Research Progress of Rapid Non-Destructive Detection Technology in the Field of Apple Mold Heart Disease
Abstract
:1. Introduction
2. Application Progress of Rapid Non-Destructive Detection Technologies for Apple Mold Heart Disease
2.1. Spectroscopy Technology
2.1.1. NIR Spectroscopy
2.1.2. HSI Technology
2.1.3. Raman Spectroscopy Technology
2.2. Electronic Nose Technology
2.3. Acoustic Technology
2.4. Dielectric Properties Technology
2.5. Magnetic Technology
3. Research Development Trends and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Mao, Z.; Xiang, S.H.; Jiang, Y.; Wang, Z.; Zhang, Z.; Wang, N.; Xu, H.; Wang, Y. The breeding of new variety of easy colouring functional apple and non-bag cultivation technology. China Fruits 2017, 1, 1–5. [Google Scholar]
- Chen, X.S.; Wang, Z.G. Investigation on the problem of “difficulty in selling fruit” of apples in Shandong Province and related suggestions. Deciduous Fruits 2016, 48, 1–2. [Google Scholar]
- Wu, W.Y.; Liu, W.; Yao, Z.H. A study on the quantification of apple quality grading by hierarchical mixture. South China Fruits 2023, 52, 152–156. [Google Scholar]
- Guo, S.P. New Color Atlas of Fruit Tree Disease and Pest Control; China Agric. University Press: Beijing, China, 2010; pp. 12–13. [Google Scholar]
- Zhang, X.F. Prevention and control techniques of apple mold heart disease. Hebei Fruits 2017, 3, 19–20. [Google Scholar]
- Tian, X.; Wang, Q.Y.; Huang, W.Q.; Fan, S.X.; Li, J.B. Online detection of apples with moldy core using the Vis/NIR full-transmittance spectra. Postharvest Biol. Technol. 2020, 168, 111269. [Google Scholar] [CrossRef]
- Patriarca, A. Fungi and mycotoxin problems in the apple industry. Curr. Opin. Food Sci. 2019, 29, 42–47. [Google Scholar] [CrossRef]
- Tian, S.J.; Zhang, J.H.; Zhang, Z.X.; Zhao, J.; Zhang, Z.J.; Zhang, H.H. Effective modification through transmission Vis/NIR spectra affected by fruit size to improve the prediction of moldy apple core. Infrared Phys. Technol. 2019, 100, 117–124. [Google Scholar] [CrossRef]
- Li, Z.; Chi, S.G. Occurrence and control of apple mold heart disease in Huang pan Plain. Pract. Technol. Inf. Fruit. Trees 2021, 12, 31–33. [Google Scholar]
- Liu, W.F.; Zhang, Y.L.; Wang, Y.H. Investigation of occurrence and pathogenic factors of apple mold heart disease in Shaanxi. China Plant Prot. 2021, 41, 33–35. [Google Scholar]
- Lei, Y.; He, D.J.; Zhou, Z.Y.; Zhang, H.H.; Su, D. Detection of moldy core of apples based on visible/near infrared transmission energy spectroscopy. Trans. Chin. Soc. Agric. Mach. 2016, 47, 193–200. [Google Scholar]
- Zhang, H.H.; Tian, S.J.; Ma, M.J.; Zhao, J.; Zhang, J.H.; Zhang, Z.J. Detection method of moldy core in apples using modified transmission spectrum based on size of fruit. Trans. Chin. Soc. Agric. Mach. 2019, 50, 313–320. [Google Scholar]
- Ma, J.J.; Wang, K.Q. Research progress of optical non-destructive testing technology for fruit quality. Sci. Technol. Food Ind. 2021, 42, 427–437. [Google Scholar]
- Zhang, Z.J.; Fu, X.Y.; Chen, K.M.; Zhao, Z.L.; Zhang, Z.X.; Zhao, J. Research on non-destructive detection method of moldy apple core by fusing density and spectral features. Food Ferment. Ind. 2022, 48, 281–287. [Google Scholar]
