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Abstract: Radical reactions are powerful in creating carbon—carbon and carbon-heteroatom bonds.
Designing one-pot radical reactions with cascade transformations to assemble the cyclic skeletons
with two new functional groups is both synthetically and operationally efficient. Summarized in this
paper is the recent development of reactions involving radical addition and cyclization of dienes,
diynes, enynes, as well as arene-bridged and arene-terminated compounds for the preparation
of difunctionalization cyclic compounds. Reactions carried out with radical initiators, transition
metal-catalysis, photoredox, and electrochemical conditions are included.
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1. Introduction

Synthetic radicals are a topic of current interest due to their feasible radical trans-
formations, such as addition, cyclization, coupling, atom/group transfer, rearrangement
and fragmentation, which are powerful in the construction of carbon—-carbon bonds,
carbon-heteroatom bonds and the formation of diverse ring skeletons [1,2]. The recent
developments on photoredox catalysis [3] and electrochemical reactions [4] have sped up
the research in this field. Among the board scope of free radical reactions, the radical di-
functionalization of alkenes and alkynes has attracted special attention since the substrates
are readily available, the reaction process is operationally simple, and two functional
groups are introduced to the products in regio- and diastereoselective fashions.

There is a large number of reviews on the radical difunctionalizations [5-16]. In a recent
paper from our group, we summarized radical addition followed by nucleophilic addition
for 1,2- and remote difunctionalizations to introduce X and Y groups to the products
(Scheme 1, I) [17]. Presented in this paper is another kind of radical difunctionalization that
is initiated with the addition of radical X' followed by radical cyclization and then a second
functionalization with Y through coupling or addition to obtain the product (Scheme 1, II).

More information on the radical addition and cyclization-based difunctionalization
reactions is shown in Scheme 2. There are three different kinds of substrates: (I) dienes,
diynes, and enynes; (II) arene-tethered dienes or enynes; and (III) arene-terminated alkenes
and alkynes. The cyclized radical intermediates could have four ways for the second func-
tionalization with Y: (I) coupling with radical Y; (II) metal-catalyzed reaction with Met-Y;
(IIT) oxidation to a cation and then undergoing nucleophilic reaction with Y~; and IV) reduc-
tion to an anion and then undergoing electrophilic reaction with Y*. The difunctionalization
reactions could be carried out as a one-pot reaction with the following cascade reaction se-
quence: (1) addition of the initial radical X' to introduce the first functional group; (2) radical
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cyclization to form the ring; and (3) second functionalization with Y to obtain the product.
Compared to the two kinds of reactions shown in Scheme 1, the first one is relatively simple
and has been well established. The second one can generate structurally more attractive
fused-, bridged-, or spiro-ring systems, but they are more synthetically challenging and
under active development. The reactions presented in this paper are organized based on
three kinds of starting materials shown in Scheme 2. Reaction-related substrates are also
discussed in the last section of the paper.

(I) Reactions covered in our previous paper (addition/addition)

X 1) addition - Nu

b Nu
X~ —_— X\)\C/r\
~ + —_— L
R
n

(I Reactions covered in this paper (addition/cyclization/addition)

e " N 1) cyclization Y=\, /=X
S addition K\ .
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Scheme 1. Two kinds of radical difunctionalization reactions.
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Scheme 2. Radical addition and cyclization-based difunctionalizations.

The radical reactions presented in this paper could be conducted using one of the
following methods: (1) using radical initiators such as azodiisobutyronitrile (AIBN),
t-butyl nitrite (t-BuONO), aryldiazonium tetrafluoroborates; peroxides such as dicumyl
peroxide (DCP), di-t-butyl peroxide (DTBP), and t-butyl hydroperoxide (TBHP) and
t-butyl peroxybenzoate (TBPB); (2) using single electron transfer (SET) agents such as
hypervalent iodine reagents (HIRs), hypervalent bromine reagents (HBrRs), ceric ammo-
nium nitrate (CAN), Mn(OAc),, and Nay5,05; (3) under photoredox catalysis such as
Ru(bpy)sCl, and Ir(ppy)s), [Ir(dtbbpy)(ppy)2]PFs, N-methyl-9-mesityl acridinium (Mes-
Acr?*), fac-Ir(ppy)s, Nay-Eosin Y; and (3) through electrochemical reactions.

A wide range of functional groups could be incorporated to the products through
the difunctionalization reactions, which include halogens (Cl, Br and I), aryl (Ar), alkyl
(R), cyano (CN), trifluoromethyl (CF3) or perfluoroalkyl (Rp), 2-ethoxy-1,1-difluoro-2-
oxoethyl (CF,CO,Et) or 2-ethoxy-1-fluoro-2-oxoethyl (CHFCO;Et), 2-cyanopropan-2-yl
(C(CH3)2CN), carbamoyl (CONHy), aryl carbonyl (ArCO), alkyl carbonyl (RCO), hydroxy
(OH), carbamoyl oxy (O,CNR;), azido (N3), amino (NRy), aryldiazenyl (Ar-N=N), nitro
(NOy), nitroso (NO), sulfonyl (Ts), trifluoromethylthio (CF3S), methylthio (CH3S), arylthio
(ArS), phosphorus (PO(OR)y), alkyl silyl (R3Si), aryl silyl (Ar3Si), phenylselanyl (PhSe) and
heteroatom-containing groups.
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2. Reaction of Dienes and Enynes

Presented in this section are the radical addition and cyclization-initiated difunctional-
ization reactions of 1,n-dienes and -enynes with a reaction sequence shown in Scheme 3.
The common substrates include dienes (I-A), enynes (I-B, I-C, I-H), dienyl amides (I-F),
enynyl amides (I-D, I-E, I-G) with the Z as a carbon or heteroatom (Scheme 4). Since
there are two unsaturated carbon—carbon bonds in the substrates which are available for
the radical addition, the regioselectivity for the initial radical addition is critical. As indi-
cated in Scheme 4, the steric hindrance (I-A to I-D) and conjugation effect of the groups,
such as C=0 and Ar (I-E to I-H), are the major factors to direct the position for the initial
radical addition.

18t functionalization 2"d functionalization

X X’ K\\\ N Y .
ZK\\\ radical Z\(v{,\\\/x cyclization In )
T aqdition n z z

Scheme 3. General reaction scheme for difunctionalization of dienes and enynes.
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Scheme 4. Diene and enyne compounds with pointed position for the initial radical addition.

In 2005, Ogawa and coworker reported a near-UV light-mediated radical reaction
of dienes, diynes, and enynes for the synthesis of iodoperfluoroalkylated cyclic products.
The reactions of dienes, diynes, or enynes and perfluoroalkyl iodides in PhCF; under the
irradiation of xenon lamp afforded products 1 as a mixture of cis/trans isomers in moderate-
to-good yields (Scheme 5) [18]. A proposed mechanism indicated that the #n-C4Fg radical
generated from n-C4Fgl under the light adds to diene. The intermediate M-1 undergoes
5-exo cyclization to give alkenyl M-2, which then reacts with n-C4FgI through the iodine
atom transfer to give product 1a.

. N hv (>300 nm)
K+ R .
PhCF3 R , NS I
F ’

I-A or I-C X=N,0O,C

MeOZC CO,Me

-C4F9~9§_Z_| N-C4Fg== | N-CroF2r= I'n-CqoF 21 n-CroF g~ &

1a, 45% 1b, 51% 1c, 58% 1d, 60% 1e, 60%
cis/trans 81:19 cis/trans 87:13 cisftrans 75:25  (1E,6E)/(1E,6Z) 91:9 (1E,6E)/(1E,6Z)/(1Z,6E) 80:12:8
SRR

n- C4Fg I — > n-C4Fg o) n-C4Fg—I (o)
O L» MCFo Oy — _KQ -JS_ZR—
n-C4Fg . -C4F9 I

I-A M-1
M-2 n-C4Fq 1a

Scheme 5. Synthesis of iodoperfluoroalkylated products.
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A sun lamp-mediated radical reaction for making azidosulfonylated cyclic products
was reported by the Renaud group in 2008. Dienes, diynes, or enynes in dry benzene
reacted with benzenesulfonyl azide with radical initiator di-t-butyldiazene to give azido-
sulfone products 2 in moderate-to-excellent yields (Scheme 6) [19]. This method is good
for the formation of tertiary and secondary azides 2a-d, but not for primary azide 2e. The
reaction process involves the addition of PhSO; radical to the less hindered alkene to form
intermediate radical M-3, 5-exo cyclization for radical M-4, and N3 radical transfer from
PhSO;Nj3 to give product 2a.

/—% ' PhSO,N5 (2 equiv) R?

N3 g3

X t-BuN=NBu-{ (0.5 equiv) R! X
R‘Z_\>7R2 sun lamp 300 W
R X=N.0,C SO,Ph
I A orI-C 2
N3 N Ny
CO,Me
CO;Me N—Ts o 2 CO,Me
CO,Me z COMe CO,Me
SO,Ph SO,Ph SO,Ph SO,Ph SO,Ph
2a, 76% 2b, 89% 2c, 41% 2d, 88% 2e, 0%
dr2.7t o _drtd ar33A .
SO,Ph PhSO,N3
MeO,C PhSOz MeO,C Co,Me CO,Me
Meo:C MeOC PhOS CoMe i cO,Me

%7 So,ph 2a

Scheme 6. Synthesis of azidosulfonylated cyclic products.

1,6-Enynes are the most popular substrates for radical reactions to make difunctionalized
five-membered rings. A method for making iodotriflouromethylated N-heterocycles was
reported by the Liu group in 2014. The reaction of 1,6-enynes, NaSO,CF; and 1,05 in
CH,Cl, /H,0 afforded pyrrolidines products 3 in moderate-to-high yields (Scheme 7) [20].
The CF; radical generated from NaSO,CF3 through SET of 1,05 adds to the alkenyl group
of 1,6-enynes followed by cyclization and the capture of iodine to give products 3. The CF3
radical could be trapped by 2-methyl-2-nitrosopropane (MNP) to form M-5 for ESR detection.

