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Abstract: Currently, chemotherapy is the main treatment for tumors, but there are still problems such
as unsatisfactory chemotherapy results, susceptibility to drug resistance, and serious adverse effects.
Natural compounds have numerous pharmacological activities which are important sources of drug
discovery for tumor treatment. The combination of chemotherapeutic drugs and natural compounds
is gradually becoming an important strategy and development direction for tumor treatment. In this
paper, we described the role of natural compounds in combination with chemotherapeutic drugs
in synergizing, reducing drug resistance, mitigating adverse effects and related mechanisms, and
providing new insights for future oncology research.
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1. Introduction

Tumors are currently one of the leading causes of human death worldwide, and
the incidence and mortality rate of tumors is increasing worldwide, making tumors a
huge risk factor for human health [1]. Treatment options for tumors include surgery,
chemotherapy, radiation therapy, and immunotherapy. The use of chemical drugs to inhibit
tumor progression remains the mainstay of treatment. However, as chemotherapy drugs
continue to be used, tumors seem to become more and more resistant causing the killing
effect of chemotherapy drugs to gradually lose efficacy [2]. In addition to this difficulty, the
serious adverse effects of chemotherapy on patients are also a problem that chemotherapy
drugs need to address urgently [3–5].

Natural compounds are an important source of drug discovery and a rich treasure
trove of resources for human response to disease. Natural compounds such as paclitaxel,
derivatives of camptothecin (docetaxel, irinotecan), and other antitumor drugs still play a
pivotal role in the field of tumor treatment [6,7]. In addition, a variety of pharmacologically
active natural compounds such as quercetin and curcumin also play a significant role in
antitumor or combined therapeutic chemotherapy drugs against tumors, and in improving
the quality of survival of patients. Therefore, natural compounds are an essential part of
oncology drug research.

Here, we have compiled and summarized the literature on the beneficial effects of
natural compounds in combination with chemotherapeutic drugs in cancer treatment in
recent years to analyze the adjuvant role and feasibility of natural compounds as a future
treatment for tumors, and to provide some research basis for selecting reasonable treatment
strategies in oncology clinical trials to improve the overall survival rate and quality of life
of patients.
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2. Natural Compounds That Synergistically Enhance the Effects of Cancer
Chemotherapy and Their Mechanisms

With the in-depth research on tumor therapeutic targets, chemotherapeutic drugs
with different targets and pathways of action have started to adopt a combination therapy
strategy to deal with the malignant development of tumors [8,9]. However, considering the
more serious adverse effects of chemotherapeutic drugs, the combination of chemothera-
peutic drugs with less toxic natural compounds that contribute to tumor management is
gradually becoming one of the new strategies for tumor treatment. The specific synergistic
mechanisms will be described from NF-κB, Hedgehog, LC3-I, LC3-II, Nrf2/HO-1, and
other pathways (Table 1).

Table 1. Natural compounds that synergistically enhance the effects of cancer chemotherapy and
their mechanisms.

Natural Products Molecular Structure Cancer Combined
Chemotherapy Drugs Mechanism

Curcumin
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2.1. NF-κB

NF-κB, a specific transcription factor produced by B cells, binds to the enhancer
sequence of the kappa light chain of activated B cells and plays an important role in
promoting cell proliferation, inhibiting apoptosis, and cell migration [10]. Combined
with previous studies related to NF-κB and cancer, NF-κB activation is one of the known
important markers of cancer and is involved in the development and progression of many
cancers, such as prostate cancer and bladder cancer [11,12]. Chronic inflammation and NF-
κB can promote tumor growth and accelerate tumor malignant progression by activating
reactive oxygen species that cause DNA damage and oncogenic mutations and promote
inflammatory factors. Therefore, NF-κB may serve as a new avenue for natural compounds
to synergize chemotherapeutic agents in the treatment of tumors [13].

