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Abstract: Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery
across a range of clinical applications. Cavitation nuclei—sound-sensitive constructs that enhance cav-
itation activity at lower pressures—have become a powerful adjuvant to ultrasound-based treatments,
and more recently emerged as a drug delivery vehicle in their own right. The unique combination of
physical, biological, and chemical effects that occur around these structures, as well as their varied
compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery
systems tuned to particular therapeutics. In this review, we describe the structure and function of cav-
itation nuclei, approaches to their functionalization and customization, various clinical applications,
progress toward real-world translation, and future directions for the field.

Keywords: drug delivery; ultrasound; cavitation; sonosensitive; nanoparticles; cavitation nuclei

1. Introduction

Our understanding of the biological mechanisms underpinning the spectrum of human
disease continues to increase at a remarkable pace. Yet despite this, the number of new
drugs approved (per billion USD of R&D spending, adjusted for inflation) has roughly
halved every 9 years since 1950 [1]. As such, it is increasingly apparent that traditional
drug discovery pipelines alone are not sufficient [2], and significant consideration must
also be given to developing complementary strategies to ensure the effective delivery of
drugs to their intended targets. Given their larger size, delivery limitations are especially
relevant to newer biological therapeutics, including antibodies, oncolytic viruses, and gene
therapy vectors, which, unless overcome, may ultimately limit their efficacy in a wider
patient population. Recent clinical studies have further demonstrated that even delivering
more therapeutic to a target site does not guarantee an improved patient outcome; rather,
that bioavailability is a complex issue which also depends heavily on the mechanism by
which the drug is delivered [3–6].

Stimuli-responsive drug delivery systems represent a potential solution to this problem
as they are minimally invasive yet enable deep tissue penetration. While many stimuli can
be utilized (e.g., light [7], heat [8], or magnetic fields [9]), this review will primarily focus on
ultrasound-mediated drug delivery and its progress towards clinical translation. The ability
of ultrasound to enhance therapeutic delivery is due primarily to a physical effect known
as cavitation, defined here as the nucleation, oscillation, collapse, or other excitation of gas
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cavities (bubbles) in a fluid due to sound pressure changes [10]. While bubble behavior
exists on a spectrum from extremely violent collapse to gentle pulsing, it is often classified
into “inertial” and “non-inertial” cavitation. In broad terms, inertial cavitation is generally
associated with higher pressures, unstable bubble growth, and violent collapse, while
non-inertial cavitation generally occurs at lower pressures and involves lower-amplitude
linear and non-linear oscillations about an equilibrium radius [11].

Acoustic cavitation is relevant to a wide range of medical treatments as it can generate
a diverse set of physical, chemical, and biological effects. Cavitating bubbles that oscil-
late repeatedly may induce “microstreaming”, a form of convectional fluid flow around
themselves [12–14]. Where this flow occurs very close to cells, the high shear stresses
produced may cause the cell membrane to reversibly or irreversibly open in places, in a
process known as “sonoporation” [14,15]. Inertial cavitation in particular can also generate
heat [16–19], light [16–19], shockwaves [20,21], and reactive oxygen species [22,23], and
high-speed fluid “microjets” [11] (Figure 1). While the therapeutic impact of the above
stimuli are frequently studied in isolation, ultrasound-induced cavitation represents a
relatively unique opportunity to study their synergistic effect [24]. Crucially for precision
drug delivery applications, these effects are highly localized around the cavitating bubbles,
and can be targeted by directing the driving ultrasound source.
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Figure 1. Therapeutic impact of cavitation.

Cavitation can be initiated in tissue through the nucleation of bubbles from gas dis-
solved in the bodily fluids. However, this “endogenous” bubble formation is unpredictable
and requires driving pressures high enough that the ultrasound alone may cause serious
disruptions such as tissue boiling [25]. For enhancing drug delivery, the use of much lower
pressures is preferable to avoid undesired, off-target, or uncontrolled bioeffects. This can
be achieved by pre-seeding tissues with existing, stabilized gaseous cavities or favorable
nucleation sites to promote bubble formation [26]. Such “cavitation nuclei” (CN) may
therefore allow the broad therapeutic potential of cavitation and its various bioeffects to be
unlocked at therapeutically safe ultrasound pressures.

CN are typically classified based on their physical make-up and related mechanism
by which they entrap a stabilised gas bubble (Figure 2). Commonly used classifications
include solid cavitation nuclei (e.g., polymeric nanocups, protein cavitation nuclei (pCaNs),
gold nanocones, and mesoporous silica), gas-filled bubbles (with lipid, protein, or polymer
shells), and phase-change liquid droplets, as well as emerging technologies, including
echogenic liposomes and bacterial gas vesicles.

1.1. Gas-Filled Bubbles

Gas-filled microbubbles are perhaps the most mature CN, having initially been de-
veloped as contrast agents for ultrasound imaging in the 1970s and 1980s [27]. Their size
and structure afford microbubbles high compressibility and make them excellent scatterers
of ultrasound waves, prompting their investigation in the context of medical imaging.
However, when exposed to higher-intensity sound, these bubbles can also experience size
and shape oscillation, collapse, reformation, and other cavitation-associated processes,
making them an effective form of CN [28]. Microbubbles have therefore been increasingly
studied as a therapeutic agent to enhance cavitation bioeffects like heating, mechanical
debridement, and drug delivery [29].
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Microbubbles are typically 1–10 µm in diameter [30] and consist of a high-molecular-
weight gas core surrounded by a thin (1 nm–200 nm) stabilizing shell [31]. Hydrophobic
gases such as sulphur hexafluoride or perfluorocarbons are commonly used in microbubbles
as their relatively large molecular masses and low solubility in water limit the speed of
bubble dissolution, permitting a longer lifetime in vivo [28,32]. These gas pockets are
encapsulated in a supportive membrane to help stabilize them against coalescence or
fragmentation, and further limit their rate of dissolution. The shell of a microbubble can
be derived from a wide array of lipids, polymers, or proteins. Lipid shells (e.g., [33])
are currently the most widely used CN, such as in the clinically approved microbubble
contrast agents SonoVue, Definity, and Sonazoid [34]. The lipid molecules are arranged
in an ordered, tightly packed monolayer around the gas pocket, with their hydrophilic
headgroups facing outward and hydrophobic tails pointing inward [35]. Since this layer is
very thin (approximately 3 nm thick [31]) and the molecules are held in their monolayer
by only comparatively weak van der Waals and Coulomb interactions [31,36], lipid shells
are very compliant and provide minimal resistance to changes in bubble volume. Smaller
“nanobubbles” (with diameters typically ranging from 100 to 800 nm) have also been
reported in the literature [37,38]. However, a recent study by Myers et al. [39] was unable
to demonstrate acoustic activity of bubbles in this size range, thus limiting their current
utility in a drug delivery context.

Protein shells were investigated early in the development of microbubbles [40]; Al-
bunex, one of the first FDA-approved microbubble contrast agents [31], and its successor
Optison both feature a shell of human serum albumin [41]. Protein microbubbles typ-
ically feature a thicker (15–30 nm [41]) wall than lipid bubbles, and are less compliant
as the individual protein molecules are crosslinked by disulfide bonds [42]. This makes
protein bubbles more resistant to dissolution, but depending on the thickness and degree
of crosslinking in the shell, this construction may dampen their acoustic response and
therefore inhibit cavitation activity.