% 1205 ArTN
—_— -R
R-N * NaSO,CFs CH,Cly/H,0 N
7 Ar
CF3;

3a, 85% 3b, 67% 3c 73% 3d,63%
EIZ17:A1 EIZ18:1 EIZ 8:1
| .
205 4 I MNP 0
CF3SO,Na ‘CF3 —= - N
SET spin trapping CF
3 |
Ar—=— . M-5
“CFs N=R AT o AT
R-N —_— —_— N-R —>= N—R
——Ar CF
-B 3 CF3 CF3 3

Scheme 7. Synthesis of iodotriflouromethylated pyrrolidines.

A method for cyclative trifluoromethylation of 1,6-enynes was reported by the Liang
group in 2014. The reaction of 1,6-enynes, Togni’s reagent, and TMSCN (or TMSN3) in
CH3CN under the catalysis of Cu'! gave CF3-containing heterocycles 4 and 5 (Scheme 8) [21].
The CF; radical produced from the Togni’s reagent under the catalysis of Cu'! adds to
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the C=C double bond of 1,6-enyne to form the radical intermediate M-6, which is con-
verted to cyclized metal complex M-7 through path a or path b. At the last step, the
reaction of M-7 with TMSCN or TMSN3 gives corresponding cyanotrifluoromethylated or
azidotrifluoromethylated five-membered ring products 4a or 5a.

Cu(OAC), (10 mol %) R! £Fs R! CFs
\ or CuBrz (20 mol %)
+ TMSCN AP
or TMSN; CH)gCNN rtoAé 4h Ar
4 CN

Togni's reagent

CF3
CO,Me
TsN TsN
X Ph CeHyp-Me CeHym-Cl
d::/ d::/ 6M4P- /ji/ 64 dirPh Ph\:/:b<COQMe
CN

4a, 82% ‘“’ 75% 4c 84% 4d 65% 4e 86%
CO,Me
TsN
s - CoHa0- Me | Xy CeHam-Me Ph Ph.~ CO,Me
N3
5a, 75% 5b, 74% 5¢, 65% 5d’ 64% 5e 73%
CFs ’ CN(N;)
N Cu TMSCN path a /Jéu'”LOAc CFs
° ™) e N,
o cu'" TSN I _Ph
Togni's reagent TsN
*CFs CFs X-Phooac 4a CN
' NC-Cu'L or
\—=—ph N9 dac CF,
/_{ u" CU(OAC),
N ms M-7
path b TSN ) pn
TMSCN
I-B 5a N3

Scheme 8. Synthesis of cyanotrifluoromethylated or azidotrifluoromethylated heterocycles.

A Togni’s reagent-based synthesis of CF3-substituted spiro 2H-azirines was reported
by the Liang group in 2015. The reaction of 1,6-enynes with Togni’s reagent and TMSNj3
in the presence of Cu’ powder as a catalyst afforded diastereomeric products 6 in good-
to-excellent yields (Scheme 9) [22]. A proposed mechanism suggests that the CF3 radical
generated from Togni’s reagent through SET of Cu’ is added to the C=C bond of 1,6-enyne
to produce the radical intermediate M-8. Sequential 5-exo cyclization and trapping of the
radical M-9 with Cu'' and TMSN3 give Cu'' azide complex M-10. Complex M-10 may also
be obtained from the formation of complex M-11 and subsequent cyclization. Reductive
elimination of M-10 followed by the elimination of N, from azide M-12 gives alkenyl
nitrene M-13. The cyclization of M-14, a resonance structure of alkenyl nitrene M-13, gives
the spiroketal products 6 as a pair of diastereomers.

Liang’s lab introduced a method for Pd-catalyzed radical cyclative iododifluoromethylation
of 1,6-enynes in 2015. The reaction of 1,6-enynes and ethyl difluoroiodoacetate in dioxane
under the catalysis of Pd(PPh3),Cl, and bis-[2-(diphenyl-phosphino)phenyl]ether (DPE-Phos)
gave iododifluoromethylated heterocycles 7 in good-to-excellent yields (Scheme 10) [23]. The
CF,CO,Et radical is generated from ICF,CO,Et through the reduction of PdL,,. Radical
addition to the C=C double bond of 1,6-enynes followed by the cyclization to Pd'LyI-activated
alkyne group and reductive elimination of the Pd’L, gives iododifluoromethylated products 7.
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CF
{ Togni's reagent, TMSN3 8
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Scheme 9. Synthesis of CF3-substituted spirocyclic 2H-azirines.
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Scheme 10. Synthesis of iododifluoromethylated heterocycles.

A sulfonyl radical-initiated iodosulfonylation reaction of 1,6-enynes was reported by
the Liang group in 2016. The reaction of 1,6-enynes and sulfonyl hydrazide in the presence
of I, /TBHP gave five-membered heterocycles 8 in good-to-excellent yields (Scheme 11) [24].

A proposed mechanism indicated that the sulfonyl radical generated from the reaction
of sulfonyl hydrazide and TBHP adds to the C=C double bond of 1,6-enyne, followed by
the radical cyclization and coupling with iodine radical, to give product 8a.

In 2018, the Liang group introduced radical cyclization of 1,6-enynes for the syn-
thesis of substituted pyrrolidine derivatives. The reaction of 1,6-enynes, ICF,CO,Et in
the presence of N-methylpiperidine or borophenylic acids/K,COj3 afforded substituted
pyrroles 9 or 10 in moderate-to-good yields (Scheme 12) [25]. The initial CF,CO,Et radical
generated from the reaction of ICF,CO;Et adds to the C=C double bond of the 1,6-enyne
followed by 5-exo cyclization to give radical intermediate M-15. Radical M-15 abstracts
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iodo atom from iododifluoromethylation to give product 9a; otherwise, coupling of M-15
with borophenylic acid gives product 10a.

I (50 mol %)

_ —\ + TsNHNH, ———>
— \ /\/ TBHP (4 equiv)
R H,0, 80 °C, 24h
I-B
TsN Ts TsN Ts TsN Ts TsN Ts
S
\ \ Br \ ol \ C |
I I I [
8a, 74% 8b, 72% 8c, 70% 8d, 68%
Ts-NHNH t-BuOO"

Scheme 11. Synthesis of iodosulfonylated five-membered heterocycles.

R'] O ICF,COZEL
= DA N /—< ArBH(OH),
TN \ P \ TsN — K,COj3 (2.5 equiv) TSN
-—————— —_— —_—
CF,CO,Et toluene - <\ /\:’> R toluene F2C02Et
9 110 °C, Ar, 48 h I-B 110 °C, Ar, 24 h
| ICF,CO,Et
| |
~~Ph S
= =
TsN TsN sN \ !
CF,CO5Et CF,CO,Et CF,CO,Et CF,CO,Et
9a, 77% 9b, 78% 9¢, 60% 9d, 71%
ZIE 18:1 ZIE 12:1
Ph Ph Ph p-MeCgH,
s
= ~Ph = Z N\
TsN TsN TsN
CF,CO,Et CF,CO,Et CF,CO,Et 10;%;52&
08 0% ] b e
ICF2CO,EL KI + B(OH). 2C03K
PhB(OH),
- () ;S‘%
Ts
N CF,CO,Et CFCOE
*CF,CO,Et 2CO,Et
TSN i ‘ J'\/CFz(}OzEt — TSNi 0a
=ph

M-15
ICF,CO,Et
CF,CO,Et

"CF,CO,Et

Scheme 12. Synthesis of functionalized pyrrolidines.

A visible light-mediated radical sulfonylative and azidosulfonylative cyclization of
1,6-enynes for the synthesis of highly functionalized heterocycles was introduced by the
Lam group in 2017. The reaction of 1,6-enynes and sulfonyl azides in THF in the presence of
a photoactive iridium complex afforded difunctionalized heterocycles 11 or 12 in moderate-
to-excellent yields (Scheme 13) [26]. The use of THF as the solvent was critical for the success
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of the reactions. The reaction mechanism suggests that the sulfonyl radical generated from
TsNj3 under the visible light catalysis of [Ir(dtbbpy)(ppy)2]PF¢ adds to the triple bond of
1,6-enyne, followed by cyclization of the vinyl radical, giving six-membered tertiary radical
M-16. Product 11a is then obtained via azidation of M-16 with the arylsulfonyl azide and
the sulfonyl radical is regenerated. When R! is H, addition of the sulfonyl radical happens
at the terminal carbon of the triple, followed by cyclization of the vinyl radical to give
five-membered ring product 12a.

— R'SO,N; (3 equiv)
1 2IN3
T R white LED
0 [Ir(dtbbpy)(ppy)2]PFe (1.0 mol%)
L\yRZ THF, 32°C, 18-52 h

I-Corl-H 1 R1 12 R'=
SOchH4p-CF3
1a, 65% 11b, 89% 11c, 46% 12a, 76% 12b, 66% 12c 93%
,/—=——Ph ‘ v s N3
\ L — O »
(0]
| CL>7 Ts Ts O Ts
M-16 11a
O, O  white LED .
- T Sy
p-MeCgHy~ S Ny I THE r MeCSH" Ne

G e ?w??

Scheme 13. Synthesis of azidosulfonated heterocycles.

The Wu group, in 2017, introduced a reaction of 1,6-enynes with DABCO-(SO;); and
two equivalents of ArN,BF, in DCE to give diazosulfonated six-membered heterocycles 13 in
moderate-to-good yields (Scheme 14) [27]. Five-membered heterocycles 14a could be obtained
using unsubstituted terminal alkynes as the substrates. The reaction mechanism suggests that
the initially sulfonyl radicals, generated from the reaction of ArN,;BF; with DABCO-(SO,),,
adds to the C=C bond of 1,6-enynes to form vinyl radical M-18, followed by 6-exo cyclization
and trapping with aryldiazonium cation to give intermediates M-19. The last step SET of
arylsulfonyl radical or DABCO-(SO;); to radical M-19 gave products 13.

