
Citation: Gorla, G.; Taborelli, P.;

Giussani, B. A Multivariate

Analysis-Driven Workflow to Tackle

Uncertainties in Miniaturized NIR

Data. Molecules 2023, 28, 7999.

https://doi.org/10.3390/

molecules28247999

Academic Editors: Justyna Grabska,

Christian Huck and Krzysztof

Bernard Bec

Received: 15 November 2023

Revised: 1 December 2023

Accepted: 6 December 2023

Published: 7 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

A Multivariate Analysis-Driven Workflow to Tackle
Uncertainties in Miniaturized NIR Data
Giulia Gorla , Paolo Taborelli and Barbara Giussani *

Department of Science and High Technology, University of Insubria, Via Valleggio 9, 22100 Como, Italy
* Correspondence: barbara.giussani@uninsubria.it

Abstract: This study focuses on exploring and understanding measurement errors in analytical
procedures involving miniaturized near-infrared instruments. Despite recent spreading in different
application fields, there remains a lack of emphasis on the accuracy and reliability of these devices,
which is a critical concern for accurate scientific outcomes. The study investigates multivariate
measurement errors, revealing their complex nature and the influence that preprocessing techniques
can have. The research introduces a possible workflow for practical error analysis in experiments
involving diverse samples and instruments. Notably, it investigates how sample characteristics
impact errors in the case of solid pills and tablets, typical pharmaceutical samples. ASCA was used
for understanding critical instrumental factors and the potential and limitations of the method in
the current application were discussed. The joint interpretation of multivariate error matrices and
their resume through image histograms and K index are discussed in order to evaluate the impact of
common preprocessing methods and to assess their influence on signals.
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1. Introduction

Analytical measurements are inherently prone to errors, leading to uncertainty in
derived outcomes: measurement uncertainty concerns all measurements, regardless of
instruments and methods used. Understanding measurement errors and their impact
on results is a crucial aspect as only by monitoring them can uncertainty be effectively
reduced [1,2].

Recent developments in miniaturized near-infrared (NIR) instruments have shown
their effectiveness in diverse applications [3,4]. Literature is witnessing an increase in
evidence supporting the utility of these instruments. The affordability and user-friendly
interfaces of these sensors have led to a rise in end-users seeking guidance on suitable ac-
quisition strategies [5]. Despite the emphasis on proper sampling and analytical procedure
optimization, limited attention has been given to the nature of measurement errors inherent
in raw data [6].

Data collected from portable NIR sensors frequently undergo multivariate data anal-
ysis, aiming to extract valuable information from noise. Often, techniques developed to
analyze multivariate data make simplistic assumptions about measurement errors and its
homoscedasticity, uncorrelation, and normal distribution. However, the reality is that the
structure of multivariate measurement errors can be much more complex. Many prepro-
cessing techniques applied to multivariate data, such as scaling and derivative filtering,
aim to implicitly align the errors closer to the independent and identically distributed (iid)
normal pattern [7].

Studying the nature of multivariate measurement errors offers several pivotal benefits.
Firstly, it allows measurement quality to be improved by addressing sources of error that
restrict precision. Secondly, knowledge of error characteristics allows the design of data
analysis tools optimized to handle errors efficiently, leading to more effective extraction of

Molecules 2023, 28, 7999. https://doi.org/10.3390/molecules28247999 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28247999
https://doi.org/10.3390/molecules28247999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2311-9333
https://orcid.org/0000-0001-7986-882X
https://doi.org/10.3390/molecules28247999
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28247999?type=check_update&version=2


Molecules 2023, 28, 7999 2 of 19

chemical information. For instance, this knowledge can lead to the development of tailored
signal preprocessing techniques or better application of existing ones [2,8–10].

Finally, the inherent error structure in multivariate data can propagate through dif-
ferent preprocessing and data analysis steps, determining its impact on the result. This
comprehensive understanding is vital for accurate, reliable, and meaningful analysis in
various analytical contexts [11].

This study proposes a workflow that can be followed to gain insights into errors.
Experiments were conducted with different samples and different instruments or the
same instrument using different accessories in real working conditions that might occur in
research or industrial settings. The primary objective is not the direct comparison of the
instruments under study to pinpoint the best sensor. Instead, the aim is to emphasize that
varying errors in the data may arise depending on the sample and the instruments used.
The research proposes a statistical methodology to unveil the limitations of these tools by
providing a framework for their investigation. For each spectrometer, an analysis of its
characteristics is undertaken to examine the reproducibility of data and gather insights
for optimization.