- Zhang, J.C.; Zhang, P.; Tian, S.P.; Xue, Y.L.; Li, J.K. Research progress in non-destructive detection technology of apple core rot. Packag. Eng. 2020, 41, 23–30. [Google Scholar]
- Zhang, M.C. Research and Demonstration of Digital Technology for Non-Destructive Testing and Traceability of Apples in Maoxian County; Xihua University: Chengdu, China, 2022. [Google Scholar]
- Liu, Y.J.; Yang, Y.P. Application and development research of non-destructive testing technology for quality control of fruit. North. Hortic. 2020, 01, 152–157. [Google Scholar]
- Yan, W.T.; Yue, Q.; Ji, Z.R.; Zhou, Z.S.; Qiu, G.S.; Wang, Y.S. Practical technology for diagnosis and prevention of apple mold heart disease. Pract. Technol. Inf. Fruit. Trees 2019, 08, 26–27. [Google Scholar]
- Zhang, J.; Wang, B. Occurrence law, causes and comprehensive prevention and control technology of apple mold heart disease. Shaanxi J. Agric. Sci. 2020, 66, 86–88. [Google Scholar]
- Zhou, J.S.; Zhou, Z.L.; Zhang, Y.F. Occurrence and comprehensive control technology of apple mold heart disease. Hebei Fruits 2019, 15, 18. [Google Scholar]
- Zhao, Y.L.; Wang, L.; Zhang, X.Y.; Jiao, X.; Chen, H.Y. Research advances of the occurrence regularity on moldy core of apples and non-destructive measurement technology after harvest. Food Ind. 2019, 40, 256–259. [Google Scholar]
- Ren, X.C.; Zhang, X.; Peng, B.X.; Li, J.; Wang, J.S. Application of hyperspectral technology in apple quality detection. Anhui Agric. Sci. Bull. 2021, 27, 132–133. [Google Scholar]
- Zhang, W.W.; Yang, K.M.; Xia, T.; Liu, C.; Sun, T.T. Correlation analysis on spectral fractional-order differential and the content of heavy metal copper in corn leaves. Sci. Technol. Eng. 2017, 17, 33–38. [Google Scholar]
- Xia, T.; Yang, K.M.; Liu, C.; Zhang, W.W.; Zhang, W. Study on copper pollution prediction of corn leaves based on the spectral parameters and the Cu2+, absorption mechanism. Sci. Technol. Eng. 2017, 17, 104–111. [Google Scholar]
- Gong, Y.J.; Pei, J.Q.; Li, H.B.; Feng, Y.L.; Ning, X.F. Design of portable quickly non-destructive detection system apple quality. J. Shenyang Agric. Univ. 2017, 48, 238–243. [Google Scholar]
- Bratu, A.M.; Popa, C.; Bojan, M.; Logofatu, P.C.; Petrus, M. Non-destructive methods for fruit quality evaluation. Sci. Rep. 2021, 11, 7782. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.M.; Wang, J.Y.; Song, Y.; Zou, X.B.; Cai, J.R. Research progress of sensing detection and monitoring technology for fruit and vegetable quality control. Smart Agric. 2021, 3, 14–28. [Google Scholar]
- Liu, H.L.; Zhang, Z.X.; Chen, A.; Pu, Y.G.; Zhao, J.; Hu, J. Detection method for apple moldy cores based on spectral shape features. Trans. Chin. Soc. Agric. Eng. 2023, 39, 162–170. [Google Scholar]
- Zhou, Z.Y.; He, D.J.; Zhang, H.H.; Lei, Y.; Su, D.; Chen, K.T. Non-destructive detection of moldy core in apple fruit based on deep belief network. Food Sci. 2017, 38, 297–303. [Google Scholar]
- Clark, C.J.; Mcglone, V.A.; Jordan, R.B. Detection of brown heart in ‘Braeburn’ apple by transmission NIR spectroscopy. Postharvest Biol. Tec. 2003, 28, 87–96. [Google Scholar] [CrossRef]
- Su, D.; Zhang, H.H.; Chen, K.T.; Hu, J.; Zhang, Z.J.; Lei, Y. Multi factor non-destructive detection of apple mold core disease based on transmission spectroscopy. Food Sci. 2016, 37, 207–211. [Google Scholar]