The Xu group, in 2018, introduced a visible light-mediated radical atom transfer
radical cyclization (ATRC) of 1,6- and 1,7-enynes for the synthesis of sulfonyl and trifluo-
romethylthio functionalized vinylsulfones. In the ATRC reactions, two functional groups
are from the same reagent. The reaction of enynes and PhSO,SCF; in the presence of
PPh3 AuNTf, and Ru(bpy)sCl, under the irradiation of blue LED afforded five- or six-
membered vinylsulfones 15 in good yields (Scheme 15) [28]. A proposed mechanism for the
reaction of 1,6-enyne indicated that the sulfonyl radical generated from PhSO,SCF; under
photocatalysis of PPhs AuNTf, and Ru(bpy);Cl, adds to the triple bond to form benzyl
radical M-20, followed by 6-exo cyclization to give tertiary radical M-21. It then couples
CF3S radical to give product 15a. For the reaction of a 1,6-enyne without substitution on the
terminal carbon (R! = H), sulfonyl radical adds to the terminal carbon of alkyne followed
by 5-exo cyclization, leading to product 15d. A similar process for the reaction of 1,7-enyne,
which has no terminal carbon substitution on alkyne, affords product 15e.
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N—Ar
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C}L C}LPh OC%LP -CiCeHa O 7 Meozc><:7?L &/S\Ar
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N
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N—Ar N~ar
/s Ar {
= /-\ N s N
W AN 0”0
TsN R —= TN =R — TN R —————>= TN )R
N\ \_( or DABCO-(SO5),
0,S-Ar 0,S-Ar 0,S—Ar 0,S-Ar
I-c M-18 M-19 13

Scheme 14. Synthesis diazosulfonated heterocycles.
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[AuJ[Ru]
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_ SCFs
\/ PhO,S
01< x> . & SO,Ph

Scheme 15. Synthesis of sulfonyl and trifluoromethylthio functionalized vinylsulfones.

1@

A visible light-mediated ATRC of 1,6-enyne for the preparation of chloroalkyl-substituted
cyclic alkenyl sulfones using sulfonyl chlorides as the key reactants was reported by the
Zhu group in 2018. The reactions of 1,6-enynes and sulfonyl chlorides in the presence
of [Ir(dtbbpy)(ppy)2]PFs under the irradiation of blue LED gave five- or six-membered
chloroalkyl-substituted cyclic alkenyl sulfones 16 or 17 (Scheme 16) [29]. As the reaction
mechanism indicated, the sulfonyl radical generated from TsCl under the photoredox of
[Ir(dtbbpy)(ppy)2]PF¢ adds to the C=C bond of the 1,6-enyne followed by 5-exo or 6-exo
cyclization to form the carbon radicals M-24 or M-25. They are oxidized to carbocations
M-26 and M-27 and then react with chlorine anion to form products 16 and 17, respectively.
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X X
———R
X [Ir(dtbbpy)(ppy)2]PFs (1.0 mol %) /—SOR
+ RSO,CI )
\_\x* ) 23 W fluorescent bulb R R or R2? SO,R
7 R MeCN, rt, 24 h, H,0 (10 equiv) R2 Cl R2 Cl
R®I-CorlH X=N,O0 16 (R'=Ar) 17 R'=H)
o) o) TsN SO,Ph
Vs T )—S0,Ph N
Ph CgHyp-OMe Ph %% T
Cl Cl Cl Ph
16a, 87% 16b, 57% 16c, 55% 16d, 64%
(o) () ,SOZPh /Ts
N N
N\ Ts \ Ts \ \
Cl Cl Cl SO.Ph Cl T
2 S
17a, 67% 17b, 42% 17¢c, 53% 17d, 85%
Ar
Ar
Ts
1S — > A
X Ar, Ts Ar Ts
M-24 — - Cl
X 'r"'&w cr,
4 X X
i I’V M-26 16

M-23 M-25

Scheme 16. Synthesis of five- and six-membered alkenyl sulfones.

In 2018, the Liu group reported the synthesis of bromotrifluoromethylated five- and
six-membered heterocycles. The reaction of 1,6- or 1,7-enynes, NaSO,CF3; and NaBrOs
in DCM/H,0 produced products 18 in good yields (Scheme 17) [30]. The CF; radical,
generated from the reaction of NaSO,CF3 and NaBrOj, adds to the terminal carbon of
alkene followed by 5-exo or 6-exo cyclization (n = 2) and then Br-atom abstraction to give

product 18.
R Ar
T A NaBrO; =Br
X R + NaSO,CF; ———— F3;C
( DCM/H,0 )
" X=0,N xn
n=12 18
CF, CF, o CFs
TsN TsN
CgHa p-Me N CgH4-m-Me N\ CgHa-p-Cl © X _Ph
Br Br Br
18a, 0% 18b, 66% 18¢c, 65% 18d, 71% 18e, 40%
NaBrO3
SO, + Brp
NaSO,CF3
Ar

— 2 FsC

Vil Arm N\ 3 Y Br
; L N N-R Br
FsC FsC N
R 18

Scheme 17. Synthesis of bromotrifluoromethylated five- and six-membered heterocycles.
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Lin and coworkers reported an electrochemical reaction for the preparation of chlorotri-
fluoromethylated pyrrolidines in 2018. The reaction was carried out using HOAc-MeCN as
solvent at room temperature under electrochemical conditions. The reaction of 1,6-enynes,
CF350;Na and MgCl, in the presence of LiClO4 and Mn(OAc), gave chlorotrifluoromethy-
lated pyrrolidines 19 in excellent yields (Scheme 18) [31]. The initial CF;3 radical generated
from the anodically coupled electrolysis adds to the C=C double bond of 1,6-enynes fol-
lowed by 5-exo cyclization to afford the vinyl radical M-28, which couples with the Cl
radical to give product 19.

Mn(OAc), (10mol%)

MgCl, (3 equiv) Ar
— Ar CF3S0;Na (2 equiv) FsC /)—Cl
TSN R LiCIO4(0.2 mol) R
\—<\ HOAC/CH3CN(1:10) N
I-B C(+)/Pt(-), constant current i Ts
22°C,3h 19
p-MeOCsH4 p-BrCeH4 Ph Ph
FsC Ve FsC Ve FsC )—Cl FsC Ve
Ph
N N N N
Ts Ts Ts Ts
19a, 80% 19b, 84% 19¢, 83% 19d, 84%
Z/E > 19:1 Z/E > 19:1 Z/E > 19:1 Z/E > 19:1
CF3SOQN3 _e
Ar Ar
—=—Ar N : F.C cl
TsN "CF3 / F3C%_§ Mn"-cl  ? 7
—_— e B
<\ TsN Mk,ca N N
I-B Ts m-28 19 1°

Scheme 18. Synthesis of chlorotrifluoromethylated pyrrolidines.

A visible light-promoted reaction of 1,6-enynes for the synthesis of difunctionalized
pyrrolidines was introduced by the Wang group in 2020. The reaction of 1,6-enynes, and
chalcogens (such as benzenesulfono-selenoate) in acetone at room temperature under the
radiation of blue LED afforded products 20 in moderate-to-good yields (Scheme 19) [32].
The reaction mechanism suggests that tosyl and phenylselenyl radicals are generated
from Se-phenyl 4-methylbenzenesulfonoselenoate under photo irradiation. The tosyl
radical adds to the C=C bond of 1,6-enyne followed by 5-exo cyclization and capture of
phenylselenyl radical to give product 20a.

— Ar! R A
TsN/ . 1/X\Y/Ar2 acetone (0.1 M) X Y
\_/( Ar 34 W blue LED, rt R2 X =S0,, Se, S
I R2 N Y=Se, S
1-B Ts 20
Ph Ph /Ph Ph, Ph Ph Ph CeHap-Me
Ts J Se Ts /—Se Se /) Se Ts /S
Ph Ph Ph Ph
N N N N
Ts Ts Ts Ts
20a, 75%, 8 h 20b, 82%, 9 h 20c, 77%, 24 h 20d, 78%, 9 h

Ts—Se—Ph Ph_Se’
hv —-Se Ph
— }\‘ Ph Ts : Ts / Se
TN T’ aNPAE Ph-Se
sN Ph ~ Ph
_< TsN\/ N N
S

I-B Ph 20a Ts

Scheme 19. Synthesis of functionalized pyrrolidines.
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An iodine radical-initiated reaction for the synthesis of difunctionalized N-heterocyclic
compounds was reported by the Wang group in 2020. The reactions of 1,6- or 1,7-enynes,
TBHP and I, in CH3CN gave compound 21 in moderate-to-good yields (Scheme 20) [33].
The reaction mechanism suggests that iodide radical, generated from the reaction of I, with
TBHP, adds to the C=C triple bond of enyne followed by 6-exo cyclization to yield tertiary
radical M-29. Addition of hydroxyl radical or t-butylperox radical to M-29 could lead to
the formation of product 21a.

IR
— 1 1> (0.5 equiv)
/ R 70% aq. TBHP (3 equiv) ‘
TsN
(\‘)n_( MeCN (0.1 M) TsN OH
R? H,0 (15 equiv), 80 °C, 3-12 h nR2 n=12
I I _Ph | Q
\ \ B
TsN OH TsN OH OH
TsN
Ph Ph Ph
21a, 58%, 12 h 21b, 63%, 5h 21c, 52%, 12 h 21d, 72%, 3 h
/A\t-BuO' + 'OH "OH
+-BuOOH X\ h [
' |
+BuOH £BUOO . |
><f BuOOH OH
TsN N
Iy
-29
; t-BuOH
T N
e Ph s ph F BuOO

OBut
h

Scheme 20. Synthesis of iodo and hydroxy-functionalized N-heterocyclics.

In 2021, Zhu and co-workers reported the synthesis of iodo- and nitro-functionalized
cyclic compounds such aspyrrolidines, tetrahydrofurans, and cyclopentanes. The reaction
of 1,6-enynes, t-BuONO, and iodoform in CH3CN under heating gave five-membered
heterocycles 22 in moderate-to-excellent yields (Scheme 21) [34]. The reaction mechanism
suggests that nitroso radical formed from the homolysis of t-BuONO adds to the C=C bond
of the 1,6-enyne followed by 5-exo cyclization, oxidation to cation, and then iodination with
CHI; to give product 22a.

R1
——R' 80°C | R!
X + tBul N+ CHl; —————>
0" "o CH4CN, 12h NO,
R? X=N,O0,C X
I-B 22

CgH40-OMe CgHap-CF3 CgHap-Cl

‘%‘%%%‘iﬁ

M602C COzMe

22a, 86% 22b, 72% 22c, 98% 22d, 50% 22e,70%
A
t-Bu. N, -BuO"
u o \OT t-BuO
CgH40-OMe -
— C.H,0-0Me . 614 | CgHs0-OMe
/%CGH40-OMe ‘N=0 TsN CHl3
TsN - Lg NO o, NO,
< N N
1-B ON Ts Ts 22a

Scheme 21. Synthesis of iodo- and nitro-functionalized cyclic compounds.