Curcumin is a diketone natural compound extracted from the rhizome of turmeric
and is widely used in the food industry as a natural pigment. Numerous studies have
shown that curcumin has various physiological activities such as inhibiting tumor cell
proliferation and promoting apoptosis [14]. Curcumin promotes tumor cell apoptosis by
inhibiting NF-κB in breast cancer cell line MCF-7, pancreatic stellate cells, and liver cancer
stem cells [15–17]. Curcumin may increase the activity of other chemotherapeutic agents
such as paclitaxel. Paclitaxel is a classical chemotherapeutic drug that inhibits the G2/M
phase of the cell cycle by stabilizing the homeostasis of intracellular microtubulin and
reducing the depolymerization of dimeric microtubulin, thereby inhibiting the prolifer-
ation of cancer cells and promoting their apoptosis [18]. Curcumin increases paclitaxel
activity by inhibiting NF-κB expression [19]. In addition, the combination of curcumin
and doxorubicin significantly inhibits the proliferation and migration ability of AGS cells
and promotes apoptosis in gastric cancer cells only at a concentration of 5 µg/mL [20]. A
randomized clinical trial study showed that the combination of curcumin with melphalan
and prednisone, therapeutic agents for multiple myeloma not suitable for transplantation,
was effective in reducing the levels of NF-κB, VEGF, TNF-α, and IL-6 in patients, and the
overall remission rate of patients was significantly increased [21]. Gambogic acid (GA)
is a natural product extracted from the garcinia resin of the Garcinia hanburyi tree [22].
GA co-operates with cisplatin to increase the sensitivity of NSCLC cells to cisplatin by
inhibiting NF-κB (p65 and p50), MAPK/ERK, MAPK/JNK, and promotes apoptosis in
A549 and NCI-H460 cells [23].

2.2. Hedgehog

Hedgehog (HH) is a protein discovered in Drosophila with a key role in cell prolif-
eration, differentiation, and survival [24]. However, aberrant activation of this pathway
is associated with a variety of cancers, and two main hypotheses exist. One hypothesis
suggests that the HH signaling pathway has an important role in the survival and prolif-
eration of tumor cells themselves, and that evidence demonstrates that the HH signaling
pathway is involved in Warburg-like glycolytic metabolism [25]. The other hypothesis
speculates that the HH signaling pathway promotes the stromal cells surrounding the
tumor through a paracrine form, which in turn affects the tumor cells [26]. Solamargine
is a steroidal alkaloid from the traditional Chinese herb Solanum nigrum L., with anti-
inflammatory and antitumor biological activities [27]. In the cisplatin-resistant lung cancer
cell lines NCI-H1299 and NCI-H460, solamargine inhibited cell proliferation and promoted
apoptosis by targeting SMO and thereby inhibiting the HH pathway. More importantly, the
combination of solamargine and cisplatin showed a synergistic effect with each enhancing
the other’s efficacy [28]. Sulforaphane, an isothiocyanate found in cruciferous vegetables,
has been used in a variety of cancers for blocking the cellular G2/M phase transition
leading to cell cycle arrest and apoptosis [29]. Combination treatment with sulforaphane
and gefitinib dose-dependently inhibits the expression of SHH, SMO, and GLI1 and sup-
presses the proliferation of gefitinib-resistant lung cancer cells through the SHH signaling
pathway [30].
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2.3. LC3-I, LC3-II

Induction of ROS production by mitochondria of tumor cells leading to cell damage
has been an important mechanism of chemotherapeutic drugs. However, autophagy of
tumor cells can inhibit ROS production and weaken the killing effect of chemotherapeu-
tic drugs, which is one of the reasons for the unsatisfactory effect of chemotherapeutic
drugs [31,32]. Therefore, inhibition of autophagic flux in tumor cells leading to the accu-
mulation of damaged mitochondria and ROS is one of the research directions to promote
apoptosis in tumor cells [33]. Hederagenin is a pentacyclic triterpenoid found in a variety
of medicinal plants and has a wide range of pharmacological effects including antitumor,
anti-inflammatory, and antidepressant [34]. Wang Kun et al., found that hederagenin
inhibited autophagy by increasing the conversion of LC3-I to LC3-II in lung cancer cells
and that the combination of hederagenin with paclitaxel and cisplatin, respectively, could
enhance their anticancer effects and play a synergistic role [35].