In previous studies, it has been demonstrated how error estimation through replicates
can be valuable, and the information obtained can be used to optimize acquisition condi-
tions, facilitate calibration transfer [10,12], and guide the selection of signal preprocessing
techniques [13]. In addition, it has been proven how several factors influence the spectra of
miniaturized NIR instruments and, consequently, the associated errors [14,15].

Compared with previous investigation on loose samples from food industries [6], this
research aims to verify that the same principles apply to solid samples typical in pharma
industries. Spectra of samples belonging to pharmaceuticals and supplementary diets
field were acquired. The interest in these samples arise from their physical and chemical
characteristics of compactness, shape, color, and components, which are common to many
pharmaceutical products, but not only.

The possibility of employing Analysis of Variance (ANOVA) Simultaneous Component
Analysis (ASCA) to guide the selection of replicates for studying errors under possible real-
world conditions was explored. The influence on the spectra of acquisition condition was
investigated. The potentials and limitations of ASCA for this type of study are presented.
Furthermore, the study proposes a combination of graphical and numerical methods to
assess the influence of preprocessing methods on the multivariate errors. Some common
preprocessing methods and their influence on the errors structures are investigated. The
trend of a simple correlation index and a visual and graphical method are presented to
investigate and compare the efficiency of signal preprocessing in different case scenarios:
different samples, miniaturized instruments, and experimental conditions.

2. Results and Discussion
2.1. Spectral Data and Reproducibility

Data were organized in matrices according to instrumentation and configuration
of acquisition. Figure 1 represents the mean spectra obtained from all the replicates
acquired with the instruments under charge (90 experimental replicates per sample per
instrument). The spectrometers cover ranges in different NIR regions [16]: AvaSpec-Mini-
NIR data are in Region 1 (800–1200 nm) and Region 2 (1200–1800 nm), while NeoSpectra
spectra are in Region 2 and Region 3 (1800–2600 nm), meaning that different overtone and
combinations bands could be seen. In accordance with the technological characteristics of
the two spectrometers, such as spectroscopic range, acquisition window, and acquisition
configuration, the spectra obtained for the samples are quite different in shape and data
quality characteristics (intensity, S/N, reproducibility). It is interesting to notice that the
spectra obtained by changing the accessory equipped to AvaSpec-Mini-NIR resulted in
similar shapes but substantially different data quality characteristics. Indeed, as expected,
the spectra obtained with the integrating sphere are more defined and have higher intensity
than those obtained with the optical fiber. For AvaSpec-Mini-NIR, the integrating sphere
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allows for a more intense recovery of the light reflected, and the sample could be positioned
in the internal part of the sphere hole, being invested from the light sources. The optical
fiber has a reduced window for the light to pass through, and the sample could be covered
only punctually. In addition, in the first case, all the light scattered is recovered, while
in the second, part of the light is probably dispersed at the sample level and through the
passage into the fiber. Although the spectrometer and detector are the same, differences in
light source, light path through the fiber or sphere, and the exposed sample portion to the
acquisition windows contributed to these variations.
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Generally, for all the configurations and spectrometers, the spectra obtained for Sample
1 and Sample 2 are less reflective than those obtained for Sample 3 and Sample 4. These
results could be explained by considering the different colors and opacity of the sample, as
well as the different shapes: indeed, Sample 1 and 2 are curved pills while Sample 3 and 4
are plain, almost white tablets.

An interesting observation is that the mean reflectance for Sample 2 is substantially
higher with all the instruments with respect to Sample 1: using the AvaSpec-Mini-NIR
with optical fiber, the spectra shapes of Sample 1 could even be challenging to identify.
The different results obtained for the different configurations or spectrometers could be
easily understood if the nature of the measurement is considered. Indeed, according to
the configuration of acquisitions, the window width and positioning allowed for each
instrument or configuration used to acquire the spectra are quite different (Supplementary
Figure S1).

Figure 1c represents the relative standard deviation and S/N ratio for all the samples
and spectra acquired. The S/N was calculated as the ratio between the mean spectra for
each sample and the standard deviation of the spectra of the same sample. The relative
standard deviation was estimated as 100 × standard deviation of spectra (90 replicates)
for each sample divided by the mean spectrum for the same sample. In Tables S1 and S2
of Supplementary Materials, other descriptive statistics are summed up. On the whole,
spectra acquired using the integrating sphere have the highest reproducibility (lower RSD)
and S/N ratio.