Molecules 2023, 28, 1145

13 of 57

In 2021, Zhu and co-workers reported diarylselenylative cyclization reaction of 1,6-
enynes for the synthesis of five-membered heterocycles. The reaction of 1,6-enyne and
diaryldiselane in toluene under the radiation of light at room temperature afforded products
23 in moderate to good yields (Scheme 22) [35]. The reaction mechanism shows that the
PhSe radical generated via photo homolytic cleavage of PhSeSePh adds to the triple bond
of 1,6-enyne followed by 5-exo cyclization to form tertiary carbon radical M-30, which then
couples with PhSe radical to give product 23a.

= PhSe
‘e SFh o isible light | SePh
+ /Se*Se _— >
A\ , Ph toluene (2.0 mL) R! X=N,0,C
R Na, rt X Rz

2;

R2
PhSe SeCrHip-M
PhSe PhSe SePh SePh ererp e
| SePh %/?e\ph
SeCgHyp-Me
MeOZC
TsN 0,Me
23a, 82% 23b, 46% 23c 40% 23d, 63% 23e, 69%
ar1:1
Ph Se visible light
s€ Ph
a— SePh  PhSe PhSe
; PhSe ‘ SePh
v AN . AT
TsN
*SePh 23a

Scheme 22. Synthesis of diarylselenylated five-membered rings.

The reaction of 1,6-enynes for the synthesis of dihalogenated pyrrolidines was reported
by the Tong group in 2021. The reaction of 1,6-enynes, PhI(OAc), and lithium halide at room
temperature gave product 24 in moderate-to-good yields (Scheme 23) [36]. A suggested
mechanism for the reaction with LiCl indicated that the Cl radical generated via a single
electron oxidation of LiCl with PhI(OAc), adds to the C=C double bond of 1,6-enyne
followed by 5-exo cyclization and Cl atom abstraction to give dichloro pyrrolidine 24d.

o PhI(OAc), (1.2 equiv) X
— Ar LiBr (2 equiv) A
TsN R or LiCI (4 equiv) TsN r
_—_— >
THF, it R
MeOCH,OMe 24
X = Cl, Br
cl Cl
7 ~CgHyp- CN 4 ~Z>Ph 2
TsN TsN
Pri Pr-i
cl cl
24a 65% 24b, 71% 24c, 50% 24d, 76% 24e 85%
LiCl +1/2 PhI(OAc),
Phl + LiOAc
,—=——Ph ———pn ~ ~Ph
TsN .
L< _cr o, L<_ .
I-B 24d

Scheme 23. Synthesis of dihalogenated pyrrolidines.

In 2021, Li and Tian’s lab reported Fe-catalyzed radical reaction of 1,6-enynes for the
synthesis of difunctionalized heterocycles. The reaction of 1,6-enynes, t-butyl nitrite (TBN)
and KI or NaBr as materials in CH3CN under the catalysis of FeSO4-7H,0O gave products
25 in good-to-excellent yields (Scheme 24) [37]. As shown in the proposed mechanism,
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NO, radical produced from TBN adds to the C=C bond of 1,6-enyne followed by 5-exo
cyclization to give vinyl radical. This radical intermediate is iodinated through two possible
pathways to give target product 25a.

Br/l
—=—=—ArH
Y FeSO, TH;0 (0.4 equiv) v 7 A
X,_< + TBN + KI/NaBr -
d CH4CN, 50 °C, 6 h b
I1-B or I-D Y=N.O
i i\CsHm Me ;%L ;I\ i\
NO,
25a, 90% 25b, 68% 25c, 51% 25d,40% 25e, 54%
Z/E 9:1 only Z only Z Z/E 4:1 Z/E 5:1
H,0 HOBu-t
>—<: l O, (trace) | Eell Fe!
ON-OBu-t HNO, — ‘NO, + *NO +H,0 ‘OBu-t +*NO ‘% ON-OBu-t
(TBN) . 121, -
,/—=——"Ph /—=—Ph ZPh
TsN : ‘NG | TsN . TSN | |
B 2
LB N02 Felll \ ~>Ph
Ph
qt T
25a

Scheme 24. Synthesis of nitrohalogenated heterocyclic compounds.

A Cu-catalyzed radical reaction of 1,6-enynes for the synthesis of cyanoalkylsulfonyl-
ated pyrrolidines was introduced by He and coworkers in 2021. The reaction of 1,6-enynes,
diselenides, DABCO(SO,), and cyclic ketone oxime esters in DCE with CuOAc as a catalyst
afforded functionalized pyrrolidines 26 in moderate-to-good yields (Scheme 25) [38]. As in-
dicated in the proposed mechanism, cyanoalkylsulfonyl radical generated from the reaction
of cyclic ketone oxime esters and DABCO(SO,); adds to the C=C double bond of 1,6-enyne
followed by 5-exo cyclization and then couples with PhSe radical to give product 26a.

PhSe R

— 1 O __Ar
N /—="R"  DABCO(SO,), N‘ hil CuOAc (10 mol%) 58‘2
+ + o [ E——— CN
\—<R2 PhSeSePh é\ DCE 80°C. 240 oy &
R o/ \b R
PhSe PhSe PhSe ohse
CgHap-Me
& & y ;54\ v S
’/\\ //\\
26a, 85% 26b, 82% 26¢, 71% 26d, 68%
dr1:1 dr1:1
_O._Ar N*
I
N el . ~_cN
<§ o SET :
Ar = CgHap-CF3 ’A)
SN ) Ph PhSe._-Ph
_ 90 =5"™>"CcN - PhSeSePh \
TN/ =Ph o~ /_(- ‘ Ph Ph
S| _— e CN
\ < TSN Ph CN \ TsN W and
N S
Ph ——FPh TsN ,/S\\\/\/ PhSe- O’/\\O
-8 oo 26a

Scheme 25. Synthesis of cyanoalkylsulfonylated pyrrolidines.
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In 2019, Zhu and Hou'’s group reported a visible light-mediated radical reaction for
the synthesis of chlorotrifluoromethylated and chlorotrichloromethylated pyrrolidines,
cyclopentanes and related compounds. The reaction of 1,6-enynes and CF3;50,Cl (or
CCl13S0,Cl) in CH,Cl, using Acr*-Mes or Ir(dtbbpy(ppy).PFs as a photocatalyst gave
products 27 in good-to-excellent yields (Scheme 26) [39]. A proposed mechanism indicated
that CF; radical generated from CF3S0O,Cl via SET adds to the C=C bond of 1,6-enynes,
followed by 5-exo cyclization and coupling with Cl radical, to give product 27a.

CF3S0,CI/CCI3SO,CI cl R
/—=—R"  Acr-Mes CIO; (5 mol%) |
X or Ir(dtbbpy(ppy)2PFe (1 mol%) R2
’\"_( K,HPO, (5 equiv) o
% 2 4 (5 equiv =
o R? DCM (2 mL) X cy, Y=RC
1-B or I-D 23 W fluorescent bulb
C6H4p-OMe
&one
Fs CF, MeO,C CF3 TsN MeO,C CCls TsN CCI3
Ph02$ 2Me 2Me
27a, 67% 27b, 61% 27c,67% 27d, 89% 27e,67% 27f,

81%

S

hoti t
CF,s0,01 POt e oo, o

O2

CF3 NTs

hv _>J .-Ph CF33020I Ph

——pn FsC
TsN 7

3 CF3S0;

I-B  Me

Scheme 26. Synthesis of functionalized five-membered rings.

In 2022, Li and Yang reported a visible light-promoted reaction of 1,6-enynes for the
synthesis of the iodovinyl- and CF,-functionalized heterocycles. The reaction of 1,6-enynes,
ICF,CO,Et under the radiation of blue LED afforded products 28 in good-to-excellent
yields (Scheme 27) [40]. The reaction mechanism suggests that CF,CO;Et radical derived
from ICF,CO,Et adds to the C=C double bond of 1,6-enyne, followed by 5-exo cyclization
and capture of iodine atom from ICF,CO,Et, to give product 28.

Ar

— blue LED —\ R
X/ = Ar N,N'-Dimethylpiperazine
+ |CF2C02Et > CFQCOzEt
2 X

acetone, rt, 24 h

R I-B X=N,0O 28
CgH4p-Br CgHap-NO, CgHaqp-Br
Z § CcmozEt‘%\CFZCOZEt Z i CF,CO,Et Z ; ‘CFgcozEt Z i CF,CO,Et
28a, 86% 28b, 80% 28c¢, 55% 28d, 78% 28e, 68%
Z/E 90:10 Z/E 90:10 Z/E 90:10 Z/E > 955 Z/E > 95:5
Ar

—N  N— R
7/ [\t =\
ICF,CO,Et — " CF,CO,Et
v ICF,CO,Et 28
S— Ar 7 Ar R
X -CF,CO,Et A ‘N
’CcmOZEt
C
X

it Y L(—CcmozEt
I-B R F,CO,Et
R

Scheme 27. Synthesis of iodovinyl- and CF,-functionalized heterocycles.
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Zhu and co-workers, in 2022, reported a photo synthetic method for making iodo-
and sulfonyl-containing cyclic compounds. The reaction of 1,6-enynes, ArSO,Na, and
iodoform in CH3CN under visible light irradiation gave products 29 in good-to-excellent
yields (Scheme 28) [41]. The reaction mechanism suggests that ArSO; radical derived from
ArS50;Na adds to the C=C double bond of 1,6-enyne, followed by 5-exo cyclization and
iodine atom transfer from the complex of ArSO;Na and CHIj3 to give product 29a.

Ar
——Ar
X visible light =\
+ ArSO,Na @————>
CHlj (3 equiv) Ts
MeCN, N, rt, 12 h x

X=N,0,C
C6H4p Br

MeO,C" “co,Me

292, 87% 29b, 83% 29¢, 56% 29d, 58% 29e, 79%
ArSO,N ' S
reozNa ArSTO~Na--I—CHl,
lhv ArSO,
/—=—Ph
W, ﬂ, TsN SOAr SOA SOA
% L<_ NTs
ArSOzNa ICHI; 29a

Scheme 28. Synthesis of iodo- and sulfonyl-containing cyclic compounds.