2.4. Nrf2/HO-1

Nrf2/HO-1 is an important signaling pathway that regulates redox and maintains
intracellular homeostasis in mammalian cells. Nrf2-related pathway, closely related to iron
death, has been shown to be important in promoting apoptosis in tumor cells. Tagitinin C
is one of the active substances isolated from Tithonia diversifolia and has a wide range of
anti-inflammatory, antitumor, and other pharmacological activities [36,37]. The combination of
tagitinin C and erastin promotes apoptosis in HCT116 cells by further activating endoplasmic
reticulum stress and enhancing iron death. Erastin works by inhibiting cystine-glutamate
reversal causing iron death, while tagitinin C promotes cell death by upregulating HO-1
and promotes iron accumulation and ROS production mechanisms of action. However, the
feasibility of this pathway is controversial, and some studies have shown that the addition
of inhibitors of Nrf2-associated pathway proteins during chemotherapeutic drug treatment
can instead effectively promote the therapeutic effects of chemotherapeutic drugs [38,39],
with results inconsistent with the effects of tagitinin C. Ginkgetin is a flavonoid derived from
Ginkgo biloba, and its incorporation with cisplatin can exert enhanced antitumor effects of
cisplatin by promoting iron death, increasing ROS production, and inhibiting Nrf2/HO-1 [40].
Since the Nrf2/HO-1 pathway is involved in several processes such as oxidative stress and
cellular detoxification, the mechanisms of which have not been clearly studied, and the
mechanism of action of HO-1 protein has been controversial, Nrf2/HO-1 as the target of
antitumor drugs needs to be studied more thoroughly, and related compounds need more
specific and accurate mechanisms of action studies.

2.5. TMEM16A

TMEM16A is a calcium-activated chloride channel that is essential for maintaining
cellular ion homeostasis and is highly expressed in various cancers such as prostate, lung,
and colorectal cancers. It has been shown that TMEM16A inhibition can effectively reduce
tumor growth, promote the sensitivity of tumor cells to chemotherapeutic agents, and
improve overall patient survival [41]. Narirutin, a flavonoid isolated from Citrus unshiu,
increased the antitumor effect of cisplatin in combination with cisplatin for lung cancer by
dose-dependent inhibition of TMEM16A [42]. Homoharringtonine, an alkaloid isolated
from the Cephalotaxaceae family, has been clinically shown to have antitumor effects [43].
Homoharringtonine inhibited TMEM16A in a dose-dependent manner and significantly
inhibited the development of lung cancer at ex vivo levels [44]. In addition, theaflavin (tea
polyphenol in black tea) and matrine (alkaloid in matrine) have also been shown to exert
antitumor effects through TMEM16A [45,46]. TMEM16A is another potential antitumor
target discovered in recent years, with the advantages of high safety and low toxicity, and
its inhibitor combined with chemotherapy drugs may become a new therapeutic strategy
for the treatment of TMEM16A high expression tumors in the future.
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3. Natural Compounds That Reduce Tumor Drug Resistance and their Mechanisms

The development of resistance to chemotherapy in tumors is an inevitable and im-
portant issue, and statistics show that more than 90% of mortality in cancer patients is
attributed to drug resistance, and the mechanisms by which it occurs are complex [47].
The mechanism of multi-drug resistance during chemotherapy can be attributed to the
following reasons: (1) P-glycoprotein in cancer cells can excrete chemotherapeutic drugs
from the cell, resulting in lower intracellular chemotherapeutic drug concentrations and
reduced accumulation of chemotherapeutic drugs [48]. (2) Cancer cells enhance their
DNA repair function mainly through nucleotide excision repair and the mismatch repair
pathway to reduce apoptosis caused by DNA damage, thus increasing their resistance to
platinum-based chemotherapy drugs [49,50]. (3) Mutation generation of key genes such
as TP53 and drug target genes in cancer cells is also one of the important reasons why
chemotherapeutic drugs lose their ability to kill [51,52]. We shed light on the mechanism of
action of natural compounds in reducing tumor drug resistance (Table 2).

Table 2. Natural compounds that reduce tumor drug resistance and their mechanisms.

Natural Products Molecular Structure Cancer Combined
Chemotherapy Drugs Mechanism
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Non-small cell lung cancer Osimertinib EGFR

3.1. PAFR

PAFR, the acting receptor for PAF is a G protein-coupled receptor that is closely
associated with platelet aggregation, inflammation, and nerve damage [53]. In recent
years, PAFR has been found to be equally associated with the progression of a variety of
tumors, and some studies have shown that PAFR is upregulated and promotes malignant
progression in non-small cell lung cancer, esophageal squamous carcinoma, ovarian cancer,
and other tumors [54,55]. In non-small cell lung cancer, PAFR initiates a positive feedback
loop between PAFR and STAT3 to promote tumor growth and metastasis [56]. PAFR-
regulated PI3K/AKT pathway activation stimulates tumor progression in esophageal
squamous carcinoma [57]. In this regard, Aponte et al., found that the PAF/PAFR pathway
promotes the proliferation and invasion of ovarian cancer through tyrosine phospho-
EGFR/Src/FAK/paxillin [55].