- Zhou, Z.Y.; He, D.J.; Lei, Y.; Zhang, Z.J.; Su, D. NIRS detection of moldy core in apples. Int. J. Agric. Biol. Eng. 2016, 9, 148–155. [Google Scholar]
- Andrea, G.; Giorgio, A.; Marco, B.; Claudio, C.; Alice, C.; Lorenzo, G.; Giovanni, G.; Franco, M.; Beniamino, G. A novel hyperspectral method to detect moldy core in apple fruits. Sensors 2022, 22, 4479. [Google Scholar]
- Tian, S.J.; Zhang, M.S.; Li, B.; Zhang, Z.X.; Zha, J.; Zhang, Z.J.; Zhang, H.H.; Hu, J. Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core. Infrared Phys. Technol. 2020, 111, 103510. [Google Scholar] [CrossRef]
- Li, S.F. Physiological Properties of Moldy Core Apple Fruits Flesh and Non-Destructive Detection Using Near Infrared Spectroscopy; Northwest Agric. & Forestry Univ.: Yangling, China, 2012. [Google Scholar]
- Li, S.F.; Zhang, L.H.; Liu, X.H.; Li, G.H. Discriminant analysis of apple moldy core using near infrared diffuse reflectance spectroscopy based on principal component analysis. Trans. Chin. Soc. Agric. Mach. 2011, 42, 158–161. [Google Scholar]
- Li, X.L.; Wei, Y.Z.; Xu, J.; Feng, X.P.; Wu, F.Y.; Zhou, R.Q.; Jin, J.J.; Xu, K.W.; Yu, X.J.; He, Y. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Wang, Z.D.; Hu, M.H.; Zhai, G.T. Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors 2018, 18, 1126. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Zhang, S.H.; Zhang, S.; Tan, Z.J. Detection of early tiny bruises apples using confocal raman spectroscopy. Spectrosc. Spectr. Anal. 2018, 38, 430–435. [Google Scholar]
- Hu, Z.X.; Ma, Q.Y.; Su, X.Y.; Zhang, F.; Sun, J.F.; Wang, W.X. Research progress of surface enhanced Raman spectroscopy technology in the detection of fungal toxin residues in fruits and vegetables. J. Food Saf. Qual. 2023, 14, 171–178. [Google Scholar]
- Hara, R.; Ishigaki, M.; Ozaki, Y.; Ahamed, T.; Noguchi, R.; Miyamoto, A.; Genkawa, T. Effect of Raman exposure time on the quantitative and discriminant analyses of carotenoid concentrations in intact tomatoes. Food Chem. 2021, 360, 129896. [Google Scholar] [CrossRef]
- Varnasseri, M.; Xu, Y.; Goodacre, R. Rapid detection and quantification of the adulteration of orange juice with grapefruit juice using handheld Raman spectroscopy and multivariate analysis. Anal. Method. 2022, 14, 1663–1670. [Google Scholar] [CrossRef]
- Josu, T.; Maite, M.; Héctor, M.; Alberto, D.D.; Juan, M.M. Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 105, 391–399. [Google Scholar]
- Fan, Y.; Lai, K.; Barbara, A.R.; Huang, Y.Q. Determination of carbaryl pesticide in Fuji apples using surface enhanced Raman spectroscopy coupled with multivariate analysis. LWT-Food Sci. Technol. 2015, 60, 352–357. [Google Scholar] [CrossRef]
- Josu, T.; Maite, M.; Héctor, M.; Alberto, D.D.; Juan, M.M. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits. Spectrochim. Acta A 2017, 180, 138–143. [Google Scholar]
- Liu, Y.D.; Xiao, H.C.; Sun, X.D.; Wu, M.M.; Ye, L.Y.; Han, R.B.; Zhu, D.N.; Hao, Y. Researching of non-destructive detection for citrus greening based on confocal Micro-Raman. Spectrosc. Spectr. Anal. 2018, 38, 111–116. [Google Scholar]