In 2022, a photo reaction of -caryophyllene, a 1,5-diene with one alkene in the ring and
another one out of the ring, for the synthesis of iodo- and CF,-containing protoilludanes
was reported by the Huang group. The reaction of B-caryophyllene and ICF,COR in
the presence of 2-bromophenol and base under the irradiation of blue LED afforded
functionalized protoilludanes 30 in excellent yields (Scheme 29) [42]. A reaction mechanism
suggests that the EDA complex generated from 2-bromophenol and ICF,COR leads to the
formation of CF,COR radical. It then selectively adds to C8 of B-caryophyllen, followed by
the cyclization and abstraction of iodine atom from ICF,COR to give the product 30.

= H " :
: 2-BrCgH4OH (0.1 equiv)
= + ICF,COR KOAGC (2 equiv), CHsCN F|

12 W blue LED, rt, 12 h CF,COR
CF,COPh CF,COCgH,p-Br CF,COCgH,0-Me CF,COCgHp-Ph
30a, 97% 30b, 86% 30c, 95% 30d, 92%
H
@EBF ICF,COR @[Br |
JOLOR . :
oy Pase 0" ICF,COR :
EDA complex 30 CF,COR
hv l
- H
: , . H ’ “CF,CHOR
‘CF,COR ™, 5 s
5 - — — = Q ICF,COR
H H H

H
A CF,COR CF,COR

Scheme 29. Synthesis of iodo- and CF,-containing protoilludanes.

In 2019, the Liu group reported a met-catalyzed reaction of 1,6-enynes or 1,6-enynyl
amides for the synthesis of bromotrihalomethylated pyrrolidines. The reaction of 1,6-enynes,



Molecules 2023, 28, 1145

17 of 57

and CCl3Br or CBry in 1,4-dioxane under the catalysis of [Rh(cod)Cl], and DPE-Phos
at 100 °C for 12 h gave products 31 in moderate-to-good yields (Scheme 30) [43]. The
reaction mechanism suggests that CCl; radical, generated from CCl3Br under the catalysis
of [Rh(cod)Cl], and DPE-Phos, adds to the C=C double bond of 1,6-enyne followed by 5-exo
cyclization to Rh!-LBr activated alkyne and then L-Rh! elimination to give product 31a.

— [Rh(cod)Cll, (5 mol%)  Bra_ R
/ R DPE-Phos (10 mol%) ‘
X , CClgBr R
P é or CBry NaOAc (2 equiv)

o R 1,4-dioxane, 100 °C, 12 h % o OY
1-B or I-D X =NTs, NNs; Y =Cl, Br 3
CsH4p CN Br Ph Br Ph CGH4m Me Br
ccl;  TsN ccly; TSN ccly; NsN Cory SN, Cchy
31a, 94% 31b, 80% 31c, 71% 31d, 75% 31e, 68% 3, 77%

Br— Rh'” Ph
[Rh(cod)Cl], CCl3Br Br n L‘

bl ! Me
DPE-Phos RN L—Rh" /
L_Rp o Ph—=—=— TsN CCly
Rh NTs

*CClg TN NTs l\
. — |
—>J ClsC L—Rh
,/—=—Ph Bra_Ph
TsN i/ %ﬁ

I-B TsN Ccl
31a 3

Scheme 30. Synthesis of bromotrihalomethylated pyrrolidines.

Hou and coworkers, in 2022, reported a Cu-induced radical reaction of 1,6-enynes for
the synthesis of functionalized five-membered rings. The reaction of 1,6-enynes, BrCH,CN
in the presence of Cul, 1,10-phenanthroline and NaHCO; in CH3CN afforded products
32 in good yields (Scheme 31) [44]. The reaction mechanism suggests that the CH,CN
radical derived from BrCH,CN adds to C=C double bond of 1,6-enyne followed by 5-exo
cyclization and bromine atom-transfer to give product 32a.

Br
— Ar Cul (10 mol%)
X/ - 1,10-phen (20 mol %) Z TAr
\ ( + g~ cN ——— X
2 NaHCOj; (2 equiv) b
o R CHaCN, Np, 1t, 12 h S R CN
1-B or I-D X=N,0,C
~Ph 2 CgHap- OMe ~ph CO,Me
Ph~~ CO,Me
MeO,C Br
32a, 77% 32b, 59% 32c, 65% 32d, 82% 32e,47% 32f, 57%
Cul 5= L,Cul  LCu'lBr
SET
PN
Br CN - I
— o +CH,CN . N/fph / Ph LnCu 1Br ~ph
/T N\ S
TsN :/ L.<_/CN
I-B L cu'l

Scheme 31. Synthesis of functionalized five-membered rings.

1,6-Eneynyl amides are another kind of popular substrates for radical reactions in the
synthesis of functionalized 2-pyrrolidones [45]. In 2008, Feray and Bertrand reported an
RpZn-mediated radical reaction of 1,6-eneynyl amides for the synthesis of functionalized
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pyrrolidin-2-ones. The reaction of 1,6-eneynyl amides and alkyliodides in the presence
dialkylzinc at room temperature gave product 33 in high yields as a mixture of E/Z isomers
(Scheme 32) [46]. The reaction mechanism suggests that the t-butyl radical, generated from
the reaction of f-Bul and RyZn in the presence of oxygen, selectively adds to the triple bond
of amide to form a stabilized vinyl radical, which then undergoes 5-exo cyclization followed
by iodine atom transfer from #-Bul to give product 33.

)

Q. ReZn(2equiv) )

>_— R (0.5equiv) NH 7 "R
Allyl—N (0.5 equi) CL Aly—N

\_\ CH,Cl, I

FE N air, it, 6 h 33
R' = t-Bu, 98%, £/ 92:8
R' = j-Pr, 98%, E/Z 80:20

o
&
C.
o

o]

— t-Bu-I
— F~
- Bu-t B u-t
Allyl—N L. Allyl—N_ ° — AIIyI—N\»:(\ - t%» Allyl— Né::
I-F \\ \/\ t-Bu 33

Scheme 32. Synthesis of functionalized pyrrolidin-2-ones.

Xuan and co-workers introduced a reaction of 6-enynyl amides for the synthesis of
substituted 2-pyrrolidinones in 2018. The reaction of 6-enynyl amides, NIS (or NBS), and
sulfonyl hydrazide in CH3CN and in the presence TBHP afforded <y-lactams 34 in good to
excellent yields (Scheme 33) [47]. The reaction mechanism suggests that sulfonyl radical
generated from arylsulfonyl hydrazide adds to the C=C double bond of amide followed by
5-exo cyclization and then coupling with iodine radical to give product 34a.

(e} R2
o} )
— R2 NXS (1.2 equiv) RLN Ny
1 TBHP (2 equiv)
RN + RSO,NHNH, —— — " ° »
CH5CN, 80 °C, 16 h R30,C
COZR3 X=Br | SOzAr
CGH4p -Me
MeO,C MeO,C MeOzC Eto\gK Meo\gK
SO,CgH4p-Me SO,CgH4p-Br SO,Ph SO,Ph
34a, 87% 34b, 90% 340, 86% 34d, 86% 34e, 67%
ZIE 1.25:1 ZIE 11 ZIE 1.2511 ZIE 1.5:1 ZIE 3:1
RSO,NHNH,
TBHP * NIS Y I
o) 0 0 '
o]
}—* Ph >‘:

) Ph ~~Ph Y
SO,Ph 7 . Ph
TsN ) 2 TsN\7\— - Tssz;\ I TsN
CO,Me MeO,C SO,Ph MeO,C

MeO,C
SO,Ph 2C S0,Ph
I-G 2 34a

Scheme 33. Synthesis difunctionalized 7y-lactams.

Wei and co-workers reported a protocol of cyclative chloroazidation of 1,6-enynyl
amides for the synthesis of substituted 2-pyrrolidinones in 2018. The reaction of 1,6-enynyl
amides, TMSN3 and NCS in DCE in the presence of PIDA gave product 35 in moderate
yields (Scheme 34) [48]. The reaction mechanism suggests that N3 and Cl radicals were
generated from TMSN3 and NCS. The addition of N3 radical to the C=C double bond of
amide followed by 5-exo cyclization and coupling with the Cl radical affords product 35a.
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T PIDA (2 equi
1_ quiv) _R!
RN + TMSN; + NS —— = N
DCE, rt p
© I-D cl 35
H
N3 [e) N3 0 N3 le) N3 o
N-Ph N-CeHap-OMe N-CeHap-F N-CeHap-Br
Cl / Cl / Cl / Cl /
H H H H
35a 70% 35b, 74% 35c¢, 62% 35d, 56%
(?Ac + Phl cl

V%V?W

TMSN3 TMSOAc

3
Cl
+ Ohc Ph— I\ . o y H
Ph—I<
OAc
Ph—N k/_‘ )_<_—> <§<l AN Me
N _N
>/ < % Ns PR N,
35a
Scheme 34. Synthesis of difunctionalized pyrrolidin-2-ones.

In 2022, Li and coworkers reported a reaction of 1,6-enynyl amides for the synthesis of
v-lactams. The reaction of 1,6-enynyl amides and sulfonyl hydrazides in H,O at 70 °C for
20 h in the presence of TBHP gave product 36 in moderate-to-good yields (Scheme 35) [49].
The reaction mechanism suggests that PhSO, radical, generated from the reaction of
PhSO,NHNH, with TBHP and TBAI, adds to the C=C double bond of amide followed by
5-exo cyclization and coupling with iodine radical to give product 36a.