Ginkgolide B is a natural compound derived from the traditional Chinese medicine
Ginkgo, which has a strong antagonistic ability against platelet-activating factor and is
the strongest compound in nature that specifically antagonizes PAFR [58]. It has been
shown that in the concentration range where ginkgolide B does not produce cytotoxicity,
gemcitabine in combination with ginkgolide B can enhance the effect of gemcitabine
in killing resistant pancreatic cancer cells by inhibiting the PAFR/NF-κB pathway and
reduce the resistance of pancreatic cancer to gemcitabine [59]. The important role of
PAFR in oral cancer was also confirmed by the study of Kohei Kawasaki et al. Cisplatin
in combination with ginkgolide B inhibited PAFR and the phosphorylation levels of its
downstream signaling pathways ERK and Akt, and promoted the expression of cleaved
caspase-3, leading to apoptosis and increasing the sensitivity of oral cancer cells to cisplatin
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treatment [60]. The treatment strategy of cisplatin in combination with ginkgolide B has the
same effect of reducing tumor growth and increasing drug sensitivity in ovarian cancer [61].
Ichim, G et al. suggested that apoptosis induced after chemotherapy or radiotherapy
is twofold, promoting apoptosis to induce tumor cell death while also inducing further
tumorigenesis [62]. Furthermore, the latest research results found that PAF is produced
during chemotherapy and radiotherapy for cancer treatment, and PAF has an oncogenic
function when combined with PAFR. Therefore, natural inhibitors of PAFR may become
one of the new directions of tumor treatment in the future [63,64].

3.2. Pin1

Prolyl isomerase 1 (Pin1) is a peptidyl-prolyl cis/trans isomerase that regulates the
biological functions of a variety of proteins through conformational changes and has a
key role in Alzheimer’s disease and several cancers [65]. Functionally, in addition to Pin1
activating various cancer pathways such as Raf/MEK/ERK, PI3K/Akt, Wnt/β-catenin,
NF-κB. Pin1 drives pro-connective tissue proliferation and immunosuppressive TME and
promotes tumor malignancy and drug resistance by acting on stromal cells such as CAF
and by acting on pS929-HIP1R to induce endocytosis and degradation of PD-L1 and
ENT1 in cancer cells. [66]. Kazuhiro Koikawa et al. found that Pin1 was highly expressed
in pancreatic ductal adenocarcinoma and cancer-associated fibroblasts (CAF), and that
Pin1 inhibitor synergized with PD1 inhibitor αPD1 to promote apoptosis and significantly
reduce tumor growth in human and KPC PDAC-like organoids in GDA mice [67]. Therefore,
targeting Pin1 offers a unique and promising approach to eradicate this deadly cancer.

Juglone is a natural naphthoquinone found in the walnut tree. Juglone and its deriva-
tives are inhibitors of Pin1 and are effective in reducing chemotherapy resistance due to
cancer treatment. [68]. Sajadimajd S et al. found that, in trastuzumab SKBR3 cells, juglone
could induce cell apoptosis, inhibit cell proliferation, colony formation, and migration, and
promote the reduction of drug resistance by inhibiting Pin1 and Notch1 [69]. Similarly, Yun
H et al. also found that juglone significantly enhanced trastuzumab-induced FAS downreg-
ulation and cell death in metastatic breast cancer BT474 cells. In addition, trastuzumab in
combination with gene silencing or juglone increased cleaved poly(ADP-ribose) polymerase
and DNA fragmentation, thereby increasing the sensitivity of trastuzumab [70]. For estro-
gen receptor alpha-positive breast cancer, juglone dose-dependently inhibits TPA-induced
tumor cell transformation by reversing the TPA-induced rise in E2F-4 and Egr-1 and down-
regulating LC-3, thereby enhancing the sensitivity of tamoxifen-resistant cells MCF-7 to
tamoxifen [66]. In addition to juglone, epigallocatechin-3-gallate (EGCG), all-trans retinoic
acid (ARTA), and arsenic trioxide (ATO) have shown good efficacy as inhibitors of Pin1 in
reducing tumor resistance.