2.2. Study of the Variability Sources in the Data

ASCA models were calculated for each dataset divided according to the sample.
The main experimental conditions were considered as possible important factors. Their
interactions were also studied. The influence of signal preprocessing was investigated. The
results of ASCA models for AvaSpec-Mini-NIR on each sample with and without signal
preprocessing are summarized in Tables 1 and 2. The percentage each effect contributes to
the sum of squares is reported and significant effects are highlighted in bold.

Since ASCA uses ANOVA there are some typical assumptions to consider when
interpreting the results. The observations are assumed to be independent of each other,
the data come from normally distributed populations with equal variances and the effects
of different factors are assumed to be additive. ASCA also uses Principal Component
Analysis (PCA), which assumes linear relationships between variables. At first glance and
confirming the results obtained in a previous work [15], the outcomes of the models could
be interpreted as follows: some factors showed significance in different models (data in
bold), while others did not, making it possible to establish their relationship with a specific
spectrometer and/or the characteristics of the sample. In general, the effect values were
higher after applying preprocessing compared with raw data. Factors significant only for
specific samples in raw spectra became significant for all samples under investigation when
a scattering correction method was applied.

Comparing the results obtained with the different acquisition configurations for
AvaSpec-Mini-NIR, it appears that the significant factors and interactions (data in bold)
remain consistent regardless of the configuration and preprocessing method. The slight
disparities in significant effects observed in raw data could be due to the inherent variability
in data obtained via fiber optic cable compared with the integrating sphere.

The results of ASCA models for the Neospectra Scanner on each sample with and
without signal preprocessing are summarized in Table 3. Regarding the other instrument,
the results obtained here showed a significant portion of variance left unexplained by the
model, and the variances attributed to the factors are lower than the residual variance.
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Table 1. Summary of results for ASCA models of AvaSpec-Mini-NIR data obtained with integrating
sphere. The effects are expressed in percentage of contribution to the sum of squares of the data.
Models calculated on each sample. Factors that shown a p-value < 0.05 after 2000 permutations are
reported in bold. None is used to identify the default preprocessing. SNV = Standard Normal Variate.
First derivative = Savitzky–Golay first derivative filter with 7 width and second polynomial order.
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Sample 1 16.15 2.70 4.97 25.10 15.09 2.15 33.84

Sample 2 13.02 15.61 4.61 30.30 9.00 7.72 19.74

Sample 3 6.20 42.58 14.08 15.00 5.48 5.81 10.85

Sample 4 11.61 8.17 8.33 17.24 7.18 34.5176 12.95

SN
V

Sample 1 6.74 10.30 8.83 22.07 19.81 6.32 25.92

Sample 2 6.12 27.68 28.29 12.16 3.23 15.84 6.69

Sample 3 2.35 35.71 6.96 5.89 2.21 41.54 5.33

Sample 4 4.46 16.27 16.13 9.17 4.01 41.71 8.25
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Sample 1 11.34 10.87 15.10 20.25 11.55 8.25 22.63

Sample 2 8.81 16.59 18.60 18.87 5.19 21.83 10.11

Sample 3 4.75 27.55 4.63 10.66 4.21 40.39 7.81

Sample 4 5.06 14.48 19.77 11.58 5.04 33.94 10.13

Table 2. Summary of results for ASCA models of AvaSpec-Mini-NIR data obtained with optical fiber.
The effects are expressed in percentage of contribution to the sum of squares of the data. Models
calculated on each sample. Factors that shown a p-value < 0.05 after 2000 permutations are reported
in bold. None is used to identify the default preprocessing. SNV = Standard Normal Variate. First
derivative = Savitzky–Golay first derivative filter with 7 width and second polynomial order.
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Sample 1 10.07 2.94 0.56 30.43 17.44 8.28 30.28

Sample 2 25.73 3.41 1.65 39.52 12.83 0.78 16.08

Sample 3 12.50 13.45 21.98 19.16 10.41 3.25 19.26

Sample 4 16.37 4.36 1.76 35.83 13.46 3.77 24.45
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Table 2. Cont.
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Sample 1 8.52 13.03 8.52 17.48 10.06 23.53 18.87

Sample 2 25.73 3.41 1.65 39.52 12.83 0.78 16.08

Sample 3 7.71 3.40 17.58 20.98 10.66 15.25 24.42

Sample 4 15.76 6.64 8.44 19.68 17.02 4.05 28.41
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Sample 1 6.61 27.31 19.27 11.45 5.13 20.02 10.21