- Guo, Z.; Wang, M.; Barimah, A.O.; Chen, Q.S.; Li, H.H.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B. Label-free surface enhanced Raman scattering spectroscopy for discrimination and detection of dominant apple spoilage fungus. Int. J. Food Microbiol. 2020, 338, 108990. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Cao, N.; Song, Y.; Du, W.Y.; Tan, M.N.; Li, B.; Tang, Z.H.; Zheng, X.D. Application of surface enhanced Raman spectroscopy in detection of pesticide residues in fruits and vegetables. J. Food Saf. Qual. 2023, 14, 10–17. [Google Scholar]
- Li, Z.C.; Zheng, X.D.; Yan, X.H.; Liu, X.M.; Pan, S.X.; Meng, X.M.; Tan, M.N.; Song, Y. Research progress of non-destructive testing technology for fruit and vegetable quality. China Fruit. Veget 2021, 41, 34–40. [Google Scholar]
- Wu, J.W.; Liu, Z.H.; Pang, L.J.; Cheng, J.Y. Research progress of electronic nose in fruit and vegetable disease detection. Food Mach. 2023, 39, 228–233. [Google Scholar]
- Zou, P.; Bai, X.; Chen, Q.S.; Li, N.; Guo, Y.Z. Research progress on the application of non-destructive testing technology in fruits and vegetables quality evaluation. Anhui Agric. Sci. 2021, 49, 1–4. [Google Scholar]
- Li, X.; Cao, Y.D.; Li, Z.M. Gas expressions of apple quality and their sensing technologies. China Agric. Inf. 2019, 31, 74–83. [Google Scholar]
- Jia, W.J.; Li, M.N.; Wang, Y.L.; Liang, G.; Man, Y.; Pan, L.G. Application of electronic nose technology on the detection of fruits and vegetables. J. Food Saf. Qual. 2016, 7, 410–418. [Google Scholar]
- Zou, X.B.; Zhao, J.W. Distinguishing different cultivar apples by electronic nose based on support vector machine. Trans. Chin. Soc. Agric. Eng. 2007, 23, 146–149. [Google Scholar]
- Li, Y. Non-Destructive Testing of Apple Quality Based on Electronic Nose; Northwest Agric. & Forestry Univ.: Yangling, China, 2014. [Google Scholar]
- Gómez, A.H.; Wang, J.; Hu, G.X. Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT-Food Sci. Technol. 2007, 40, 681–689. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zhang, P.; Xue, Y.L.; Jia, X.Y.; Li, J.K. Characterization of characteristic odor and establishment of non-destructive detection model of core rot apples based on electronic nose. Food Ferment. Ind. 2022, 48, 267–273. [Google Scholar]
- Yang, C.Y.; Yuan, H.F.; Ma, H.L.; Ren, Y.M.; Ren, X.L. Non-destructive detection of apple moldy core based on FT-NIR and electronic nose Technology. Food Ferment. Ind. 2021, 47, 211–216. [Google Scholar]
- Jia, W.; Liang, G.; Tian, H.; Sun, J.; Wan, C.H. Electronic nose-based technique for rapid detection and recognition of moldy apples. Sensors 2019, 19, 1526. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Lu, H.Z.; Qiu, G.J.; Wang, C.; Liang, X. Research progress and application status of fruit quality non-destructive detection technology. Guangdong Agric. Sci. 2020, 47, 229–236. [Google Scholar]
- Zhang, H.; Wu, J. Detection of early browning in pears using vibro-acoustic signals. Trans. Chin. Soc. Agric. Eng. 2020, 36, 264–271. [Google Scholar]
- Diezma-iglesias, B.; Ruiz-Altisent, M.; Barreiro, P. Detection of internal quality in seedless watermelon by acoustic impulse response. Biosyst. Eng. 2004, 88, 221–230. [Google Scholar] [CrossRef]