— 2 TBHP (2 equiv)
——=—R
1 TBAI (1.2 e
R NM + RSONHNH, _on (12eauy) SO,R
H,0, 70 °C, 20 h
o Me R!
CGH4p-OMe
&/SOZPh &/SOZPh &/ &/ &/
p -MeOCgH, p -MeCgH,
36a, 79% 36b, 80% 36¢c, 80% 36d, 79% 36e, 79%
Z/E > 20:1 Z/E>20:1 Z/E > 20:1 Z/E > 20:1 Z/E > 20:1
TBHP , TBAI
+ |2
PhSO,NHNH, )
[ __Ph
/— Ph . ,/—=—"FPh | )
TN PhSO,  TeN SOPh I SO,Ph
E—
Y é )—<’ TsN
o I-D ol SO,Ph o} O 36a

Scheme 35. Synthesis difunctionalized «y-lactams.

A photoredox ATRC reaction of 1,6-dienyl amides for the synthesis of functionalized
pyrrolidin-2-ones was developed by the Miyabe group in 2015. The reaction of 1,6-dienyl
amides and iodoalkanes in aqueous media and catalyzed by Ru(bpy)s;Cl,-6H,O and (i-
Pr),NEt gave product 37 in fair-to-good yields (Scheme 36) [50]. Other than i-C3F7I, other
iodo compounds such ICH,CN and ICH,CFj3 are also good radical precursors. The reaction
mechanism suggests that the i-C3F; radical generated from i-PrI via the photoredox process
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adds to the C=C double bond of amide, followed by 5-exo cyclization and then iodine atom
transfer from i-Prl to give product 37a.

o) Ru(bpy)sClyBH,0 (5 mol %) 0 R
(i-Pr)oNEt (1.1 equiv)
YJ\N/\/ + R BnO'N
dBn H,0/CHACN, Ar, 1 h
I-E LED 37 |
CaF7-i CaF-n CH,CN CH,CF;
BnO~ N%j:: BnO- N%j:: B0~ NU:II Bno~ N%j::
37a, 75% 37b, 48% 37c, 86% 37d, 37%
dr77:23 dr 65:35 dr47:53 dr 44:56

(i-Pr),NEt [Ru"(bby)a] .
I C3F7 C3F7 i o C3F7-I
N/\/ i-C4F7 BnO— N>_<_ N
| _— BnO- N ﬁ BnO—
OBn

I-E i-CsF7-l i-CaFy 37a |

Scheme 36. Synthesis of difunctionalized pyrrolidin-2-ones.

Li and Wei, in 2021, reported a Cu-catalyzed radical reaction of 1,6-dienyl amides for
the synthesis of substituted 7-lactams. The reaction of 1,6-dienyl amides and RSO, NHNH,
in CH3CN in the presence of Cul and TBHP gave product 38 in moderate-to-good yields
(Scheme 37) [51]. The reaction mechanism suggests that the sulfonyl radical, generated
from the reaction of RSO,NHNH, with TBHP, adds to the C=C double bond of amide
followed by 5-exo cyclization, oxidation to carbocation, and trapping I~ anion of Cul to
provide iodosulfonylation of product 38a.

Cul (1.2 equiv) R?
\()kN TBHP (2 equiv) SO,R?
* R*-SONHNH; ———————>
R3 R1 R2 CH4CN, Ar, 90 °C, 20 h N R?
R'" O34
&(SOZCSHW F &(SOzCeH‘tm -Cl &\80206&#’ -OMe &(Soz(:us-oMe
383 78% 38b 75% 380 62% 38d 79%
dr> 20:1 dr>20:1 dr>20:1 dr> 20:1
TsNNH TBHP |
' : /%\
Cul
—_— ~N Ts
%P% Y\ )H/\ ph/Nﬁ\Ts . Ph/N/%\TS Ph
o o Ve O 38a

Scheme 37. Synthesis difunctionalized y-lactams.

A photoredox reaction of carbonyl-containing 1,6-enynes for the synthesis of cyclopen-
tanone derivatives was reported by Zhou, Yu and their coworkers in 2020. The reaction of
gem-dialkylthio enynes, cyclobutanone oxime esters, and boronic acids in the presence of
Cu(CH3CN),BF,, dtbbpy and K3PO,4 in CH3CN under irradiation of blue LED gave func-
tionalized aryl thienyl sulfide 39 in moderate-to-good yields and with good chemo- and
diastereoselectivities (Scheme 38) [52]. The reaction mechanism suggests that y-cyanoalkyl
radical, generated from homolytic a,8-C—C cleavage of N-centered iminyl, which is de-
rived from cyclobutanone oxime esters, adds to the C=C bond of gem-dialkylthio 1,3-enyne
followed by 5-exo cyclization, radical rearrangement and fragment of ethylene to give
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sulfur-centered radical M-31. Radical M-31 reacts with the LCu!'Ph complex followed by
reductive elimination to give product 39a.

5
% R! -0 Cu(CH4CN y R
~, 3CN)4BF4 (10 mol%) 4
= N\ Ar dtbbpy (10 mol%) S O R4 RS
K3PO4 (2 equiv)
, \ + R + RgBOH), —— 2177 . S 2 N
R s S 15 W blue LED — R3
J/ R* R® CH4CN, 1t, N, 12 h f Mo
I-D 39
,Ph JPh CeH4p F
S o) CN 8 o) CN o] Ph on &
07 A~ "
S _ it S B o
p-MeCgHy Ph Ph Ph
39a, 76% 39b, 74% 39c¢, 62% 39d 45% 39d, 60%
dr93:7 dr90:10 dr95:5 dr50:50 drot:9
Q __Fh N=C A= CoepCFy PR Ph
Z
\ Ph-B(OH), /\/‘ S
Ph” 87 s oN Cu(CH3CN),BF, NG 4
o LT /dtbbpy 392 Sepr
r I
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CN Ph \\\ Ph ‘
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= . ¢ CN/
o - N S j N S
& 3 S CHs s S
m-31 L/ “ph

Scheme 38. Synthesis of aryl thienyl sulfides.

A reaction of 1,6-enynyl with two carbonyl groups for the synthesis of functionalized
succinimides was introduced by the Rong group in 2020. The reaction of 1,6-enynyl amides,
NBS or NCS, TMSN;3 and PIDA in DCM at room temperature for 3-5 min afforded products
40 as E/Z isomers in excellent yields (Scheme 39) [53]. The reaction mechanism suggests
that the azide radical, resulting from the reaction of PIDA and TMSN3, adds to alkene
moiety of 1,6-enyne, followed by 5-exo cyclization and coupling with the bromine radical
from NBS, to give product 40a.

7 NXS i A
(1.2 equiv)
Ar< : Ar\N —
NK + TMSN, PIDA (1.2 equiv) Ph

o Ph CHaCly, N, rt, 3-5 min 3 Ns
X =Br, Cl
-G 40
Ph~ —— = _ _
N © Ns o N; Ns

0
40a, 90% 40b, 85% 40c, 88% 40d 88%
Z/E 937 Z/E 58:42 Z/E 93:7 Z/E 94:6
oAc  TMSNj o B
Ph—I TMSOAc ~N7ONVF

/
\
OAc Ph
PIDA Ns Ph—i—OAc o} N3
Ph—I NBS 40a

N3
Scheme 39. Synthesis of functionalized succinimides.

3. Reaction of Arene-Tethered Dienes and Enynes

Presented in this section are the radical addition and cyclization-initiated difunctional-
ization reactions of arene-bridged 1,n-dienes -diynes, and -enynes with a reaction sequence
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shown in Scheme 40. It is noteworthy that most substrates found in the literature are enynes
but not dienes (like II-J) or diynes (like II-I) (Scheme 41). The enynyl substrates include the
most popular 1,7-enynyl amides II-A and other ones containing the carbonyl group (II-B to
II-E). Other substrates may contain heteroatom or conjugate groups (such as CN and Ar) at
the terminal carbon of the unsaturated bonds (II-F to II-H). Between the two unsaturated
carbon—carbon bonds in the substrates, the regioselectivity for the initial radical addition is
directed by the steric and the conjugation effects of the substituents. The R! group on the
terminal carbon of alkyne is commonly employed to block the initial radical addition to the
alkyne. Substrate II-J is an exception in which the initial radical addition does not go to the
conjugated alkene.

15t functionalization 2"d functionalization

R Rl
R R’ N N
_ .
/’/2 X /’// \ X Y ’ X
Rz 2, R2 —_— =/ | —
- X addition - Rer X cyclization n R2 )nR2

Scheme 40. General reaction for the difunctionalization of arene-bridged dienes and enynes.

Cd%\% % QQ N

H R I

Scheme 41. Arene-bridged enynes, dienes, and diynes with pointed position for the initial radical addition.

Benzene-tethered 1,7-enynyl amides are popular substrates for radical difunctional-
ization reactions. In 2014, the Li group introduced a reaction of such substrates for the
synthesis of dinitropyrrolo[4,3,2-de]-quinolinones. The reaction of 1,7-enynyl amides and
t-BuONO in DMSO afforded product 41 in good-to-excellent yields (Scheme 42) [54]. It
was found that the amount of H,O had a significant influence on the reaction. The re-
action mechanism suggests that NO, radical generated in situ from -BuONO adds to
the C=C double bond of amide followed by 6-exo cyclization to form intermediate M-32.
The reaction of M-32 with NO or NO; radical followed by electrophilic addition of NO
or NO, radical to the phenyl ring gave cationic intermediates M-33 and M-34. Cationic
radical intermediates M-35 and M-36 were produced through the treatment of the cationic
intermediates M-33 and M-34 with NO or NO, radical and then lead to the formation of
product 41a after the redox reaction.

The Wu group, in 2016, introduced a photoredox reaction of benzene-tethered 1,7-
enynyl amides for the synthesis of trifluoroethyl-substituted 3,4-dihydroquinolin-2(1H)-
ones. The reaction of 1,7-enynyl amides and Togni’s reagent in the presence of Nal and
PhCO,H under UV irradiation gave 42 in moderate-to-good yields (Scheme 43) [55]. The
proposed mechanism indicated that trifluoromethyl radical derived from the Togni’s
reagent adds to the C=C double bond of amide, followed by 6-exo cyclization and ox-
idation to cation for the reaction with iodide anion, to give product 42.
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Scheme 43. Synthesis of iodotrifluoromethylated 3,4-dihydroquinolin-2(1H)-ones.