Sample 2 25.73 3.41 1.65 39.52 12.83 0.78 16.08

Sample 3 6.66 5.13 20.35 22.60 7.99 13.01 24.26

Sample 4 16.59 7.47 3.45 19.56 18.65 2.34 31.93

Table 3. Summary of results for ASCA models of Neospectra Scanner data. The effects are expressed
as percentage of contribution to the sum of squares of the data. Models calculated on each sample.
Factors that shown a p-value < 0.05 after 2000 permutations are reported in bold. None is used to
identify the default preprocessing. SNV = Standard Normal Variate. First derivative = Savitzky–Golay
first derivative filter with 7 width and second polynomial order.
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Sample 4 1.07 2.31 15.76 6.60 0.85 0.76 1.25 16.56 22.75 3.12 28.98
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At this point, model results provide available information to identify influencing
factors and interactions and describe and understand the experimental conditions. Using
these models, it is possible to optimize the data acquisition method and incorporate sources
of variability as needed to develop the analytical method. In other words, this information
provides insights that one must consider while assessing associated errors. Awareness
about the factors affecting the analyses, contingent upon the sample type and that emerge
through preprocessing methods, is valuable information for measurement error definition.
Indeed, this understanding is crucial for familiarizing with the data, determining the type
of error study required, and selecting the appropriate usage conditions. For example, con-
structing a model in a single session is not feasible or realistic, even if this factor significantly
impacts the analyses. Hence, there will be a need to acquire data across multiple sessions,
considering the distinct magnitude of errors in each. As for the background condition,
knowing its influence allows to consider performing a background analysis before each
sample consistently to minimize repeatability issues.

The ASCA model results were assessed by visualizing and interpreting scores and
loadings as in typical PCA analysis. From the investigation of the ASCA sub-models, some
considerations arose about the importance of visually interpreting the outcomes to gain a
comprehensive understanding of the results.

Figure 2 shows examples to discuss the results obtained and the perspectives achieved.
The scores obtained from the sub-models are displayed based on factor levels, and spider
graphs are employed to emphasize the scores’ centroids. The loadings for the respective
models are shown in Supplementary Figure S2.
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Figure 2. ASCA sub-models examples. Scores of the ASCA sub−model for the factor (a) session
(b) replicates (c,d) timing of background. Instruments: (a) AvaSpec-Mini-NIR equipped with inte-
grating sphere (b) NeoSpectra Scanner (c,d) AvaSpec-Mini-NIR equipped with optical fiber. Samples:
(a) Sample 3 (b) Sample 2 (c,d) Sample 4.
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The examples represent the following situations: (a) show a sub-model for a significant
factor (session) with 42.68% effect; (b) display a sub-model for a non-significant factor (order
of replicates) with 4.96% effect; (c) present a non-significant factor (timing of background)
with 1.76% effects; and (d) show the exact same sub-model of (c) performed on data
preprocessed with standard normal variate (SNV) and resulted in significant factor with
8.44% effect.

By visual inspection, generally, trends and groupings observed in the graphs indicated
the significance of the factors: (a) is an example where the grouping is evident and the
results of ASCA could be considered reliable. In the case of non-significant factors what
could be expected is that the distribution of the spider graphs is random within a distribu-
tion around 0. In other words, the scores obtained belong to the same normal population
as in the case (b).

A noteworthy feature of ASCA emerges by comparing (c) and (d). A statistically non-
significant factor (p-value > 0.05 estimated through permutation test) could carry interesting
information. The visual inspection of the sub-models resulted in similar loadings and scores
for the two case scenarios: raw data and preprocessed. Such factors could be essential to
evaluate for future works or studies, and the need for considering several aspects to carry
out a conclusion emerged.

In general, how the quality of spectra influences ASCA results is particularly evident
when comparing the outcome for fiber optic and integrating sphere measurements. It is
observed that the main significant factors are the same, but their magnitudes differ. The
factors have a lower influence on the measurements with less accuracy (fiber optic) and
higher influences on the more accurate configuration (integrating sphere). This is not
ascribable to the fact that the studied factors do not influence optical fiber measurements
but rather because the variability associated with spectra is so substantial that the score
distributions in ASCA are very wide and, therefore, not significantly distinct. The same
phenomenon occurs in the example in Figure 3 for the background timing, when SNV
preprocessing is applied. Spectra exhibit a sharper distribution after scattering removal,
allowing for a more evident differentiation between populations with different background
time intervals. As a result, it is not advisable to consider only p-values: pairing the valida-
tion through permutation [17] with visual inspection appears of fundamental importance.
To put it differently, verifying the absence of interesting tendencies through groups could be
fundamental, especially when the data are poor in quality due to instrumental limitations.