A wide variety of polymer-derived microbubbles (such as those made from poly
(n-butyl cyanoacrylate) [43] now exist, with shell thicknesses ranging from 1 to 200 nm.
Should it be desirable, this enables the generation of CN with shell rigidities far above
what can typically be achieved for lipid or protein bubbles [44]. As such, these bubbles can
be very stable in vivo, but their cavitation activity may be dampened to a greater degree
than even protein bubbles. Instead of oscillating gently at lower pressures and gradually
progressing to more intense inertial cavitation as pressure is increased (as is observed in
many other bubble species), polymer bubbles instead respond minimally to low-amplitude
sound and fracture violently under high pressures, allowing their entrapped gas to escape
in a high-velocity jet [45]. To date, no polymer microbubbles have been approved for
clinical use.

Microbubbles are most commonly manufactured by emulsifying the desired shell
material in an immiscible carrier fluid (typically aqueous) by either sonication [46] or
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high-shear stirring [47]. Sonication is often used to synthesize lipid and protein bubbles
and involves the application of high-intensity ultrasound to emulsify the shell precursor
(e.g., 22.5 kHz for 20 s [33]). Additionally, in the case of protein bubbles, cavitation
induced by ultrasound generates reactive oxygen species which enhance the cysteine
cross-linking reaction between molecules in the shell, increasing its rigidity [42,48]. High-
shear emulsification produces microbubbles by stirring the shell precursor very rapidly
(e.g., 5000 rpm for 5 min [49]), and is particularly used for polymer microbubbles [50].
These techniques offer a high yield but produce a broadly polydisperse population of
bubbles, which has prompted the development of a raft of newer production methods,
including microfluidics [51], membrane emulsification [52], layer-by-layer deposition [53],
coaxial electrohydrodynamic atomization (CEHDA) [54], and inkjet printing [55]. These
approaches generate controllable, monodisperse bubble populations, but are currently
limited in terms of yield, production time, and other factors—see [50,56] for further details.

In terms of safety, the majority of approved microbubbles contain non-atmospheric
gases such as sulphur hexafluoride or octofluoropentane in extremely small quantities
(<20 uL per 2 mL dose). The pharmacokinetic data provided as part of the regulatory filings
for these microbubbles report that these gases are cleared by the lungs, with 100% of the
administered dose being recovered 15 min after injection.

1.2. Nanodroplets

Nanometre-scale liquid droplets have garnered considerable interest as a form of
CN in the last 20 years [11]. These droplets comprise a volatile liquid core (typically a
perfluorocarbon) wrapped in a supportive shell [57], in a structure similar to microbubbles.
Nanodroplets can be triggered with ultrasound to expand into a microbubble, a process
known as acoustic droplet vaporization (ADV) [58]. The former droplets will then cavi-
tate in a similar—but notably, not identical [59,60]—manner to standard microbubbles in
response to ultrasound stimulation.

The rationale behind this additional vaporization step is that droplets in their liquid
form can survive longer in circulation than gas bubbles. Indeed, Keipert et al. demonstrated
a half-life of 1–6 h in a rat model [61], depending on nanodroplet size, compared to 1–5 min
reported for MB in mice [62]; should such an advantage also be seen in patients it would
provide a compelling argument for nanodroplets. The core substance of a nanodroplet
is typically a perfluorocarbon [63], and is selected to have a boiling point below body
temperature (e.g., 29 ◦C for perfluoropentane [64]). Despite this, the droplet core is kept in a
superheated liquid state in vivo by a combination of factors, including the Laplace pressure
exerted on it by the surface tension of the surrounding fluid [65]. The perfluorocarbon
remains in a meta-stable liquid state until this pressure is alleviated.for example, by the
negative pressure half-cycle of an applied ultrasound wave. No longer constrained, the
core rapidly boils and expands to several times its original diameter, e.g., from 416 nm
to 8 µm [66]. Homogenous nucleation theory [65] is an alternate mechanism of droplet
vaporization and may provide a more accurate explanation for the observed stability of
superheated PFC nanodroplets. Droplet aggregation in biological liquids (e.g., serum) has
also been shown to significantly impact the rate of vaporization [67].

Nanodroplets have been formulated with lipid [59,68–72], protein [73–75], and poly-
mer [64,76–78] shells, similar in composition to microbubble walls. As in microbubbles, the
shell acts to limit core efflux and reduce coalescence [74]. In nanodroplets, however, the
shell also reduces the surface tension at the droplet surface, thereby reducing the Laplace
pressure and helping to balance stability with ease of vaporization [65,79]. Droplet shells
are thought to thin by around 25x when the core expands from liquid to gas [80], and are
comparable to a thin microbubble shell when in vaporized form (e.g., 6 nm polymer shells
in [78]).

A number of the emulsification methods used to make microbubbles, including soni-
cation, various forms of agitation, membrane emulsification, and microfluidics, can also
be applied to manufacture nanodroplets—the primary difference being that the dispersed
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phase is a liquid instead of a gas [79]. Other methods of producing nanodroplets include
microbubble condensation [59] and spontaneous nucleation [81]. The former technique
involves exposing microbubbles to increased pressure and reduced temperature to con-
dense the core substance into liquid form (e.g., for octafluoropropane, −10 ◦C for 2 min
followed by 350 kPa pressurization [82]). As the core condenses, the shell wrinkles and can
shed material as it has considerably less interface area to cover, then it re-expands upon
later ADV [70]. Spontaneous nucleation involves dissolving the core and shell materials
in a suitable solvent, then rapidly reducing the mixture’s solubility, such as by adding
water [81]. This allows the shell and core substances to fall out of solution, forming a
dispersion of nanodroplets.

1.3. Solid Cavitation Nuclei

Solid cavitation nuclei are perhaps the most varied CN subgroup, particularly in
terms of their morphological diversity, chemical composition, and size. However, they
are unified by a deliberate design feature, namely the inclusion of hydrophobic cavities to
allow entrapment of a stabilized gas bubble, thus providing a suitable nucleation site. Early
examples of solid CN (such as the use of talcum powder) were based on observations that
nano-sized air bubbles can readily become trapped on naturally occurring hydrophobic
rough surfaces [83].

1.3.1. Polymeric Nanocups

Ultrasound-activated polymeric nanocups were first described by Kwan et al. [84].
These sub-micron particles are composed of a polystyrene core with a crosslinked divinyl
benzene and methacrylate shell which are ultimately deformed into a “cup-like” morphol-
ogy. This indentation can provide a suitable surface for stabilizing an entrapped gas bubble
on the surface of each particle, or act as a hydrophobic surface for facilitating nucleation.
The diameter of a nanocup was shown to be readily tuneable by varying the size of the
initial polystyrene seed particles.

This reduced size, with respect to microbubble CN, allows them to potentially travel
further into microvasculature, which may give a delivery advantage. Due to their solid
structure, they are also not destroyed by exposure to ultrasound, thus potentially allowing
sustained cavitation to occur. However, a disadvantage of this same structural stability is
that loading and releasing a drug from the core remains challenging. In addition, conjuga-
tion of a drug to the shell may disrupt the hydrophobic surface such that it may no longer
entrap a gas bubble, which also limits its delivery capacity. Typically, polymeric nanocups
also require a higher ultrasound pressure to activate than traditional lipid bubbles.

Other reports of solid CN approaches include a paper by Su et al. on the development
of multi-cavity PLGA microparticles which offer a more biodegradable variant of a solid
CN [85]. A more recent development further proposes the use of a protein template
obtained by solvent evaporation as a biodegradable single-cavity CN agent [86].