3.3. P-Glycoprotein

P-glycoprotein, also known as multi-drug resistance protein 1 (MDR1), is a superfamily of
ATP binding box (ABC) transporter proteins and an ATP-dependent drug efflux pump, which
can reduce the accumulation of intracellular drugs and mediate the generation of cell drug
resistance [71]. In addition, multidrug resistance-associated protein 1, multidrug resistance-
associated protein 2, and breast cancer resistance protein also generate drug resistance by
increasing the efflux of chemotherapeutic drugs generally considered to be the main cause
of MDR [72]. Schisandrin B was isolated from Schisandra chinensis, a traditional Chinese
medicine, and has antioxidant and antitumor activities [73]. Schisandrin B reduces tumor drug
resistance by decreasing p-glycoprotein expression in a variety of tumors [74]. Schisandrin
B inhibits the expression and activity of p-glycoprotein in doxorubicin-resistant breast and
ovarian cancer cells, thereby enhancing the intracellular accumulation of doxorubicin and
reducing the generation of drug resistance [75]. In addition, a study showed that Schisandrin
B reverses the resistance of K562/ADR, KBv200, and MCF-7/Adr to paclitaxel, anthracycline,
and vincristine by direct physical interaction with p-glycoprotein [76]. Caffeic acid is a kind of
phenolic acid widely found in plants. TENG Y-N et al., found that caffeic acid significantly
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reversed the resistance of tumor cells to vincristine, paclitaxel, and doxorubicin, and increased
the percentage of apoptosis in tumor cells [77]. In addition, the prenylated flavonoid from
Tephrosia purpurea, glabratephrin, has been shown in recent years to enhance the efficacy
of doxorubicin by reducing the affinity of doxorubicin for p-glycoprotein and preventing its
efflux without affecting p-glycoprotein expression in triple-negative breast cancer cells [78].
By reversing p-glycoprotein-mediated resistance, it can be used as a research direction for
chemotherapeutic drug sensitizers and provide a safe and effective strategy for treating tumor
cells that develop resistance to drugs.

3.4. PI3K/Akt

Phosphatidylinositol-3 kinase (PI3K)/Akt pathway is one of the important intracellular
signal transduction pathways, which plays a key role in glucose uptake and metabolism [79].
This pathway is highly activated in tumors, which produces favorable conditions for the
growth and proliferation of tumor cells, and is one of the important reasons for the devel-
opment of drug resistance in tumors [80]. Quercetin is a polyphenolic flavonoid compound
widely distributed in fruits and vegetables, with a variety of pharmacological activities
such as anti-inflammatory and antioxidant [81]. In vivo and in vitro models of docetaxel
resistance, quercetin combined with docetaxel improved the inhibition of cell proliferation,
metastasis, and invasion, and reversed docetaxel resistance through the PI3K/AKT path-
way [82]. Isorhamnetin, which is also a flavonoid with quercetin, has also been shown to
have similar effects [83]. Toosendanin is a triterpenoid compound extracted from Melia
toosendan Sieb. et Zucc with ascaris removal and antibacterial activities [84]. Toosendanin
combined with doxorubicin significantly promoted the apoptosis of drug-resistant MCF-7
cells and inhibited the phosphorylation of AKT at the non-cytotoxic concentration of toosen-
danin. Toosendanin and doxorubicin alone had a weak inhibitory effect on tumor growth,
while the combined administration of toosendanin and doxorubicin had a 90% inhibitory
effect on tumor volume [85]. Matrine, the main active substance extracted from Matrine,
can also decrease the drug resistance of MCF-7 cells by up-regulating PI3K/AKT and
down-regulating the phosphorylation level of AKT through the negative regulatory factor
PTEN [86]. Apigenin is a natural flavonoid with broad-spectrum biological properties
including antioxidant, anti-inflammatory, anti-cancer, and neuroprotective effects [87]. In a
study of gemcitabine-resistant pancreatic cancer cells, apigenin combined with gemcitabine
was found to block the cell cycle of drug-resistant cells, downregulate gemcitabine-induced
p-Akt, and induce apoptosis in tumor cells [88].