2.3. Uncertainty Characteristics: Multivariate Error

At this stage, the factors have been identified and characterized, so strategies to
calculate the multivariate error in a realistic situation thoughtfully could be introduced.

Multivariate errors were calculated as explained in the Materials and Methods section.
Variance-covariance and correlation matrices were obtained and interpreted for raw and
preprocessed data of each sample.

2.3.1. AvaSpec-Mini-NIR

AvaSpec-Mini-NIR could work only when connected to a computer and power supply.
From ASCA results emerged the importance of session and timing of background. In
real experiments, it is assumable that just one background procedure would be used: for
example, a background would be acquired before each sample. To include the information
related to the differences between sessions and in order to obtain a reliable estimation with
sufficient replicates, the multivariate error for each sample was calculated by pooling errors
calculated on each session according to [18]. An example of the results is shown in Figure 3
for the integrating sphere accessory.
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Figure 3. Multivariate error covariance matrix, error covariance matrix diagonal, correlation matrix
and image histogram of the correlation matrix for Sample 1 acquired with AvaSpec-Mini NIR with
integrating sphere: (a) raw data, (b) SNV, (c) first derivative.

The shape of error covariance matrices obtained on raw data is in accordance with
those for NIR spectrometers reported in previous works [1,2,6,13]. The noise contributions
identifiable are consistent and differ in magnitude and specific shapes depending on the
sample investigated. The image histogram shows that most of the pixels have rather high
intensity values, indicating high correlation between channels (wavelengths). It should be
considered rather far from the ideal situation, in which the overall shape expected should
be a normal distribution with the mean value around value 0.5 of the gray scale.

The application of SNV, that is typically used on spectra to remove scattering con-
tributions, systematically reduce the error variance structure, and change the correlation
between channels. It is interesting to note how the changes induced in the error structure
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by preprocessing reflect in its distribution. In the image histogram a sort of bi-modal
distribution is obtained.

Preprocessing data with Savitzky–Golay derivative allows to obtain the best situa-
tion for the data within these examples. Indeed, derivative filtering aims to remove the
correlations in the noise and make it closer to independent. In Figure 3c, a substantially
planar Σcov is shown. Observing the diagonal profile, it is clear the need for removal of the
spectra edges and when focusing on the inner part of the diagonal, some peaks are iden-
tifiable in the variance, but the magnitude is appreciably lower than with other methods.
Observing Σcor seems that correlations are present even if with more complex structure.
The preprocessing did not provide the ideal and perfect situation, heteroscedasticity is
an issue, although the errors are not independent, their correlation pattern appears to be
more random compared with the correlation pattern observed in the raw data. The image
histogram shows an almost symmetrical light tailed distributions shape centered on 0.5.

In Table 4, the results of the K index calculated for each sample and accessory configu-
ration are reported. The imbedded correlation for each sample is 0.826. The interpretation of
correlation coefficient, as well as that of image histogram and visual inspection of the error
allow to identify the first derivative as the best options for the data under investigation. The
proximity of K index to the imbedded value could be used as hint to evaluate the goodness
of the preprocessing. Indeed, K indices comparable to those of the imbedded value for an
established number of replicates and variable channels mean that the preprocessing allows
to correct almost all the correlations dependent on the experiment.

Table 4. K index obtained for AvaSpec-Mini-NIR data acquired with background before each sample.
SNV = Standard Normal Variate. First derivative = Savitzky–Golay first derivative filter with 7 width
and second polynomial order.

Integrating Sphere Optical Fiber

Preprocessing None SNV First Derivative None SNV First Derivative

Sample 1 0.972 0.864 0.837 0.995 0.854 0.840

Sample 2 0.985 0.873 0.848 0.999 0.917 0.891

Sample 3 0.982 0.916 0.863 0.986 0.968 0.950

Sample 4 0.979 0.942 0.896 0.984 0.971 0.957

As expected, the value selected for the window width, polynomial and derivative
order could affect the shapes of multivariate error and eventually, the results of prediction
and classification models [19,20] as well as the interpretability of exploratory results [21].
The K indices and visual methods presented also proved to be sensitive to the influence of
derivative parameters. An example is reported in Supplementary Materials Figure S3.

Figure 4 shows a case in which a structured error is visible, even after the preprocessing
through derivative. Similar results were obtained with both accessories for Sample 3 and
Sample 4.