Solid gas-stabilizing CN are typically manufactured using minute quantities of at-
mospheric gases, most commonly air or oxygen, and therefore would not require further
characterization in terms of pharmacokinetic gas clearance.

1.3.2. Gold Nanoparticles

Gold nanocones as a CN species were developed by Mannaris et al. as a modified
synthesis of the non-cavitating gold nanoparticles described by Zhang et al. [87]. The par-
ticular formulation developed by Zhang was based off the violent vaporization of hexane
trapped in hemispherical gold nanoparticles formed by ultrasonic sonication of a bi-phasic
liquid–liquid mixture, which built off of Suslick’s [88–91] theory of rapid vaporization
being capable of modifying particle surface morphology. To produce cavitating nanocones,
the synthesis was modified to include a drying step, which allowed for the entrapping of
bubbles upon resuspension in an aqueous medium, similar to the mechanism of bubble
entrapment seen with nanocups.
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Subsequent acoustic characterization demonstrated inertial cavitation activity at both
0.5 and 1.6 MHz. The particles had an average hydrodynamic diameter of 200 nm (mea-
sured by DLS) and an internal cavity diameter of 150 nm by TEM, with an average concen-
tration of 1.2 × 109 particles per mL. Minimal biotoxicity was observed in vitro with the
produced concentration of particles. At 0.5 MHz, it was found that a peak negative pressure
of 2 MPa was needed to guarantee inertial cavitation, and for 1.6 MHz, this pressure rose
to 3.5 MPa. Acoustic activation of the nanocones in agar flow channels demonstrated
directional extravasation of fluorescent dye, highlighting the potential for targeting appli-
cations in drug delivery. Nevertheless, some challenges remain, including the tendency of
these CN to aggregate, which can cause the entrapped bubbles to coalesce and increase the
potential for off-target or uncontrolled bioeffects when acoustically excited [92].

Sazgarnia et al. [93] also investigated gold nanoparticles as an acoustic therapeutic
by attempting to utilize the ability of solid particles in a fluid environment to act as a
nucleation site for bubbles. They specifically exploited the tendency of gold particles to
aggregate, which inherently increased the ease of inducing bubble formation. Their work
involved the treatment of CT26 murine tumor models using pulsed laser light to encourage
bubble nucleation before acoustically targeting the tumor. Of note is that they injected
their gold nanoparticles intratumorally, thus ensuring the maximum local accumulation to
reduce the bubble-forming threshold, as opposed to more typical administration routes
like intravenous infusion, where most particles accumulate in the liver and spleen. Their
study is limited, however, in that it did not monitor the cavitation activity produced, and
thus their underlying hypothesis that light and acoustic stimulation of gold nanoparticles
could promote an antitumor response is unverified. This area therefore remains untested
in the application of drug delivery, but could show promise with further studies, given the
frequent use of gold nanoparticles in therapies.

1.3.3. Mesoporous Silica

Advancements in the catalyst industry from the late 1980s onwards led to the de-
velopment of mesoporous silica nanoparticles (MSNs) [94,95]. These were characterized
by an ordered pore distribution, with homogeneous sizes in the range of 2 and 10 nm, a
pore volume of approximately 1 cm3/g, and a surface area up to 1000 m2/g [96]. Being
biodegradable, their physicochemical robustness and ease of functionalization through
silanol chemistry was of immediate interest in a drug delivery context. In addition, their
high surface area and associated pore volume suggested additional potential. However,
despite intensive development and substantial further improvements to their drug-loading
capacity, including the establishment of hollow core variants [97], a suitable in vivo target-
ing mechanism has ultimately limited their clinical translation.

To address this, several groups [96,98–100] have since reported on the ability of MSNs
to entrap stabilized gas bubbles, thus rendering them potentially ultrasound-responsive
and providing a possible delivery mechanism. The first publication to establish this ap-
proach was Kim et al. [100], who encapsulated ibuprofen before using focused ultrasound-
mediated cavitation to release it from the core. Paris et al. [98] demonstrated how focused
ultrasound enhanced the extravasation of mesoporous silica nanoparticles using an in vitro
flow-through agarose tissue phantom. Sviridov et al. have also described the use of MSN
as a CN, but in the context of tissue heating rather than drug delivery [99]. Other examples
are also provided by Lee et al., Milgroom et al., and Ma et al. [101–103].

In terms of synthesis, MSNs can now be made via a wide array of methods (including
the original sol-gel process, microwave synthesis, hydrothermal synthesis, template synthe-
sis, modified aerogel methods, soft and hard templating methods, and fast self-assembly),
with each providing their own advantages/disadvantages [104].

1.4. Alternative Cavitation Nuclei

In recent years, some novel CN have been proposed which take the same basic form
of a gas pocket wrapped in a stabilizing shell, but do not fit into the established cate-
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gories of lipid monolayer, protein, or polymer microbubbles. These include echogenic
liposomes [105] and bacterial gas vesicles [106]. Echogenic liposomes (also referred to
as acoustically active liposomes or AALs) are believed to comprise a lipid bilayer shell
around 1–2 µm in diameter, purportedly filled with a mix of gas and liquid [105]. These
particles are designed to encapsulate comparatively large volumes of a drug until frac-
tured by ultrasound exposure [107]. Bacterial gas vesicles are a fascinating addition to
the cohort of CN: naturally occurring, cylindrical protein shells (2 nm wall thickness)
filled with air that evolved in certain bacteria to allow them to float [108]. These vesicles
can be encoded into a bacterial genome, genetically engineered to target certain cells by
expressing different receptors on their shell, then mass-manufactured by simply culturing
the bacteria [108]. However, their small size (45–250 nm wide, 100–600 nm long) may limit
their cavitation activity [106]. Non-spherical “rod shaped” microbubbles have also been
developed by Dasgupta et al. [109]. This unique morphology resulted in reduced phagocy-
tosis, prolonged circulation time, enhanced margination, and enhanced blood-brain barrier
(BBB) permeation.

1.5. Summary

The wide variability of CN described above renders each subtype inherent advantages
and disadvantages that may ultimately pre-dispose their suitability to a given therapeutic
application. For example, some solid CN (such as gold or polymeric nanocups) are not
biodegradable, but this interrelated structural stability may give them an enhanced in vivo
circulation time and increased cavitation duration [84]. In contrast, lipid- and protein-based
microbubbles are fully biodegradable but tend to be bigger compared to some solid CN,
limiting their access to the microvasculature. Solid CN and nanodroplets typically also
cannot be imaged before activation, which is a key advantage of microbubbles [11].

Mesoporous silica particles have a much higher therapeutic loading capacity [110]
than most other CN, but their usage-specific release mechanisms need to be determined.
Nanodroplets have some unique size advantages, but their stability in a clinical setting
remains untested. The key to developing an optimal delivery strategy is to prioritize the
most important application-specific performance criteria early in the process, so that the
correct CN can be selected.

2. Composition Optimization of Cavitation Nuclei for Enhanced Delivery
of Therapeutics

Once a suitable combination of CN and therapeutic has been selected, a range of
additional variables can be optimized for further impact, with a primary consideration
being the location of a chosen therapeutic (Figure 3).
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2.1. Co-Injection

In the simplest iteration, any of the above CN can be co-administered simultaneously
with unmodified therapeutics by intravenous injection or infusion, and subsequent ultra-
sound exposure. A key advantage of this approach is that it is readily compatible with all
commercially approved therapeutics, without the need for additional re-formulation, with
mixing of the two species occurring in the bloodstream. However, for enhanced delivery
to ultimately occur, it relies on the assumption that sufficient quantities of the CN and
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the therapeutic will be co-located at the targeted area when cavitational microstreaming
is induced.