3.5. Notch

In recent years, epithelial–mesenchymal transition (EMT) has been shown to be an
important factor in the development of drug resistance in tumor cells, and the mechanisms
that help tumor cells to develop drug resistance are mainly attributed to overexpression
of drug transport proteins (p-glycoprotein, multidrug resistance associated protein 1, etc.)
and inhibition of tumor cell apoptosis [89]. Notch is one of the important pathways in the
epithelial–mesenchymal transition and is involved in the development of drug resistance
in tumor cells. In Notch-overexpressing breast cancer cells, positive regulation of SLUG by
Notch IC activation leads to suppression of E-cadherin, thus allowing EMT in breast cancer
cells [90]. Furthermore, the Notch pathway has been shown to act against drug resistance
in various cancers such as prostate cancer and lung cancer [91–93]. Notch inhibitors
represented by curcumin play an adjuvant antitumor role in cancer stem cells [94–97].

3.6. TGF-β

TGF-β is also a key pathway in the epithelial–mesenchymal transition and is involved
in the metastasis and invasion of tumor cells [98]. MHP-1, a newly isolated polysaccharide
from Mortierella hepialid, attenuated topiramate resistance in breast cancer cells and
inhibited the process of EMT by inhibiting the TGF-β pathway [99].
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3.7. MGMT

Causing tumor cell death by inducing DNA damage is the main mechanism by which
some chemotherapeutic drugs work, while tumor cells rescue themselves from the damage
by their own DNA repair function thus creating resistance to chemotherapeutic drugs.
O (6)-methylguanine-DNA methyltransferase (MGMT) is an important transferase in
the DNA repair process for the elimination of toxic and premutagenic DNA adduct O6-
methylguanine from cells [100]. Lipoic acid, disulfide-containing substance, is a naturally
occurring cofactor for the mitochondrial enzymes pyruvate dehydrogenase and alpha-
ketoglutarate dehydrogenase [101]. It was reported that lipoic acid not only increased
alkylating agent N-methyl-N-nitrosourea-induced O6-MeG lesions by inhibiting MGMT,
but also attenuated temozolomide resistance in colorectal cancer cells HCT116 [102].

3.8. EGFR

Epidermal growth factor receptor (EGFR) belongs to a family of cell surface receptor
tyrosine kinases whose wild-type signaling contributes to the proliferation of tumor cells,
evades apoptosis, and promotes tumor proliferation and invasion. EGFR-tyrosine kinase
inhibitors (TKI) such as gefitinib target EGFR for antitumor effects, but EGFR mutations
(Such as T790M or S492R mutations) are an important cause of tumor cell generation [103].
A study reported that gambogic acid in combination with EGFR-TKI effectively inhibited
EGRF-T790M mutated lung adenocarcinoma cell lines and suppressed tumor volume
growth in vivo [104]. In addition, Formononetin, as an inhibitor of EGFR, inhibited EGFR-
Akt signaling by binding to the ATP-binding pocket region of both wild-type and mutant
EGFR, promoting the ubiquitination and degradation of Mcl-1, thereby inhibiting the
proliferation of non-small cell lung cancer [105].

4. Natural Compounds That Attenuate Adverse Effects of Chemotherapy and
their Mechanisms

Serious adverse reactions caused by chemotherapeutic drugs are one of the main
reasons affecting the treatment outcome of tumor patients. Death of some tumor patients
is associated with the occurrence of adverse reactions. We have elaborated on the natural
compounds in combination with chemotherapeutic drugs that can reduce the adverse
effects and help in the treatment of tumors (Table 3).

Table 3. Natural compounds that attenuate adverse effects of chemotherapy and their mechanisms.
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Table 3. Cont.

Natural Products Molecular Structure Combined Chemotherapy Drugs Mechanism
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degrees, the most serious of which are paclitaxel and oxaliplatin [107]. Mitochondrial dys-
function is considered to be one of the important mechanisms of peripheral neuropathy [108].
It has been found that tanshinone IIA, an active substance extracted from the famous Chi-
nese medicine Salvia miltiorrhiza, can inhibit oxaliplatin-induced ROS increase in mouse
neuroma cell line N2a, thus achieving mitochondrial protection. In addition, tanshinone IIA
could alleviate oxaliplatin-induced peripheral neuropathy by promoting autophagy through
PI3K/Akt/mTOR signaling pathway. Tanshinone IIA in the non-cytotoxic concentration
range can inhibit the pro-apoptotic effect of oxaliplatin on mouse neuroma cell line N2a and re-
duce oxaliplatin-induced neurotoxicity in rats [109]. Natural antioxidants thymoquinone and
geraniol can reduce cisplatin-induced neurotoxicity by inhibiting the expression of apoptosis-
related proteins (p53, MAPK, etc.) without affecting the killing effect of cisplatin on breast
cancer MCF-7 cells [110]. Berberine, an isoquinoline alkaloid, has been shown to have neu-
roprotective effects on doxorubicin-induced neuroinflammation by increasing brain AchE
activity and reducing neuronal apoptosis caused by oxidative stress [111].

