nonlinear regression analysis using the software
GraphPad Prism 8 (Table 1).
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Figure S42. Determination of the ICso/ECso values of compound 22 against ToPTR1 (a) and
LmPTR1 (b) through nonlinear regression analysis using the software GraphPad Prism 8
(Table 1).