In 2016, the Jiang group reported a reaction of benzene-bridged 1,7-enynyl amides for
the synthesis of substituted 3,4-dihydroquinolin-2(1H)-ones. The reaction of 1,7-enynyl
amides, TMSN3 and NIS (or NBS and NCS) in the presence of PhI(OAc); in CH,Cl, gave
products 43 in good-to-excellent yields (Scheme 44) [56]. A reaction mechanism suggests
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that N3 radical generated from the reaction of PhI(OAc), and TMSN3 adds to the C=C
double bond of amide followed by 6-exo cyclization and coupling with iodine radical from
NIS to give product 43.

X _R!

R1
=
/o NIS (NBS or NCS) |
+ TMSN; ——M > N3
N)Y PhI(OAC),, CH,Cly, 60 °C ,\‘l o
I-A R? 43
(j?g;—lip-ﬂ I CeHap-F BraCsHap-CN éﬁg—in Cl I« CeHap-Cl
SOZC6H4p Cl SOzPh SOzPh SOZPh
43a, 55% 43b, 51% 43c, 52% 43d, 45% 43e, 57%
o
NIS
PhI(OAc), + TMSN3 L» Ph—I—OAc —— Phl + N OAc
&
N3 _Nis_
I-A R2

Scheme 44. Synthesis of 3,4-dihydroquinolin-2(1H)-ones.

A transition metal-mediated radical reaction of benzene-bridged 1,7-enynyl amides
for the synthesis of substituted pyrrolo[3,4-c]quinolinones was reported by the Wan group
in 2016. The trans-fused products were obtained when using Mn!"! as a catalyst, whereas
cis-products were obtained using Cu'! as a catalyst. The reactions of amides and TMSN;
in the presence of Mn(OAc)3/NFSI or Cu(ClO4),/TBPB in CH3;CN afforded trans- or cis-
fused products 44, respectively, in good-to-excellent yields (Scheme 45) [57]. A reaction
mechanism suggests that N3 radical generated from TMSNj3 adds to the C=C double bond
of amides followed by 6-exo cyclization, releasing of Ny, then azido group transfer to afford
the desired trans- or cis-fused product 44.

3

// R CuCIO, - 6H;0 (30 mol%), Ns R
Mn(OAc); - 2H,0 (30 mol%), \\ Bipy (33 % mol),
NFSI (2 equiv) \ P TBPB (2 equiv) W
TMSNs, CH3CN, 80 °C ZZ TMSN3, CH3CN, 80 °C REN
I-A cis-44

[e] o
trans- 44a, 59% trans- 44b, 65% trans- 44c, 57% trans- 44d, 65% trans- 44e, 64%
dr15:1 dr12:1 dr7.3:1 dr14:1 dr9:1
N3 Ph N3 CeHam-F N3 CeHap-Br N3 Ph N3 Ph
N N N N N
N N
TsN N TsN N TsN N TsN MsN
o o (o} [¢] O
cis- 44a, 59% cis- 44b, 78% cis- 44c, 46% cis- 44d, 67% cis- 44e, 53%
TMSN;
R . R
R\ ) " = R\ Ny =N
N = N, . N3~ MLy
o T, o —= — - 5
N N Y N N~ 0 N~ ~O N~ O
TS)Y TSJH/\ 5 N N 1Ns o) N
1-A

44 trans/cis

Scheme 45. Synthesis of azido-substituted pyrrolo[3,4-c]quinolinones.



Molecules 2023, 28, 1145

25 of 57

The Tu group reported a method for the synthesis of densely functionalized 3,4-dihydro-
quinolin-2(1H)-ones in 2016. The reaction of benzene-tethered 1,7-enynyl amides, arylsul-
fonyl hydrazides and NIS (or NBS) in DEC in the presence of TBHP afforded product 45
in good-to-excellent yields (Scheme 46) [58]. The reaction mechanism suggests that the
sulfonyl radical derived from sulfonyl hydrazides adds to the C=C double bond of amides,
followed by 6-exo cyclization and coupling with iodine radical from NIS, to give product 45.

R’ I~ _R'
RZ é |
o} NIS, TBHP R2
+ ArPPSO,NHNH, —————— SO,ArP
N DEC, 60 °C
N" o
A SOAr! 45 SOA"
Q&\ I«_CeHap-Me I«_CsHap-Cl I_CeHap-Me
SOzAr SOzAr 30206H4-p Me 302 Ar
45a, 84% 45b, 71% 45c, 74% 45d, 67%
o t-BUOOH  t-BuOO’
t-BuOO or t-BuO’
N— — IH Ar?SO,NHNH, ~ ~ *SOAr + Ny
o) t-BUOOH or -BuOH

R1

H,0 + tBuO  -BuOOH

1

R 1 1
= _R IR
SOA 0 | NIS |
. oAl » SOLAr SO,A
—_— N)H./\SOZAr _— r
R N N"~o
R R 45

Scheme 46. Synthesis of functionalized 3,4-dihydroquinolin-2(1H)-ones.

A new method for the synthesis of 3,4-dihydroquinolin-2(1H)-ones was reported by
the Guo group in 2017. The reaction of benzene-tethered 1,7-enynyl amides, sulfinic acids
and diphenyl diselenides in EtOH-H,O and in the presence of TBHB to give product 46
in moderate-to-excellent yields (Scheme 47) [59]. Carrying out the reaction under micro
flow conditions could reduce the reaction time to less than 1 min. The reaction mechanism
suggests that the sulfonyl radical, produced from the arylsulfinic acid with the oxidation of
TBHP, adds to the C=C double bond of amide followed by 6-exo cyclization and coupling
with phenylselenyl radical to give product 46a.

A Cu-catalyzed radical trifluoromethylative spirocyclization reaction of benzene-
tethered 1,7-enynyl amides for the synthesis of trifluoromethyl-substituted 1'H-spiro-
[azirine-2,4"-quinolin]-2'(3'H)-ones was introduced by the Han group in 2017. The reaction
of amides, Togni’s reagent and TMSNj; in DMF and in the presence of Cu'! catalyst gave
product 47 in good-to-excellent yields (Scheme 48) [60]. The reaction mechanism suggests
that the CF3 radical from Togni’s reagent adds to the C=C double bond of amides; then, it
goes through path a or b to give cyclized Cu''-azido complex M-37, followed by reductive
catalyst elimination and denitrogenative cyclization to give product 47.



Molecules 2023, 28, 1145 26 of 57

R R5/Se| R’
Z
0 Ph 1BHP (3 equi
quiv)
R2_|\ O + R4 S + Se Se - R2_|\ SOZR4
0 U
= N)H/ OH pr EtOH/H,0, rt N0
n-A R3 46 s
Se Ph S - S
Ph” | Ph” el Bu-t Ph/Sel Ph Ph” el Ph o S8 CoHap-Br
Ts T T |
s SO,Ph s T
N (0] N (0] N (6]
Ts Ts 'l|\'ls 0o | (@] (6]
46a, 88% 46b, 68% 46¢, 60% 46d. 76% 46e, 46%
tBUOOH == "OH + tBuO" ;g 0H
O
g
4-S~
R OH u: Ph
_Ph RSO, P T
= Z
AN 0 . so,re PNSe)2. SO,R*
g aathS
s
A Ts Ts
Scheme 47. Synthesis of functionalized 3,4-dihydroquinolin-2(1H)-ones.
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Scheme 48. Preparation of spiro[2,5]azirinequinolinones.

The Guo group, in 2019, reported two photoredox methods for the synthesis of
trifluoroethyl-substituted 3,4-dihydroquinolin-2(1H)-ones. Method 1 is the reaction of
1,7-enynyl amides, CF350,Na, NCS (or NBS) using photocatalyst N-methyl-9-mesityl acri-
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dinium (Mes-Acr"). Method 2 is the reaction of 1,7-enynyl amides and CF350,Cl using
photocatalyst fac-Ir(ppy)s. These two methods gave product 48 in moderate-to-excellent
yields (Scheme 49) [61]. The proposed reaction mechanism indicated that for method 1, the
CF; radical generated from the CF3SO;Na under the photocatalysis of Mes-Acr* adds to
the C=C bond of amide followed by 6-exo cyclization and coupling with bromo radical from
NBS to give product 48d. In method 2, the CF; radical generated from the CF350,Cl under
the photocatalysis of fac-Ir(ppy)s goes through similar addition, cyclization and halogen
atom abstraction processes to afford product 48a.

method 2 method 1

2
R2 R2 CF3SO0,Na XGR
CF4S0,CI FZ NCS or NBS \

N CF, <SMERYREMON) T @ MesMor@mot) - TN CFy
R _ CH3CN, blue LED = Y CH3CN, blue LED = Y o
(6]} t, 16-24 h t, 16-24 h
I-A X =Cl, Br 48
Cl_Ph Cla_Ph ClCeHap-OMe Br< _Ph Bre _Ph
| \ |
CF3 ©\J/\£\CF3 CFs oFs \ .
o) N0 o~ "o N o
\ T (oo}

0,

48a, 92% 48b, 83% 48c, 76% 48d, 62% 48e. 43%
Cl CsH4P-Et Cl CsH4p-C| Cl Ph CSH4p Me
\
CFs CF; CF,
o) N" 0 N“T0
Ts Et SOZCGH40 Me
48f, 90% 48g, 86% 48h, 70% 48i, 76% 48j, 45%
Mes + cl
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Mes-Mcr* = O O cF, NCS CF,
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CK

e N o N0
. _Ph / Ts Br Ph Ts 48a
| |
+CF3 T T ©\/)H/\ CFs _ NBS . CF;

& 48d
fac-Ir(ppy)s CF3S0,ClI

method 2
Scheme 49. Synthesis of trifluoromethylated 3,4-dihydroquinolin-2(1H)-ones.

A visible light-induced radical reaction for the synthesis of haloperfluorinated N-
heterocycles was reported by the Tang group in 2019. The reaction of 1,6- or 1,7-enynyl
amides, perfluoroalkyl iodides/bromides in 1,4-dioxane and in the presence of fac-Ir(ppy)s
and K3POy4 under blue LED irradiation afforded product 49 in good yields and stereose-
lectivity (Scheme 50) [62]. The reaction mechanism suggests that n-C4Fg radical generated
under the photocatalysis with of fac-Ir(ppy)s adds to the C=C bond of amide, followed
by 6-exo cyclization and coupling with iodine radical, to selectively give product 49a as
the Z-isomer.