4.2. Myelosuppression

Myelosuppression is one of the main adverse reactions of many chemotherapy drugs,
including cyclophosphamide, paclitaxel, pemetrexed, and gemcitabine, which seriously
affects the therapeutic effect of chemotherapy drugs [112,113]. Chemotherapy-induced
bone marrow suppression can be manifested as neutropenia, leukopenia, and anemia [114].
Ginsenoside Rg3, a tetracyclic triterpene saponin extracted from Red ginseng, has been
shown to selectively inhibit tumor cell invasion and metastasis [115]. However, a study
on the QT prolongation induced by the anti-thyroid cancer drug vandetanib showed that
ginsenoside Rg3 combined with vandetanib could increase the inactivating current of hERG
Kchannel, thereby reversing the QT prolongation [116].

4.3. Gastrointestinal Toxicity

Diarrhea is one of the main adverse reactions of chemotherapy drugs such as
5-fluorouracil, irinotecan, and celecoxib [117–119]. Mild chemotherapy-induced diar-
rhea can interfere with the process and effect of cancer treatment. Severe diarrhea can
cause dehydration, electrolyte imbalance, and nutritional deficiency, which are associated
with premature death in 5% of cancer patients [120]. Hesperidin is a natural flavonoid
widely found in fruits and flowers, with a variety of pharmacological activities such as
anti-inflammatory, antioxidant, cardiovascular protection, and antitumor [121]. Oral admin-
istration of hesperidin 20 mg/kg and 100 mg/kg significantly reduced irinotecan-induced
diarrhea in CT-26 tumor-bearing immune mice and reduced the risk of severe diarrhea.
In addition, hesperidin inhibited the expression of inflammatory factors in intestinal tis-
sues and, more importantly, hesperidin in combination with irinotecan could exert more
significant antitumor effects by negatively regulating STAT3 [122].

4.4. Cardiotoxicity

Anthracycline antineoplastic agents are an important part of chemotherapeutic drugs
and are widely used in hematologic malignancies and solid tumors, but the typical use
of anthracycline antineoplastic agents is associated with cardiotoxicity, which seriously
affects the progress of subsequent treatment [123]. Calycosin is an active ingredient in
Astragalus membranaceus, which has various pharmacological activities such as anti-
inflammatory, antioxidant, anti-cancer, and cardiovascular protection. [124]. Calycosin
at a concentration of 20 µg/mL significantly inhibited doxorubicin-induced LDH, ROS,
and mitochondrial damage in H9c2 cells, while in vitro and in vivo experiments showed
that calycosin attenuated the cardiotoxicity of doxorubicin by inhibiting NLRP3-cystatin-
1-GSDMD pathway-mediated cardiomyocyte scorching [125]. Zhai J. et al. found that
calycosin attenuated doxorubicin-induced apoptosis and ROS production in H9c2 cells
via the Sirtuin-NLRP3 pathway [126]. Calycosin reduces doxorubicin-induced pericar-
dial edema and morphological changes while increasing embryo viability in a zebrafish
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model [127]. Colchicine, an alkaloid originally extracted from the lily family Colchicum,
is found in corn, seeds, and flowers [128]. 5-Fluorouracil has some cardiotoxicity, result-
ing in cardiac electrophysiological abnormalities, including ST-segment elevation and
significant prolongation of QRS duration [129]. The combination of the two can reduce
cardiac abnormalities and damage by reducing oxidative stress in cardiomyocytes, in-
creasing the total antioxidant capacity of the heart, and reducing cardiotoxicity caused by
5-fluorouracil treatment [130]. In addition to these compounds, several studies have found
that quercetin, silymarin, asiatic acid, tanshinone IIA, and many other compounds can have
some protective effects in the presence of cardiotoxicity from chemotherapy [131–135]. The
curcumin mentioned in the previous part of the article also inhibited doxorubicin-induced
cardiomyocyte scorching, but this result is controversial [136].