Looking at the covariance matrix it could be expected that after applying the first
derivative the error distribution could significantly improve in respect to raw data and
SNV preprocess: an almost flat surface is obtained. The correlation matrix appeared
more complex and random. However, the K index and the image histogram show a
different perspective. The K index value is sufficiently far from the imbedded value for
the matrix, suggesting that structured error is present. The image histogram illustrates
an asymmetric shape with heavy tail distribution. When investigating the diagonal of
Σcov, the interpretation is used to identify the structured error that could be attributed to a
different content of moisture in the tablets along the subsequent replicate acquisition.
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Figure 4. Multivariate error covariance matrix, error covariance matrix diagonal, correlation matrix
and image histogram of the correlation matrix for Sample 4 acquired with AvaSpec-Mini NIR with
optical fiber: (a) raw data, (b) SNV, (c) first derivative.

In general, the results after preprocessing showed that different correction are obtain-
able for different accessory and results more closely to the ideality are achievable when
the common preprocessing here considered are applied on spectra acquired with the in-
tegrating sphere. The comparison of the results obtained for different samples could be
interesting as well. Spectra of Sample 1 and Sample 2 seem to have similar error behaviors
when looking at the integrating sphere results for error matrices, correlation index and
histogram plots. The slight differences can be mainly related to the scattering influence
exercise by the blister. For the same samples, more variance was obtained for the results
with the optical fiber.
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2.3.2. NeoSpectra Scanner

Concerning the charge condition, NeoSpectra Scanner sensors allow the recording
of spectra with the instruments under charge or operating on their own battery. The
example reported are those obtained from the use of the spectrometer on its own battery
and performing a background before each sample acquisition.

In Table 5 the K index values calculated are shown and in Figure 5 an example of
the results obtained is displayed. The imbedded correlation of 0.397 was calculated for
45 replicates and 74 variables.

Table 5. K index obtained for NeoSpectra Scanner data acquired with background before each
sample and using the instrument on its own battery. SNV = Standard Normal Variate. First
derivative = Savitzky–Golay first derivative filter with 7 width and second polynomial order.

NeoSpectra Scanner

Preprocessing None SNV First Derivative

Sample 1 0.94 0.94 0.82

Sample 2 0.97 0.94 0.88

Sample 3 0.90 0.86 0.88

Sample 4 0.89 0.83 0.80

From the results, it is evident that the error shape, although typical contributions for
near-infrared spectra can be identified, significantly differs among spectrophotometers
accordingly to the spectral ranges and technologies. Consequently, employing the same
preprocessing methods does not yield consistent error modification performance for differ-
ent instruments. SNV continues to be a method for scattering removal, but in this case, the
error contribution for the samples is more complex. The result is characterized by error
covariance and correlation surfaces that remain substantially distant from the ideal. This
observation is further substantiated by the markedly elevated K index values, exceeding
the embedded value. While the error shape and channel correlation certainly improve, they
do not approach the ideal, as observed in the case of AvaSpec-Mini-NIR sensor.

Figure 5 shows the case of Sample 1 for NeoSpectra Scanner data.
Different instruments may exhibit distinct errors associated with factors such as

detector performance, interferometers design, light path, and light interaction with the
samples. Spectra obtained from different sensors might require varied preprocessing
methods even when analyzing the same sample. The application of identical preprocessing
techniques may not necessarily lead to a substantial improvement in error correction
for various instruments. Comparing the results obtained for K indices with different
preprocessing techniques, the first derivative outperforms SNV but remains substantially
distant from the ideal. Additionally, analysis of the image histograms reveals that the
distribution on the correlation surface deviates significantly from the ideal. Moreover, upon
examining the various diagonals of the covariance matrices, the substantial error associated
with wavelengths around 1400 nm becomes quite apparent.

Furthermore, interesting results were obtained by comparing errors across different
samples. In Figure 6, the errors obtained for Sample 2 are presented. It is noteworthy
how the presence of the blister significantly influences the absolute error magnitude more
than the shape, as also the spectral reflection (Figure 1). The applied pretreatments enable
the removal of some scattering contributions but also accentuate errors in specific areas,
possibly attributable to the blister plastic. In the Supplementary Materials, Figures S4 and
S5 display those for Samples 3 and 4.
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Figure 5. Multivariate error covariance matrix, error covariance matrix diagonal, correlation matrix
and image histogram of the correlation matrix for Sample 1 acquired with NeoSpectra Scanner:
(a) raw data, (b) SNV, (c) first derivative.
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Figure 6. Multivariate error covariance matrix, error covariance matrix diagonal, correlation matrix
and image histogram of the correlation matrix for Sample 2 acquired with NeoSpectra Scanner:
(a) raw data (b) SNV (c) first derivative.