- Zhao, K.; Zha, Z.H.; Li, H.; Wu, J. Early detection of moldy apple core using symmetrized dot pattern images of vibro-acoustic signals. Trans. Chin. Soc. Agric. Eng. 2021, 37, 290–298. [Google Scholar]
- Lu, Y.; Li, Z.F.; Li, J.; Pu, H.J.; Xu, W.X. Application of acoustic technology to non-destructive determination of watermelon quality. Fujian Agric. Sci. Technol. 2014, 10, 77–81. [Google Scholar]
- Lv, F.L.; Ying, Y.B. Design and application of a plant detector. J. Agric. Mech. Res. 2003, 08, 145–146+151. [Google Scholar]
- Dou, W.Q.; Chai, C.X.; Lu, X.X. Research progress of non-destructive detection technique in fruit quality evaluation. Sci. Technol. Food Ind. 2020, 41, 354–359. [Google Scholar]
- Zhao, K.S.; Liu, Y. A review of the application of dielectric spectroscopy in food field. Food Sci. 2019, 40, 294–306. [Google Scholar]
- Soltani, M.; Alimardani, R.; Omid, M. Evaluating banana ripening status from measuring dielectric properties. J. Food Eng. 2011, 105, 625–631. [Google Scholar] [CrossRef]
- Veal, C.D.; Webb, B.K. Use of Radio Frequency Waves for Evaluation of Tomato Maturity; ASAE: Chicago, IL, USA, 1971. [Google Scholar]
- Guo, W.C.; Zhu, X.H.; Nelson, S.O.; Yue, R.; Liu, H.; Liu, Y. Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT-Food Sci. Technol. 2011, 44, 224–230. [Google Scholar] [CrossRef]
- Nelson, S.O.; Guo, W.C.; Trabelsi, S.; Kays, S.J. Dielectric spectroscopy of watermelons for quality sensing. Meas. Sci. Technol. 2007, 18, 1887–1892. [Google Scholar] [CrossRef]
- Cortes, H.; Edgar, V.; Suarez, R.; Castillo, J.; Gonçalves, L.M.; Bueno, P.R. Pitahaya aging diagnostic by impedance/capacitance spectroscopy. Food Anal. Method. 2015, 8, 126–129. [Google Scholar] [CrossRef]
- Guo, W.C.; Nelson, S.O.; Trabelsi, S.; Stanley, J.K. 10–1800 MHz dielectric properties of fresh apples during storage. J. Food Eng. 2007, 83, 562–569. [Google Scholar] [CrossRef]
- Khaled, D.; Novas, N.; Gazquez, J.A.; Garcia, R.M.; Manzano-Agugliaro, F. Fruit and vegetable quality assessment via dielectric sensing. Sensor 2015, 15, 15363–15397. [Google Scholar] [CrossRef]
- Li, D.B.; Huang, Z.W.; Zhao, X.B. Detection method of apple mold core based on dielectric characteristics. Smart Agric. 2021, 3, 66–76. [Google Scholar]
- Wang, R.L.; Wang, D.; Ren, X.L.; Ma, H.L. Non-destructive detection of apple water core disease based on electric features. Trans. Chin. Soc. Agric. Eng. 2018, 34, 129–136. [Google Scholar]
- Xu, F.; Ji, S.M.; Zhang, L.B.; Zheng, X.R.; Zhang, X. Non-destructive inspection of dielectric property of fruit and its application in classifying fruit quality. Trans. Chin. Soc. Agric. Mach. 2002, 53–56, 60. [Google Scholar]
- Euring, F.; Russ, W.; Wilke, W.; Grupa, U. Development of an impedance measurement system for the detection of decay of apples. Procedia Food Sci. 2011, 1, 1188–1194. [Google Scholar] [CrossRef]
- Zhou, T.T.; Sun, X.L.; Sun, Z.Z.; Peng, H.H.; Sun, T.; Hu, D. Current status and future perspective of spectroscopy and imaging technique applications in bruise detection of fruits and vegetables: A review. Spectrosc. Spectral Anal. 2022, 42, 2657–2665. [Google Scholar]
- Wang, M.; Zhang, J.; He, Y.; Lu, J.; Guo, J.; Dai, C.; Wang, F.Z.; Fan, B. Evaluation of juicy sac granulation in citrus with low field nuclear magnetic resonance. Trans. Chin. Soc. Agric. Eng. 2016, 32, 290–295. [Google Scholar]