4.5. Nephrotoxicity

Curcumin, thymoquinone, and As2O3 all attenuated cisplatin-induced renal fibrosis
and reduced tubular injury, renal α-SMA, and renal fibrosis scores [137,138]. However,
clinical studies have shown that the use of As2O3 in the treatment of relapsed or refractory
acute promyelocytic leukemia and multiple myeloma can cause renal damage, such as in-
creased levels of serum creatinine, blood urea nitrogen, and protein urea concentration [139].
Therefore, whether As2O3 can be used as a regimen to reduce chemotherapy nephrotoxicity
remains to be investigated. Resveratrol, a natural antioxidant widely used in cardiovascu-
lar disease and anti-aging, also has a protective effect in reducing chemotherapy-induced
nephrotoxicity. In an experiment in mice treated with cisplatin for one week, resveratrol
reduced the activation of the cisplatin-associated p53 acetylation and apoptosis pathways
by increasing Sirt1, thereby increasing the glomerular filtration rate in mice [140].

4.6. Hepatotoxicity

5-FU, oxaliplatin, and irinotecan for tumors are thought to cause liver damage by in-
creasing the production of reactive oxygen species in hepatocytes [141,142]. [10]-Gingerol is
a stimulating compound extracted from the daily seasoned food ginger, with various phar-
macological activities such as antioxidant and antitumor [143,144]. Although [10]-Gingerol
in combination with doxorubicin did not show a significant difference in tumor volume at
day 28 in tumor-bearing mice compared to doxorubicin alone, the combination treatment
reduced chemotherapy-induced weight loss and hepatotoxicity [145].

5. Conclusions

In summary, the therapeutic strategy of combining natural compounds with chemother-
apeutic drugs can effectively enhance the tumor-killing effect of chemotherapeutic drugs,
reduce the development of drug resistance in tumor cells, and alleviate the serious side ef-
fects of chemotherapeutic drugs on patients, which has a positive effect on tumor treatment.
Natural compounds, especially those used in traditional Chinese medicine, have been used
in human diseases for thousands of years, providing many active products for human be-
ings, and also providing certain reference for the subsequent clinical research of combined
chemotherapy drugs. A natural compound often has multiple pharmacological activities,
for example, tanshinone IIA can not only attenuate oxaliplatin-induced neurotoxicity, but
also inhibit doxorubicin-induced cardiotoxicity, hepatotoxicity, and nephrotoxicity. Natural
compounds in combination with chemotherapeutic agents are often more effective in their
antitumor effects for reasons that are often not singular, and their beneficial results may be
due to a combination of multiple mechanisms. Such multiple effects further confirm the
feasibility of combining natural compounds with chemotherapeutic agents in the treatment
of cancer. We can see that natural compounds have considerable potential to deal with
the adverse reactions caused by chemotherapy, which can effectively alleviate the toxic
effects caused by chemotherapy, assist the follow-up treatment of patients, and improve
the quality of life (Figure 1).
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Figure 1. Natural compounds in combination with chemotherapeutic agents enhance therapeutic
efficacy by synergizing, reducing tumor resistance, and mitigating adverse effects of chemotherapy.
(A) Natural compounds exert synergistic effects in combination with chemotherapeutic treatment to
promote apoptosis of tumor cells and enhance antitumor effects. (B) Natural compounds alleviate
tumor resistance produced by chemotherapy. (C) Natural compounds significantly alleviate the toxic
damage caused by chemotherapy to multiple organs.

However, natural compounds may have some disadvantages, such as poor water sol-
ubility and unfavorable pharmacokinetics, and these deficiencies may affect the combined
effect of natural compounds with chemotherapeutic drugs. Therefore, a series of methods
such as structural modification of natural compounds or improvement of drug delivery
can strongly break the dilemma of combining natural compounds with chemotherapeutic
drugs, providing a clear direction for future research to realize the combination of the two.
In addition, the discovery of potentially useful natural compounds is also an issue that
needs to be addressed urgently. Although Chinese herbal medicine has a long history of
use with remarkable effects, the active monomers on which they work have not been fully
studied and many of these active compounds have not been discovered, therefore this area
may provide some ideas for finding such natural compounds.

In summary, we personally believe that natural compounds for tumor combination
therapy have great potential in synergizing chemotherapeutic agents, reducing tumor cell
resistance, and alleviating adverse effects. The therapeutic strategy of natural compounds
combined with chemotherapeutic drugs will be gradually applied in clinical trials and
become a new exploration to defeat tumors.
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