3. Materials and Methods
3.1. Samples

Four different samples were purchased from a local pharmacy in Como (Italy): a blue pill
used as antiseptic drug, the same lot pill covered by the blister and two dietary supplements.

For clarity, through the article they are referred as Sample 1 (compact blue pill), Sample
2 (compact blue pill in the blister), Sample 3 (white compact opaque tablet), and 4 (whitish
compact opaque tablet with homogenously dispersed colored particles). Samples were
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stored and maintained at room temperature in a protected environment (sealed containers)
for the duration of the experiments. No pretreatments were conducted on the samples.

3.2. Spectrometers and Experiments

Two miniaturized NIR spectrometers with different technologies were used to acquire
spectra considering different influencing factors of analysis. AvaSpec-Mini-NIR (Avantes,
Apeldoorn, The Netherlands) was used in two different configurations: coupled with both
AvaLight-HAL-S-Mini2 source and a reflection fiber probe (7 × 400 µm fibers, 2 m length,
SMA term) and with AvaSphere-50-LS-HAL. NeoSpectra Scanner (Si-Ware Systems, Menlo
Park, CA, USA) was used as it is, without accessories.

The different samples were acquired during the same analytical session and through
repeated sessions. In particular, the factors considered were (1) the order of replicate (1 to
15), (2) the session of analysis (three independent analytical sessions), (3) the power supply
during spectra acquisition (mains-connected or not, according to sensors characteristics)
and (4) the timing of background. Two background timings were considered. In one case,
the background was acquired before each sample along a singular independent session. In
the other the background was taken only at the beginning of each analytical session.

3.2.1. AvaSpec-Mini-NIR

Acquisition parameters were configured with an integration time of 15 ms and
10 averaged scans. The spectroscopic range covered was 972–1701 nm. Each spectrum
resulted in 236 variables. The spectrometer was calibrated in two steps: with a black
reference with the source turned off, and with a total reflectance reference using a white
standard (WS-2).

For each accessory fifteen experimental replicates × 4 different samples × 3 indepen-
dent analytical sessions × 2 timing of background were acquired. A total of 360 spectra was
obtained for each instrumental configuration. The analysis using the optical fiber involved
positioning the reflectance probe in a holder (RPH-1) and placing samples beneath it. Data
were saved in .CSV format and directly imported into MATLAB for elaboration.

3.2.2. NeoSpectra Scanner

A total of 720 spectra were acquired by the handheld NIR spectrometer (18.5 × 4.5
× 8 mm). Time scans of 5 s of without data interpolation were used. The spectroscopic
range covered was 1351–2559 nm. The resulting spectra were composed by 74 individual
variables, each. Spectra were collected after calibration using a 100% reflectance reference
with a Spectralon® standard, approximately 15 min after the spectrometer was powered on.
Samples were directly placed over the spectrophotometer window, while the sensor was
positioned with the window facing upward. The data were saved in the default “.Spectrum”
format, later converted to .txt files, and processed using MATLAB R2021a.

3.3. Chemometrics Analysis

Spectra collected were considered as independent dataset according to instruments
and samples: twelve datasets were obtained (4 for each instrumental configuration). Data
mean-centering was set as default preprocessing in data analysis. Spectra visualization and
Principal Component Analysis (PCA) [22] were used to identify gross errors. The spectra
identified as outliers were removed from further analyses.

ANOVA–Simultaneous Component Analysis (ASCA) [23–26] was computed on the
data to obtain hints on how to pursuit the following calculations on the uncertainty of
data. Interpreted conceptually, this method combines analysis of variance (ANOVA) and
principal component analysis (PCA) with specific constraints. ASCA approach involves
decomposing the original data matrix into matrices corresponding to design factors and
their interactions, which are then analyzed using simultaneous component analysis (SCA).
The importance of factors and interactions is evaluated using the sum-of-squares of the
corresponding submatrices. The magnitude of the calculated effect indicates the influence



Molecules 2023, 28, 7999 16 of 19

of the specific factor or interaction on the data. The residuals represent the unexplained
variance. General information about the basics concepts of the calculation performed could
be find at [27,28].

Models for each instrument and sample were calculated by evaluating different pre-
processing. Two-way interactions were also calculated. A total of 2000 permutations were
used to evaluate the significance of the factors: if the p-value was obtained < 0.05 then, the
tested effect was assumed to be significant. The preprocessing methods evaluated were
standard normal variate (SNV) and first order Savitzky–Golay derivative with a window
width of 7 and a polynomial order of 2 [29]. Multiplicative scatter correction was evaluated
in a preliminary study, but the results did not really differ from those obtained with SNV
and so, they are not here reported.