- Hu, X.Y.; Lan, W.Q.; Zhang, N.N.; Xie, J. Research progress of low field nuclear magnetic resonance technology in food. Sci. Technol. Food Ind. 2017, 38, 386–390+396. [Google Scholar]
- Lammertyn, J.; Dresselaers, T.; Van Hecke, P.; Jancsók, P.; Wevers, M.; Nicolaı, B.M. Analysis of the time course of core breakdown in ‘Conference’pears by means of MRI and X-ray CT. Postharvest Biol. Technol. 2003, 29, 19–28. [Google Scholar] [CrossRef]
- Suchanek, M.; Kordulska, M.; Olejniczak, Z.; Figiel, H.; Turek, K. Application of low-field MRI for quality assessment of ‘Conference’ pears stored under controlled atmosphere conditions. Postharvest Biol. Technol. 2017, 124, 100–106. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Shang, D.S.; Ying, Y.B.; Liao, Y.T. Detecting subtle bruises on fruits with nuclear magnetic resonance imaging. Trans. Chin. Soc. Agric. Mach. 2010, 41, 107–110. [Google Scholar]
- Chen, S.; Meng, Z.L.; Chen, R.K.; Li, H.N.; Zhang, S.P.; Wu, P. The change of moisture in cherry by low-field NMR. Res. Explor. Lab. 2013, 32, 52–54. [Google Scholar]
- Xiong, T.; Zhang, J.C.; Xu, P.P.; Zhang, Y.L. Application of nuclear magnetic resonance on detecting sucrose content in different parts of apple. China Meas. Test. 2014, 40, 33–36. [Google Scholar]
- Xiong, T. Non-Destructive Testing of Fruits Based on Low Field Magnetic Resonance Technology. Ph.D. Thesis, China Institute of Metrology, Hangzhou, China, 2014. [Google Scholar]
- Pang, L.J.; Wang, Y.X.; He, Z.P. Application of NMR in Fruit Quality Detection. J. Agric. Mech. Res. 2006, 8, 176–180. [Google Scholar]
Technology | Object and Indicators | Data Processing | Validation Methods and Parameters |
---|---|---|---|
NIR | Apple mold heart disease | S-G, MSC, PCA, SVM | The accuracy of the test set of SVM was 96.7% [11] |
Apple mold heart disease | MSC, SNV, PCA, SVM | The test accuracy of SVM was 90.20% [12] | |
Apple mold heart disease | SNV, PLS-DA, SVM | The accuracy of the SVM density model was 95.56% [14] | |
Apple mold heart disease | ANN-AP | The prediction accuracy of ANN-AP was 97.15% [33] | |
Apple mold heart disease | SGS, normalization, SVM | The prediction accuracy of the SVM global model in test sets in all three directions was 100% [34] | |
Apple mold heart disease | Vector normalization, PCA, Fisher | The verification accuracy of Fisher was 87.8% [35,36] |
Technology | Object and Indicators | Data Processing | Validation Methods and Parameters |
---|---|---|---|
Spectral Shape Features | Apple mold heart disease | SNV, MSC, NSID, SVM | When disease incidence was greater than 10% and less than 14%, the NSID-SVM accuracy was 100% [28] |
HSI | Cherry maturity | PCR, PLS, LDA | The classification accuracy in the test set of the LDA model was 96.4% [37] |
HSI | Apple internal mechanical damage | CNN, DL, K-cross validation | Classification accuracy of ResNet/ResNeXt were 0.8844, 0.8952 [38] |
Technology | Object and Indicators | Data Processing | Validation Methods and Parameters |
---|---|---|---|
Raman spectroscopy | Apple pesticide content | PCA, PLSR, SVR | The Rp in the test set of SVR was 0.986 [44] |
Citrus leaf disease | PCR, PLS-DA | The Rp of PLS-DA was 0.98 [46] | |