Several pre-clinical studies have used co-administered cavitation nuclei to significantly
enhance the delivery of co-administrated small molecules [111–114], antibodies, viral
vectors [115–118], and nucleic acids [119–121]. There have also been several clinical trials
evidencing the successful use of gas-filled microbubbles particles (such as Sonovue®,
Optison®, Definity®) which have been approved as diagnostic ultrasound contrast agents to
enhance the effects of standard chemotherapy in the context of chemotherapy for pancreatic
cancer [122,123] or to treat pathologies that lie beyond the blood–brain barrier [124,125].
Most recently, a new class of solid gas-stabilizing CN (OxSonics SonoTran particles) were
cleared by the UK’s Medicines and Health Regulatory Authority (MHRA) to enter first-in-
human clinical trials (NCT02181075) for the enhancement of the delivery of co-administered
small-molecule chemotherapeutics and antibodies to treat metastatic colorectal cancer in
the liver.

2.2. Shell

Several CN either have naturally occurring and directly targetable functional groups
on their surface, or can be readily modified to incorporate them, thus allowing a wide array
of additional therapeutics to be conjugated [11]. While the specifics may vary depending
on the composition of the chosen CN, some common approaches can be considered. For
lipid microbubbles and droplets, this is typically achieved by the addition of functionalized
lipids prior to synthesis [31]. Common examples include lipids with groups such as DBCO,
biotin, amines, or thiols, which all allow further conjugation via a range of well-established
chemical reactions [126,127]. Some hydrophobic drugs can be directly incorporated into the
lipid shell [128] and nucleic acids can be attached via electrostatic attraction, although there
are questions over whether this approach would provide sufficient stability in humans [129].
There are also many examples of additional nanoparticles (such as liposomes and magnetic
iron oxide particles) being directly incorporated into the lipid shell [130,131].

Protein-based microbubbles typically have a range of amino acids that can serve as
naturally occurring conjugation sites. These include lysine (amine groups) and aspar-
tic/glutamic acids (carboxylic acids), with some proteins also having accessible cysteine
residues (thiols). In addition, these residues can be further modified for click chemistry or
biotin/avidin binding sites via a wide array of commercially available heterobifunctional
linkers [132]. Therapeutically relevant peptides or proteins can also be incorporated by
adding them to the aqueous layer containing the primary shell protein (often albumin) prior
to formation [133]. Due to the structural and chemical modification associated with the
nanoparticle synthesis, questions may remain as to what degree of protein functionality and
or binding ability is retained, but examples of functionality retention (using haemoglobin
nanoparticles) exist [133].

Mesoporous silica CN can be readily loaded with a wide array of hydrophobic and
hydrophilic therapeutics as a result of their characteristic surface pores [110]. A common
variation on this approach is to subsequently block the pores with a stimuli-responsive
polymer gatekeeper, thus tailoring drug release towards specific applications [110]. Silane
chemistry can also be used to conjugate therapeutics to surface silanol groups on the
external particle walls [134,135].

2.3. Core

Therapeutics can also be loaded inside the core of some CN. This has the advantage of
protecting the cargo from unwanted degradation while in transit, but the mechanism of
release and associated kinetics must be carefully considered. For incorporation into a CN
core, there are several mechanisms of release that could be utilized including enzymatic
degradation, pH, temperature, light and ultrasound [136].

In the context of lipid-based microbubbles, drugs can be loaded directly into the core by
incorporating them into the oil layer frequently used to stabilize these nanoparticles [137].
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Lipid derived nanodroplets can also be loaded with drugs in a similar manner [58]. In
both cases the targeted release mechanism is typically ultrasound-induced cavitation, as
this readily disrupts the lipid shell and releases any therapeutic from the core [58,137].
Mesoporous silica nanoparticles can be efficiently loaded with a high concentration of thera-
peutic via the addition of a post-grafted polymeric gatekeeper to seal the cargo inside [110].
Release mechanisms can be tuned by careful selection of the gate-keeper composition.

2.4. Gas

The choice of gas incorporated into a CN can also be viewed in a therapeutic con-
text. For example, tumor hypoxia is a known barrier to effective cancer treatment and
the ability to deliver oxygen bubbles could have a substantial therapeutic impact [138].
In addition, localized delivery of nitrous oxide could be of great benefit in a thrombol-
ysis/cardiac environment. The use of CN in these contexts has been demonstrated in
animal models [139,140], suggesting the potential, but as yet no clinical application has
been approved.

In conclusion, the choice of therapeutic loading location will ultimately depend on its
specific mode of action and intended interaction with cells. This should be given strong
consideration as part of defining an appropriate delivery strategy.

3. Key Ultrasound Considerations for Drug Delivery
3.1. Ultrasound Parameters

In addition to the CN and associated choice/location of a therapeutic, the applied US
field can in principle be optimized to tune the cavitation activity for a given application.
Common US specifications (Figure 4) include peak negative pressure (p−), fundamental
frequency ( f0), pulse length (Tlen), pulse repetition period (Trep), and main lobe beam
volume (Vb). Together these describe the strength, time scale, and spatial scale of the pres-
sure field. In very general terms, the strength of cavitation activity (oscillation amplitude,
bubble growth, likelihood of inertial collapse) is increased by raising the magnitude of
p− (increases exterior tensile force), lowering f0 (increases absolute time per cycle over
which the force is applied), and increasing Tlen and shortening Trep (increases growth by
rectified diffusion and heat deposition). Increasing Vb enlarges the region over which the
pressure and time scale factors act, and for example may expose a greater number of CN
and increase their cumulative activity.
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Other common US parameters include those reported on diagnostic ultrasound equip-
ment for safety monitoring [141]. The mechanical index, MI = p−,0.3(z)/

(
CMI f 1/2

)
,

describes the risk of damage due to bubble collapse, where p−,0.3(z) is the pressure after
derating assuming 0.3 dB/cm/MHz attenuation at depth (z), and CMI is a unit correction
constant. This index was developed specifically to assess risks with short diagnostic pulses
(<5 cycles, or <10 µs) and duty cycles <1% to obviate rectified diffusion [142]. It is not
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meaningful to use MI as a safety guide when extrinsic CN are present, duty cycle >>1%, or
pulses exceeding diagnostic length are used.

Field descriptions in terms of intensity or power are also used in both diagnostic and
therapeutic contexts, particularly when considering heating effects purely from the US in
the absence of CN. Intensity and power metrics by themselves do not directly define the
rarefactional pressure field, so they should be accompanied by the pressure descriptors
listed above whenever possible.

Optimal US parameter ranges are strongly dependent on the choice of CN and its ap-
plication (Figure 5). A comparative in vitro study with microbubbles, solid gas-entrapping
particles, and droplets [69] showed that longer pulses (1000+ cycles) enhanced extravasa-
tion of a model drug when p− was chosen to ensure inertial cavitation. These kinds of
settings have been carried forward into preclinical [116,143,144] and clinical drug delivery
studies [145]. A further theme for in vivo work has been to place a floor on Trep (>1 s) to
allow vascular replenishment of CN in the target region, whilst maintaining millisecond-
scale Tlen [146]. Alternative schemes have also been investigated wherein a series of short
(<5 µs) US bursts are employed for BBB opening [147].