Multivariate measurement error was estimated from the experimental replicates as
proposed by Leger et al. [1,7]. The difference between each spectrum and the mean of the
replicates was performed to obtain the error matrix. The variance-covariance (Σcov–also
called covariance matrix) and correlation (Σcor) matrices were calculated for all the samples
and for the different instruments. Within each instrument the errors were pooled according
to the factors emerging as significant during the ASCA analysis. Σcov and Σcor result in
matrices that could be visualized as images. Σcov provides information about the type
of errors in the dataset and their reciprocal magnitude. It is dependent on the reflectance
values of the spectra. The diagonal of the variance-covariance matrix provides insights
into the uniformity of errors in the spectra, with uniform values indicating homoscedastic
errors along the spectra. Non-uniform values, on the other hand, suggest varying errors
and so, heteroscedasticity. Off-diagonal elements offer details about the covariance of
measurement errors.

Σcor indicates the structure of the relationship among errors independently from the
scale and is a matrix containing numbers ranging between −1 and 1. While the covariance
matrix reveals the strength of relationships among errors, the correlation matrix, derived
from it, illustrates the underlying structure of these relationships, offering complementary
insights. A K index [30] is a redundancy index that could be used to resume the correlation
of a set of multivariate data was calculated from the correlation matrix. Theoretically, the K
index ranges from 0 to 1 and it takes its lowest value when all the variables are uncorrelated
and the highest when they are correlated. For a given matrix with the number of columns
greater than the number of rows, the K index can take on a minimum value equal to the
imbedded correlation which depends on the dimension of the matrix. Being λ1, λ2, . . .,
λp the set of the p eigenvalues obtained from PCA applied to the correlation matrix of a
dataset. The general formula for K index is:

K =
∑

p
m=1

∣∣∣EVm − 1
p

∣∣∣
2(p−1)

p

(1)

where EV is the explained variance from the m-th principal component and could be
obtained from:

EVm =
λm

∑
p
m=1 λm

(2)

If considering correlation error matrices plot as digital image the number of pixel for
the same instrument is always the same. According to this, comparison of the influence
of preprocessing were evaluated through image histograms. An image histogram is a
gray-scale chart that easily and visually shows the distribution of intensity and so the
frequency of occurrence of each gray-level value. [31]. It has two axes: the x-axis represents
the total number of gray levels ranging from 0 to 1 in which an image could be converted,
while the y-axis represents the total number of pixels. Respectively, in this study, values
around 0 correspond to values around −1 in the error correlation matrices, the 0.5 in the x
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of the image histogram correspond to values around 0 in Σcor, and value around 1 in the
image histogram correspond to the ones in Σcor.

Data analysis was performed using routines and toolboxes developed in the MATLAB
R2021a environment (the Mathworks Inc., Natick, MA, USA). Principal component analysis
and ASCA were carried out by PLS-Toolbox v. 9.0 (Eigenvector Inc., Manson, WA, USA).

4. Conclusions

This study fills a critical gap in the current understanding of measurement errors
associated with miniaturized near-infrared instruments and highlights the importance of
accurate data analysis to obtain reliable scientific results. The proposed statistical method-
ology enables the study of data and experiments conducted with portable instrumentation.
The optimal conditions for each application will depend on the researcher’s specific goals.
This study facilitates an understanding of how to analyze measurement errors based on
the available tools and the samples to be examined, aiming for optimization. The pre-
sented results are grounded in the concept that it is not only crucial to select the right
instrument but, more importantly, to identify the best way to utilize the available tools
while acknowledging their associated uncertainties. The research delves into the evaluation
of multivariate measurement errors and investigates their complexities in the context of
diverse samples, miniaturized NIR instruments and data preprocessing. The use of ASCA
has proven to be a powerful tool for understanding how to account for experimental factors
in representing multivariate measurement errors. The results highlight the possibilities
and limitations of ASCA, paving the way for its effective application in similar studies.
The introduction of the K index in combination with visual representations such as image
histograms provides a new approach to evaluate the impact of preprocessing methods on
multivariate errors. This combined approach not only provides a quantitative measure of
error, but also provides an immediate visual understanding of how different preprocessing
techniques affect data accuracy. By discerning which preprocessing methods bring the
data closest to theoretical ideality, researchers can optimize their analytical procedures for
enhanced precision and reliability. Furthermore, the samples examined in this study are
sufficiently representative of possible scenarios in the pharmaceutical field, thus the results
can provide interesting insights for specific studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28247999/s1.
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