5 types of apple spoilage fungi | PCA, LDA | The accuracy in the test set of PCA-LDA was 98.31% [47] |
Technology | Objects and Indicators | Data Processing | Validation Methods and Parameters |
---|---|---|---|
Electronic nose | Apple mold heart disease | BPNN | The R2 of BPNN was greater than 0.9000 [55] |
Storage time for fruits | LDA, PCA | The correlations of PCA were 0.733, 0.726, and 0.659 [56] | |
Apple mold heart disease | PCA, HCA, OPLS-DA, MLPNN | The accuracy in the test set of MLPNN was 88.46% [57] | |
Apple mold heart disease | Fisher, MLP | The recognition rate of the MLP test set was 86.2% [58] | |
Moldy apples | LDA, BPNN, SVM, RBFNN | The test set accuracy of BPNN was 72.0% [59] |
Technology | Object and Indicators | Data Processing | Validation Methods and Parameters |
---|---|---|---|
Acoustic | Fruit maturity | Vibration frequency (85–160 Hz) | The test set accuracy was 89.07% [62] |
Apple mold heart disease | SDP-CNN-SVM | The overall discrimination accuracy in the testing set of ResNet50-SVM-gaus was 96.97% [63] |
Technology | Objects and Indicators | Data Processing | Validation Methods and Parameters |
---|---|---|---|
Dielectric Properties | Apple mold heart disease | PCA, RF | The accuracy in the test set of RF was 95.17% [75] |
Apple mold heart disease | PCA, RB-FNN, MPNN, ANN | The accuracy in the test set of ANN was 100% [76] | |
The degree of apple decay | none | The correlation was 0.9048 [78] |
Technology | Objects and Indicators | Data Processing | Validation Methods and Parameters |
---|---|---|---|
Magnetic | Fruit mold heart disease | MRI, X-ray | Affected and unaffected tissues in MR images have high contrast [82] |
Internal tissue changes in fruit | MSE, ImageJ 1.45 software | There is a small difference between the calculated values of the two groups of fruit images [83] | |
Pears damage | Otsu threshold segmentation, binarization, boundary extraction | The accuracy in detecting surface minor damage was 92.1% [84] | |
Apples sugar | FID, lateral relaxation time, and longitudinal relaxation time | The correlation coefficient was greater than 0.99 [86,87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, Z.; Wang, W.; Wang, X.; Zhang, C.; Dong, J.; Bai, M.; Hui, T. Research Progress of Rapid Non-Destructive Detection Technology in the Field of Apple Mold Heart Disease. Molecules 2023, 28, 7966. https://doi.org/10.3390/molecules28247966
Li Y, Yang Z, Wang W, Wang X, Zhang C, Dong J, Bai M, Hui T. Research Progress of Rapid Non-Destructive Detection Technology in the Field of Apple Mold Heart Disease. Molecules. 2023; 28(24):7966. https://doi.org/10.3390/molecules28247966
Chicago/Turabian StyleLi, Yanlei, Zihao Yang, Wenxiu Wang, Xiangwu Wang, Chunzhi Zhang, Jun Dong, Mengyu Bai, and Teng Hui. 2023. "Research Progress of Rapid Non-Destructive Detection Technology in the Field of Apple Mold Heart Disease" Molecules 28, no. 24: 7966. https://doi.org/10.3390/molecules28247966
APA StyleLi, Y., Yang, Z., Wang, W., Wang, X., Zhang, C., Dong, J., Bai, M., & Hui, T. (2023). Research Progress of Rapid Non-Destructive Detection Technology in the Field of Apple Mold Heart Disease. Molecules, 28(24), 7966. https://doi.org/10.3390/molecules28247966