Molecules 2023, 28, x FOR PEER REVIEW 11 of 28 
 

 

 
Figure 5. Generalized US parameter ranges by CN application. 

In another comparative study with microbubbles and solid gas-entrapping particles 
for histotripsy [148], both CN substantially reduced the required 𝑝  relative to the intrin-
sic threshold, and while pulse lengths were kept at <4 µs, lengthening 𝑇  from 0.1 to 2.0 
s was seen to give enhanced control of bubble cloud shape. Aside from the differences in 
pulse timescales, the above literature shows trends of 𝑝  being smallest for BBB opening 
and reversible sonoporation (avoiding inertial cavitation), increasing for drug transport 
(inertial cavitation below tissue damage threshold), and highest for histotripsy, even 
when CN are introduced.  

Given the broad parameter space available, rather than relying solely on the literature 
values, it is best to optimize exposure conditions based on the combination of CN, the 
desired bioeffect, safety considerations, and the environment in which the CN are used.  

3.2. Cavitation Monitoring 
Real-time guidance and safety assessment during US + CN treatment typically in-

volves monitoring of ultrasound scattered or radiated by bubbles. Observations of scat-
tered fields are facilitated by specific imaging transmissions that are temporally separated 
from the therapy pulse and allow examination of the inter-pulse bubble population [149]. 
Aside from potentially missing activity during the application of the therapy pulse, a crit-
ical limitation of these �active’ methods arises when using solid CN, which may be ane-
choic under imaging pulse conditions.  

�Passive’ methods [150,151] form images based on bubble-radiated sound during ap-
plication of the therapy pulse, and therefore capture bubble activity without restrictions 
on timing or pulse sequencing. However, passive methodological reliance on received 
bandwidth and receiver aperture commonly result in axial spatial resolution inferior to 
what is attainable with �active’ methods. This resolution gap has been narrowed through 
progress on advanced beamforming algorithms [152,153]. Recently, some hybrid moni-
toring methods [154,155] have been developed wherein short therapy pulses allow the use 
of causality constraints to significantly decrease bubble location uncertainty.  

Just as was seen for CN and US parameter choices, the selection of cavitation moni-
toring method has also varied widely by application. For clinical BBB opening with mi-
crobubbles and an MRI-guided hemispherical array [146], subharmonic emission levels 
have been transcranially monitored using a distributed array of receivers. These levels are 
used to control the therapy beam amplitude with the aim of minimizing the potential risk 
of tissue damage due to inertial cavitation while maximizing the likelihood of targeted 
BBB opening. For intratumoral drug delivery, broadband emissions in a frequency range 
well above 𝑓  have been imaged with a single array [144] or a pair [156] of arrays. Intrin-
sic threshold histotripsy monitoring employs a sparse array of receive-capable elements 
of the transmit array to observe bubble nucleation, collapse, and their relative timing [157].  
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In another comparative study with microbubbles and solid gas-entrapping particles
for histotripsy [148], both CN substantially reduced the required p− relative to the intrinsic
threshold, and while pulse lengths were kept at <4 µs, lengthening Trep from 0.1 to 2.0 s
was seen to give enhanced control of bubble cloud shape. Aside from the differences in
pulse timescales, the above literature shows trends of p− being smallest for BBB opening
and reversible sonoporation (avoiding inertial cavitation), increasing for drug transport
(inertial cavitation below tissue damage threshold), and highest for histotripsy, even when
CN are introduced.

Given the broad parameter space available, rather than relying solely on the literature
values, it is best to optimize exposure conditions based on the combination of CN, the
desired bioeffect, safety considerations, and the environment in which the CN are used.

3.2. Cavitation Monitoring

Real-time guidance and safety assessment during US + CN treatment typically in-
volves monitoring of ultrasound scattered or radiated by bubbles. Observations of scattered
fields are facilitated by specific imaging transmissions that are temporally separated from
the therapy pulse and allow examination of the inter-pulse bubble population [149]. Aside
from potentially missing activity during the application of the therapy pulse, a critical
limitation of these ‘active’ methods arises when using solid CN, which may be anechoic
under imaging pulse conditions.
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‘Passive’ methods [150,151] form images based on bubble-radiated sound during
application of the therapy pulse, and therefore capture bubble activity without restrictions
on timing or pulse sequencing. However, passive methodological reliance on received
bandwidth and receiver aperture commonly result in axial spatial resolution inferior to
what is attainable with ‘active’ methods. This resolution gap has been narrowed through
progress on advanced beamforming algorithms [152,153]. Recently, some hybrid monitor-
ing methods [154,155] have been developed wherein short therapy pulses allow the use of
causality constraints to significantly decrease bubble location uncertainty.

Just as was seen for CN and US parameter choices, the selection of cavitation mon-
itoring method has also varied widely by application. For clinical BBB opening with
microbubbles and an MRI-guided hemispherical array [146], subharmonic emission levels
have been transcranially monitored using a distributed array of receivers. These levels are
used to control the therapy beam amplitude with the aim of minimizing the potential risk
of tissue damage due to inertial cavitation while maximizing the likelihood of targeted
BBB opening. For intratumoral drug delivery, broadband emissions in a frequency range
well above f0 have been imaged with a single array [144] or a pair [156] of arrays. Intrinsic
threshold histotripsy monitoring employs a sparse array of receive-capable elements of the
transmit array to observe bubble nucleation, collapse, and their relative timing [157].

All these methods are intended to provide essential physical insights into the therapy
delivery process, although clinical evidence of the relationship between monitored/imaged
cavitation activity, safety, and desired bioeffects is still being gathered.

4. Therapeutic Applications

The use of ultrasound as a sonosensitive cavitation nuclei delivery system has widespread
potential across the whole spectrum of human disease (Figure 6).
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4.1. Drug Delivery to Solid Tumors

Ninety percent of drugs under development fail after advancing to the early phases of
clinical trials, with over half of them failing due to lack of efficacy [158]. Almost all the anti-
cancer agents reaching the human trial phase would have had favorable preclinical data,
reflecting the complex barriers to drug efficacy encountered in clinical translation [159].
Whilst a lack of efficacy in early-phase oncology trials could be multifactorial, there is
strong evidence to suggest that suboptimal drug delivery and poor penetration of drugs in
solid tumors contributes significantly to the reduced efficacy of anti-cancer agents [160,161].
Attempts to optimize drug delivery to the tumor by means of increasing the systemic dose
of cytotoxic agents would invariably result in dose-limiting toxicities in the patient due to
such agents targeting both healthy cells as well as target tumor cells indiscriminately.

The last two decades have seen an exponential growth in the discovery of targeted
drugs, designed to target the cancer cells with high potency whilst sparing normal cells [162].
Targeted therapies could be broadly classified into two categories based on their size: small
molecules (mass <1 kDa, effective size <5 nm) and larger macromolecules such as mono-
clonal antibodies (mAbs) (100–150 kDa, ~10 nm) [11,163]. Many small molecules in targeted
therapy are kinase inhibitors (in particular, tyrosine kinase inhibitors—TKIs) which block
signalling pathways dysregulated during tumor formation.

mABs specifically act on extracellular proteins as they are typically too large to en-
ter the cells and so they inhibit tumor growth by preventing the interactions between
receptors and ligands and triggering events such as antibody-directed cell cytotoxicity
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(ADCC) and complement-dependent cytotoxicity (CDC) [163]. Whilst the advances in
targeted therapy have produced a paradigm shift in the survival outcomes of a subset of
cancer patient populations, such as patients with non-small-cell lung cancer and targetable
mutations [164], for some others the benefits have been modest at best [165]. A recent
analysis has disappointingly highlighted that of the 207 cancer drugs approved by the FDA
between the years 2016 and 2021, only 28 (14%) managed to displace the existing first-line
therapies [166]. Failure of these highly specific agents to alter the landscape of current
therapy emphasizes the importance and prescience of addressing the issue of suboptimal
drug delivery and penetrance within the tumor.

Clinical Progress

Despite the breadth of preclinical data on ultrasound-enhanced drug delivery, clinical
trials on ultrasound-enhanced drug delivery for extracranial solid tumors with published
reported outcomes are limited. Several studies have looked at combining thermosensitive
liposomes with ultrasound, as reviewed in Chaudhry et al. [167]. This includes TARDOX,
a first-in-human clinical study looking at ultrasound-triggered targeted drug delivery of
doxorubicin from thermosensitive liposomes in liver tumors. The study concluded that
the approach is a safe and feasible delivery system and is also able to achieve single-cycle
chemo-ablative response in liver tumors which are refractory to standard therapy [168].
Another clinical study utilized microbubbles and ultrasound for the enhancement of the
delivery of chemotherapy to pancreatic tumors. Ten patients with inoperable pancreatic
cancer were treated with gemcitabine chemotherapy followed by immediate intermittent
bolus injections of SonoVue microbubbles and sonoporation using a diagnostic ultrasound
machine. The authors reported an improvement in median survival of 8.7 months. How-
ever, it should be noted that the study did not have a control group and the results were
compared to a historical control, requiring cautious interpretation [122]. SONCHIMIO, a
randomized early-phase study in patients with metastatic colorectal cancer, is examining
standard chemotherapy versus chemotherapy with sonoporation using microbubbles [169].
The trial has now completed recruitment after enrolling seven participants, but the results
have not been published yet. Table 1 shows a summary of clinical trials on ultrasound-
enhanced drug delivery in extra-cranial solid tumors, recruiting as of 12 January 2023. The
table highlights that whilst consensus is emerging around the most appropriate target indi-
cations, with liver resident and pancreatic tumors commonly chosen, there is no agreement
yet on the need for or type of CN.

Table 1. Overview of clinical trials involving ultrasound-enhanced drug delivery to extra-cranial
solid tumors.

Tumor Site Study Design n Cavitation
Agent

Anti-Cancer
Agent US Modality ClinicalTrials.Gov

or ISCRTN ID

Colorectal liver
metastases Phase 1–2 45

SonoTran®

Particles
(OxsSonics)
(nanocups)

FOLFIRI and
Cetuximab

Focused
ultrasound

ISRCTN17598292
[170]

Solid tumours
with liver

metastases (colon
and pancreas)

Phase 1–2 37–43
Microbubble–
microdroplet

clusters (PS101)

FOLFOX/FOLFIRI
for colorectal

cancer;
Gemcitabine

and
nab-paclitaxel
for pancreatic

cancer

Dual-frequency
ultrasound NCT04021277 [171]
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Table 1. Cont.

Tumor Site Study Design n Cavitation
Agent

Anti-Cancer
Agent US Modality ClinicalTrials.Gov

or ISCRTN ID

Breast

Window-of-
opportunity

study,
randomized

48 No cavitation
agent Gemcitabine Focused

ultrasound NCT04796220 [172]

Liver metastases
from breast and

colon/rectum

2 liver
metastases in
each patient; 1
target lesion
and the other
control lesion

60
SonoVue®

(Bracco)
Microbubbles

Chemotherapy
not otherwise

specified

Focused
ultrasound NCT03477019 [173]

Metastatic
colorectal cancer

Early phase,
single arm 10 No cavitation

agent
Toripalimab

and regorafenib HIFU NCT04819516 [174]

Locally advanced
pancreatic cancer

Early-phase,
single-arm,
exploratory
clinical trial

60 No cavitation
agent FOLFIRINOX HIFU NCT05262452 [175]

Pancreas Phase I/II,
randomized 120 Sonazoid

microbubbles FOLFIRINOX Focused
ultrasound NCT04821284 [176]

Inoperable
pancreatic ductal
adenocarcinoma

Early phase,
randomized 30 SonoVue

Microbubbles

Chemotherapy,
not otherwise

specified

Focused
ultrasound NCT04146441 [177]

Pediatric
refractory solid

tumor

Phase 1, non-
randomized 34 No cavitation

agent ThermoDox MR-HIFU NCT02536183 [178]

4.2. Transdermal Vaccine Delivery

Needle-free administration of drugs through the skin has long been desired in clinical
medicine, as it offers the potential for painless, non-invasive delivery which may avoid
first-pass metabolism, and in the context of vaccination could provide greater activity per
dose [179]. The primary obstacle to transcutaneous or transdermal drug delivery is the
highly effective barrier of the stratum corneum (“SC”, the skin’s outermost layer), which
excludes all but very small (<500 Da), lipophilic (log P = 1–3) therapeutic molecules from
diffusing through to the body [180]. Ultrasound has been studied with increasing interest
over the past 30 years as a method of overcoming the SC and delivering drugs through the
skin, a process termed “sonophoresis” [181].

Of the many bioeffects of ultrasound, inertial cavitation has been repeatedly indicated
as the primary mechanism behind sonophoresis [182–185]. The violent collapse of bubbles
aids transport of drugs through the skin in two main ways: increasing the permeability of
the SC and providing a convective force to “pump” drugs through it. Cavitation permeabi-
lizes the skin primarily through high-velocity fluid microjets caused by asymmetric bubble
collapse [183,185], which mechanically disrupt the SC and cause the reversible formation
of channels through it. Microstreaming flows generated around cavitating bubbles can also
help to push drug molecules through the skin, further improving delivery [186]. CN there-
fore hold significant potential to improve sonophoretic transcutaneous and transdermal
vaccine and drug administration, as they allow much greater cavitation activity at much
lower pressures than is possible with endogenous tissue nuclei alone.

Another promising application of CN in transdermal delivery is to address the phe-
nomenon of Localized Transport Regions (LTRs). Many sonophoresis studies have demon-
strated a few, seemingly random, discrete patches of skin (LTRs) experiencing far more
permeabilization, and therefore receiving far more drug, than the rest of the sonicated
area [182,187–189]. LTRs are thought to occur at locations of greater cavitation activ-
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ity [187,188], and increasing LTR coverage of the skin is an important topic in the interest
of maximizing delivered dose. Pre-seeding the skin’s surface with CN could allow much
more uniform, repeatable cavitation activity and thereby LTR formation.

4.3. Wound Healing

Oxygen is essential for wound healing in tissues. More than just a nutrient, it is
required for oxidative metabolism and the regulation of many signal transduction pathways
and immune cell activity [190]. Hypoxia can lead to chronic ischemic wounds [191]. Wound
oxygenation is thus a key determinant of healing outcomes and often used as a metric for
treatment plans, including whether amputation is required [192]. CN have the potential to
be a very useful vehicle in delivering oxygen to wound sites.

Hyperbaric oxygen therapy (HBOT) and topical oxygen therapy (TOT) are the most
common clinical treatments for mitigating hypoxia in wounds. HBOT, in which a patient
breathes pure oxygen at pressures greater than atmospheric pressure to induce hyperoxy-
genation, carries a risk of oxygen organ toxicity due to oxidative stress and genotoxicity
because it is not targeted [193]. TOT, in contrast, applies oxygen gas at 100% satura-
tion directly to the wound bed, and is possible with lightweight wearable systems that
utilize compression-stacked electrochemical oxygen generators [194]. While it has been
demonstrated to increase oxygen partial pressure levels at the wound base centre and
decrease wound size and healing time compared to patients who did not undergo the
therapy [193], diffusion of oxygen is limited. Oxygen gas on its own can penetrate through
the epidermis into the dermis, but at deeper dermis layers there is no change in oxygen
concentration [195].

Perfluorocarbon (PFC) emulsions developed to absorb large amounts of oxygen have
recently emerged as an alternative treatment option. When applied to a hypoxic area, the
oxygen will diffuse down the concentration gradient, providing oxygen to the needed area.
These emulsions have been found to reduce complications after skin procedures, decrease
tissue hypoxia in phlegmons, increase the speed of local wound healing, and enhance the
rate of epithelialization [196–198].

Researchers hypothesize that techniques used to deliver oxygen via CN could also
improve wound healing applications. In 2015, Eisenbrey proposed that his technique of
exposing oxygen-loaded microbubbles to ultrasound to increase oxygen content in breast
tumors could benefit wound healing in the future [199]. In 2023, Ho et al. found that
cavitation of oxygen-loaded microbubbles increased vasodilation and angiogenesis at
ischaemia–perfusion vessels. Their proposed pathway of cavitation induced endothelial
nitric oxide synthase (eNOS) activation, vascular endothelial growth factor (VEGF) expres-
sion, and a reduction in interstitial hydrogen peroxide, all instrumental in remodelling of
the vascular architecture in the wound healing process. They thus hypothesized that this
pathway could drive further investigation into wound healing and avoid the side effects
induced by hyperbaric oxygen therapy [200].

Though cavitation-mediated oxygen delivery in wound healing has not yet been
clinically tested, current applications in hydrogels and other biomaterial scaffolds show
promise. Nanodroplets engineered to carry oxygen via haemoglobin encapsulation in-
creased cell viability of cardiomyocytes in a GelMA hydrogel and expedited the repair
of infarcted tissues when exposed to low-intensity pulsed ultrasound [201]. Preliminary
work exploring the effect of oxygen-loaded microbubbles exposed to ultrasound on human
dermal fibroblasts (HDFs) also found that they increased HDF viability [202]. As HDFs are
one of the main cell types involved in the wound healing process, increased viability could
aid in a timely repair process.

PFCs have also been commonly used in CN [199,203–206]. PFC oxygen-loaded cavita-
tion nuclei can be used to deliver oxygen to hypoxic regions of wound beds, combining the
advantages of high-oxygen PFC emulsions with the added benefits of ultrasound-mediated
cavitation to include temporal release, deeper penetration, and specific localization within
the wound bed. Some physicians argue that oxygen therapy for wounds should be a
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multi-faceted approach in which oxygen is specifically dosed as a function of tissue hy-
poxia [191] and focused at the centre of the wound where hypoxia is typically greatest.
Sonosensitive cavitation nuclei as a vehicle for oxygen delivery present a plausible solution
to these challenges.

4.4. Biofilms

Between 65% and 80% of clinical bacterial infections involve biofilms: communities
of microbes existing within a matrix of extracellular polymeric substances including pro-
teins, polysaccharides, and extracellular DNA [207]. Biofilms present a major challenge
to effective antibiotic treatments; not only do they form a physical barrier to antibiotic
drug penetration [208], but they also promote functional changes associated with resis-
tance, including slower growth rates and communal stress responses [209]. Because of this,
bacteria residing in biofilms are known to be 10–1000 times more resistant to antibiotics
than planktonic bacteria [210]. As emerging pathogens become increasingly resistant to
new antibiotics, novel strategies of treating infections by targeting the biofilm matrix have
gained momentum, such as through biofilm-degrading enzymes [211] or, more recently,
ultrasound in combination with CN [212].

CN have been shown to be effective in treating a wide variety of infections, including
in vitro monospecies biofilms of both Gram-positive [213,214] and Gram-negative [215,216]
bacterial species as well as more complex models, such as an infected clot model [217], a
bladder organoid model [218], and an in vivo infected catheter model [219]. In all cases,
the benefit of applying CN to a biofilm is twofold; first, cavitation can disrupt the structural
integrity of the biofilm matrix via production of craters [220] and micropores [221], and
second, it can enhance the delivery of antibiotic drugs, including gentamicin [216,218,220],
vancomycin [213,221], oxacillin [212], and streptomycin [220]. Most studies have found
that the synergistic application of cavitation with an antibiotic is more effective than
either cavitation or antibiotic administration alone, in part because dispersion changes the
physiological state of bacteria [222] and most antibiotic drugs are effective only on cells that
are metabolically active [223,224]. That being said, dispersed bacteria may also be more
virulent and more likely to reinfect than their planktonic counterparts [222].

The ease of functionalization of CN has also been explored in biofilm applications,
primarily the conjugation of drugs and/or targeting ligands to lipid-shelled microbub-
bles. Vancomycin, in particular, has been explored both for its binding affinity and its
cytotoxicity to Gram-positive bacteria [214], as its mode of action involves binding to the
D-ala-D-ala moiety on the bacterial cell wall, hindering cell wall synthesis [225]. This
theranostic strategy could theoretically be employed with other antibiotics that work by
binding to surface receptors. Liposomes containing gentamicin have also been covalently
attached to microbubbles, which has shown to result in higher intracellular delivery after
ultrasound exposure than liposomal formulations of the drug alone [218]. Finally, “bioac-
tive” gases have been evaluated for their ability to enhance the therapeutic potential of
cavitation-mediated biofilm disruption and antibiotic delivery. Nitric oxide (NO) is a
gaseous signalling molecule that has been shown to disperse biofilms at low concentrations
and kill pathogens at high concentrations [226], but is limited by its short half-life and
limited penetration [227]. Encapsulating NO into lipid-shelled microbubbles is therefore
able to increase the bioavailability of NO and has shown to result in biofilm removal and
clinically relevant log reductions in culturable bacteria when combined with ultrasound
and gentamicin [215]. Although lingering questions remain regarding the downstream ef-
fects and overall safety of cavitation-mediated biofilm dispersion, the urgency of antibiotic
resistance warrants continued research in this area.

4.5. Blood–Brain Barrier

The blood–brain barrier is a key feature of the vasculature of the brain and consists of a
layer of endothelial cells sealed together by specialized cell–cell junctions and supported by
other cell types, including pericytes and astrocytes. The cells comprising the BBB have an
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exceptionally low number of transcytosis vesicles, specialized drug metabolizing enzymes,
and efflux pumps to expel potentially toxic substances from brain to blood, culminating
in a dynamic physical and metabolic barrier [228–231]. In tandem, specific transporters
and carrier proteins are enriched in brain endothelial cells to facilitate controlled transport
of specific essential nutrients and metabolites, such as glucose (GLUT-1), amino acids
(LAD1), and transferrin [232]. The tight control of transport in both directions prevents the
entry of most substances from the systemic blood supply, including leukocytes, into the
brain, which helps maintain the physiological conditions required for neural signalling,
and to shield neural tissues from neurotoxins in the blood [233]. Unfortunately, the BBB
also acts as the major bottleneck in drug delivery to treat diseases in the central nervous
system (CNS) [233]; 98% of small-molecule drugs, and all biologics, cannot pass through
the BBB into a non-disrupted brain unaided [234]. This presents a significant barrier to
delivering a meaningful concentration of drugs to treat neurological diseases, which were
the second leading cause of death between 1990 and 2016, including psychiatric diseases,
neurodegenerative diseases, brain cancers, and strokes.

The combination of ultrasound and multiple types of CN has been shown to non-
invasively and reversibly open the BBB to achieve the delivery of macromolecular ther-
apeutic drugs such as monoclonal antibodies, genes, and chemotherapies into the brain
parenchyma [235–237]. The ability to focus the US beam down to the millimetre scale
provides much more spatiotemporal precision and control than alternative approaches,
such as co-administration of vasodilators or hyperosmotic agents, Trojan horse (MAb con-
jugation), etc., and hence limits the risk of off-target adverse effects in the brain [238]. US
+ CN can be combined with real-time stereotactic image guidance or acoustic emission
monitoring to provide feedback on efficacy and risk, allowing fine tuning of the US dose
during treatment [238,239].

4.6. Gastrointestinal Drug Delivery

Due to its convenience, non-invasiveness, and ease of use, oral drug delivery is the
preferred route of administration for patients [240]. The two major barriers to effective oral
delivery of biopharmaceuticals includes their instability in the gastrointestinal tract, and
their erratic absorption across the intestinal membrane into systemic circulation. Perme-
ability is limited by two physiological barriers: the mucus layer and the epithelial layer.
The mucus layer slows the diffusion rate of large molecules, whilst the epithelium prevents
the diffusion of large molecules [241,242].

It is hypothesized that the application of ultrasound to the gastrointestinal tract could
provide a means of rapidly delivering small molecules, but also facilitate the delivery of
macromolecules across the mucus and epithelial layers of the gastrointestinal tract [243].
Ultrasound-mediated gastrointestinal drug delivery research is largely influenced by the
transdermal drug delivery literature, which has highlighted the potential of low-frequency
ultrasound to facilitate drug delivery [244–251].

Schoellhammer et al. demonstrated the safety and tolerance of low-frequency ultrasound-
mediated drug delivery of small and large molecules in vitro and in vivo, showing suc-
cessful delivery in both the rectum and buccal cavity without cavitation nuclei [252–256].
Stewart et al. reported on the development of a multimodal diagnostic endoscopic cap-
sule device, with high-frequency quantitative micro-ultrasound complementing video
imaging, allowing subsurface visualization and computer-assisted diagnosis. The studies
showed that the application of ultrasound to Caco-2 cell monolayers alone and ultrasound
combined with Sonovue microbubbles (Sonovue®, phospholipid coating with sulfur hex-
afluoride gas core; Bracco diagnostics, Inc., Milan, Italy) decreased transepithelial electrical
resistance, suggesting permeabilization of the cell layer. The team also demonstrated the
ability to direct microbubble streams to the focus of the transducer using acoustic radiation
forces [257,258].

Using a modified version of the prototype capsule reported previously, ultrasound-
mediated targeted drug delivery of quantum dots has been demonstrated with ex vivo
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tissue and in vivo. Fluorescent markers chosen as a model drug were used to demonstrate
in vivo delivery, using a porcine small intestine with this capsule in vivo. The fluorescent
markers combined with microbubbles and focused ultrasound were shown to penetrate
the mucus layer of the small intestine. These findings illustrate the potential of this device
for ultrasound-mediated gastrointestinal drug delivery, and the challenges (e.g., tethering
of capsule, debris lodged into outlets) to be overcome before focused ultrasound and mi-
crobubbles could be used with this device for the oral delivery of biopharmaceuticals [259].

Fix et al. evaluated the potential of using ultrasound-stimulated phase-change ul-
trasound contrast agents (1,2-distearoylsn-glycero-3-phosphocholine and 1,2-distearoyl-
snglycero-3-phosphoethanolamine-N-methoxy(polyethyleneglycol)-2000 with octofluoro-
propane gas) to cause transient disruption of Caco-2 epithelial monolayers cultured on
permeable Transwell supports and enhance the permeation of a model macromolecular
drug. The team assessed ultrasound-mediated drug delivery through Caco-2 monolayers
where ultrasound and phase-change ultrasound contrast agents combined were found to
enhance dextran delivery in comparison to the negligible amount delivered in the control
samples (phase-change ultrasound contrast agents alone; ultrasound alone) [260].

In summary, ultrasound-mediated gastrointestinal drug delivery is a nascent field
with many unexplored research questions, but the flexibility of the various CN described
above could be of enormous benefit.

5. Future Directions of the Field

Cavitation-enhanced drug delivery has extraordinary potential as a tool to overcome
a wide range of physiological and biological barriers, including solid tumors, the skin, the
gastro-intestinal mucosa, the blood–brain barrier, and biofilms. Its application is relatively
simple and can be non-invasive through the use of extracorporeal or interstitial ultrasound
transducers, involving no ionizing radiation and no significant side effects other than those
potentially associated with the thermal and mechanical effects of ultrasound. The use
of exogenous cavitation nuclei, be they solid CN, microbubbles, nanodroplets, echogenic
liposomes, or vesicles, also makes it possible to enhance the delivery, penetration, and distri-
bution of therapeutics without making it necessary to modify them in any way. Conversely,
CN can also be readily modified to incorporate or present the therapeutic as demanded by
specific applications for optimal interaction with the cell or therapeutic target.

Until recently, this exciting new approach was primarily confined to pre-clinical efforts,
but numerous recent advances have seen the initiation and successful completion of several
clinical trials evidencing significant improvements in therapeutic efficacy, reductions in
systemic and off-target toxicity, and the potential opportunity to reduce the overall dose of
drugs administered to the patient whilst still achieving equivalent or greater therapeutic
benefit. These clinical trials are also actively gathering essential information in terms of
cavitation monitoring and mapping, which are enabling the establishment of clinically
relevant safety and efficacy metrics that can now be monitored in real time during drug
administration. If successful, these metrics could provide a means of confirming for the
very first time that the CN, and therefore by extension the co-administered therapeutic, has
successfully reached its target.

In spite of these great strides, several challenges and opportunities still remain. The
majority of CN developed to date are primarily optimized to support acoustic cavitation,
but there is a growing trend towards designing gas carriers which also enhance or facilitate
the very therapeutic process they are intended to support, in addition to generating the
mechanical and fluidic forces associated with cavitation. CN optimization greatly depends
on the development of a deeper scientific understanding of the interaction between cav-
itating bubbles and adjacent biological structures, notably in terms of the differentiated
biological, chemical, inflammatory, and immunological processes known to take place in
the presence of elevated shear stresses and oscillatory forces. Widespread clinical adop-
tion is reliant on improved and robust scalable manufacturing techniques, that not only
enable production with minimal batch-to-batch variability but also facile yet reliable modi-
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fication of formulations to target different indications or drugs as needed. Furthermore,
widely accepted safety and efficacy ranges using standardized metrics based on real-time
cavitation monitoring/mapping need to be established by indication, on the basis of the
early clinical data presently being gathered. Lastly, several regulatory and commercial
challenges remain, in particular on whether ultrasound-enhanced drug delivery strategies
are seen merely as a device supplementing the mode of action of a drug, or as a more
complex combination which introduces novel and potentially exciting new modes of action.
The fields of ultrasound-enhanced drug delivery, immunomodulation, immune-oncology,
transdermal vaccination, and antimicrobial therapies are as young as they are promising,
and their success will ultimately rely on our ability to address these key challenges and
identify clinical indications where these approaches have a transformative impact for the
benefit of patients.
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