The Andrade group reported an ultrafast Fe-promoted reaction for the synthesis of
2-quinolinone-fused <y-lactones in 2021. The reaction of benzene-tethered 1,7-enynyl amides
and formamide and Fenton's reagent under microwave irradiation for 10 s gave product 50
ina good overall yield (Scheme 51) [63]. The reaction mechanism suggests that the hydroxyl
radical generated from Fenton’s reaction adds to the C=C double bond of amide followed
by 6-exo cyclization, coupling with hydroxyl radical, epoxidation, and lactonization to give
product 50a.
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Scheme 50. Synthesis of haloperfluorinated N-heterocycles.
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Scheme 51. Synthesis of 2-quinolinone-fused -y-lactones.

In 2022, Wu, Ying and their coworkers introduced a Pd-catalyzed reaction for the
synthesis of perfluoroalkyl and carbonylated 3,4-dihydroquinolin-2(1H)-ones. The reaction
of 1,7-enynyl amides, perfluoroalkyl iodides, alcohols and benzene-1,3,5-triyl triformate
(TFBen) in PhCF3 and in the presence of PdCl,(PhsP),, DPEphos, NIS, and Cs,CO3 gave
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MeO

product 51 in high yields with excellent E/Z selectivity (Scheme 52) [64]. In this reaction,
TFBen was used as the CO source and alcohols when making the ester products. A
reaction mechanism suggests that the n-C4Fg radical derived from n-C4Fol adds to the C=C
double bond of amide followed by 6-exo cyclization, incorporation with the Pd-catalyst,
CO insertion, and esterification with MeOH to afford product 51a.
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Scheme 52. Synthesis of perfluoroalkyl and carbonylated 3,4-dihydroquinolin-2(1H)-ones.

Benzene-linked 1,6-eneynyl ethers are a class of good substrates for radical difunc-
tionalization. Li and coworkers reported a reaction of such substrates for the synthesis of
dicarbonylated benzofurans in 2015. The reaction of benzene-linked 1,6-eneynyl ethers,
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), t-BuONO and O, in DMF at 40 °C for 8 h
gave product 52 in moderate-to-good yields (Scheme 53) [65]. Two oxygen atoms were
introduced to the product from O, and TEMPO, respectively. t-BuONO is a key reagent
which provides NO; and NO after decomposition of HNO; The reaction mechanism
suggests that the addition of TEMPO to the C=C double bond of ethers followed by 5-exo
cyclization, trapping of O,, oxidative cleavage of the N-O bond to release 2,6,6-tetramethyl-
1-nitroso-piperidine, and O-O bond cleavage /isomerization to afford product 52a.

An Ag-catalyzed reaction of 1,6-eneynyl ethers for the synthesis of sulfonyl-methylated
benzofurans was reported by Wu, Jiang and their coworkers in 2017. The reaction of
benzene-linked 1,6-eneynyl ethers and sodium sulfinates in CH3CN and in the presence
of K»5,03 and AgNOj afforded product 53 in moderate-to-good yields (Scheme 54) [66].
The reaction mechanism suggests that the sulfonyl radical generated from the oxidation of
PhSO;Na adds to the C=C double bond of ethers followed by 5-exo cyclization, oxidation to
cation, nucleophilic addition of H,O, and enol/ketone isomerization to give product 53a.
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Scheme 53. Synthesis of dicarbonylated benzofurans.
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Scheme 54. Synthesis of carbonyl and sulfonylmethylated benzofurans.

In 2017, Kumar and coworkers reported a visible light-induced reaction for the synthe-
sis of trifluoromethylacylated benzofurans, benzothiophenes, and indoles. The reaction of
1-ethynyl-2-(vinyloxy)-benzenes and CF350,Na in CH3CN/H;0 using phenanthrene-9,10-
dione (PQ) as a photoredox catalyst gave heterocycles 54 in good yields (Scheme 55) [67].
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The proposed reaction mechanism suggests that the CF; radical, generated from CF350,Na
with photo-activated PQ, adds to the C=C double bond of 1-ethynyl-2-(vinyloxy)-benzenes
followed by 5-exo cyclization, electron transfer from PQH radical, H,O addition and depro-
tonation, resulting in product 54.
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Scheme 55. Synthesis of trifluoromethylated and acylated heterocycles.

A reaction of 1,6-eneynyl ethers for the synthesis of sulfonylacylated benzofurans
was introduced by the Sun group in 2018. The reaction of oxygen-linked 1,6-enynes,
DMSO and H,O in the presence of NHyI afforded product 55 in moderate-to-high yields
(Scheme 56) [68]. A reaction mechanism suggests that the reaction between DMSO and
NH4I produced MeS and OH radicals. Addition of MeS radical to the C=C double bond
of ethers followed by 5-exo cyclization, OH radical coupling, axidation of sulfide, and
keto-enol tautomerism resulted in product 55a.

In 2020, the Zhang group introduced a Pd-catalyzed radical oxidative aryldifluoroalky-
lation of benzene-tethered 1,6-enynes for the synthesis of difluoroalkylated benzofuran,
benzothiophene, and indole derivatives. The reaction of 1,6-enynes, ethyl difluoroiodoac-
etate and arylboronic acids 1,4-dioxane or DCE under the catalysis of PdCl,(PhP3), and
DPE-phos gave product 56 in moderate-to-good yields (Scheme 57) [69]. The resultant
products can be converted into aromatic five-membered rings 57 via Fe(OTf)3-catalyzed
isomerization. A reaction mechanism suggests that the CF,CO,Et radical generated from
ICF,CO,Et adds to the C=C double bond of 1,6-enyne followed by 5-exo cyclization to
form M-38 and then reacts with Pd'I to form intermediate M-39. Intermediate M-39 could
also be generated from M-38 through iodine transfer with ICF,CO,Et and then with Pd®.
Coupling M-39 with phenylboronic acid finishes the reaction and gives product 56a.
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Scheme 57. Synthesis of aryldifluoroalkylated heterocycles.
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A Cu-catalyzed radical reaction of benzene-tethered 1,6-enynes for the synthesis of
trifluoroethylated dihydrobenzofurans was reported by the Jiang group in 2019. The reaction
of 1,6-enynes, Togni’s reagent, CO, and amines in DMSO under the catalysis of CuSO, gave
products 58 in good yields (Scheme 58) [70]. The proposed reaction mechanism suggests
that the CF; radical derived from the Togni’s reagent adds to 1,6-enynes followed by 5-exo
cyclization to form radical M-41. Then, it might have two pathways to form product 58a. In
path a, vinyl radical M-41 is oxidized by Cu! to a cation M-42, followed by trapping with
carbamate anion to form 58a. Alternatively, in path b, vinyl radical M-41 reacts with CuSQOy,
CO,, and amine to form carbamato complex M-43, which leads to the formation of product
58a after reductive elimination of the catalyst.

R1
gz
AN =~ CO, Togni's reagent
R2¢ + HN_R _—
0 CuSO4 ( 20 mol%)
DMSO, t, 10 h
-G
Ph CSH4p -OMe
— o)
0 o,/<
N—
FsC Et
58a, 50% 58b, 80% 58c 61% 58d, 62%
Q%Ph
o >//_, » > CO, + HNEt,
e -\ / patha 3 Et,NCO,"
cu' co HNEt
cu' >\ wrERet Ry Ph
. CUIH(OchEtz)z —
FaC CFs
N A CF3 ° OCONEt,
OC” cu'l( OchEtz)z —
O CFR, cu' FC  58a
path b M-43 u

Togni's reagent

Scheme 58. Synthesis of trifluoromethyl dihydrobenzofurans.

Gao, Ying and their coworkers reported a Pd-induced radical reaction for the synthesis
of difluoroalkyl- and alkenylphosphinyl-functionalized heterocycles in 2021. The reaction
of 2-vinyloxy arylalkynes, ICF,CO;Et and diphenylphosphine oxides in DCE under the
catalysis of PdCl,(PPh3), and Xantphos gave product 59 in good yields and stereoselectivity
(Scheme 59) [71]. A reaction mechanism suggests that the CF,CO;Et radical derived
from ICF,CO,Et under the catalysis of Pd'! adds to the C=C double bond of 2-vinyloxy
arylalkynes followed by 5-exo cyclization and iodine atom transfer from PdlI, through the
oxidative addition of Pd° to vinyl iodide, formation of diphenylphosphine oxide complex,
reductive elimination of Pd catalyst to give product 59a.

Using benzene-tethered and carbonyl-containing 1,6-enynes as a substrate for Cu-
catalyzed radical reaction for the construction of cyanotrifluoromethylated 1-indanones
was introduced by the Jiang group in 2020. The reaction of benzene-tethered 1,6-enynes,
Togni’s reagent and trimethylsilyl cyanide (TMSCN) under the catalysis of Cu(OTf), gave
product 60 in good yields (Scheme 60) [72]. A reaction mechanism suggests that the
trifluoromethyl radical generated from Togni’s reagent under the catalysis of Cu'l adds to
the C=C double bond of 1,6-enyne followed by 5-exo cyclization, formation of Cu"-complex
containing CN, and reductive elimination of the Cu-catalyst to give product 60a. By using
benzene-tethered 1,7-enynes, the Jiang group extended the reaction scope for the synthesis
of cyanotrifluoromethylated (Z)-3,4-dihydronaphthalen-1(2H)-ones 61 (Scheme 61) [73].
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Scheme 59. Synthesis of aifluoroalkyl and alkenylphosphinylated heterocycles.
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Scheme 60. Synthesis of cyanotrifluoromethylated 1-indanones.
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Scheme 61. Synthesis of cyanotrifluoromethylated (Z)-3,4-dihydronaphthalen-1(2H)-ones.

A Cu-catalyzed radical for the synthesis of cyanoalkyl and ester-functionalized 1-
indanones was introduced by the Jiang group in 2021. The reaction of 1,6-enynes, cyclobu-
tanone oxime esters in DCE at 80 °C under the catalysis of CuBr and1,10-Phen gave product
62 in good yields (Scheme 62) [74]. Both functional groups come from cyclic oxime esters.
A reaction mechanism suggests that the y-cyanoalkyl radical, generated from cyclic oxime
ester via a SET process with CulL,, adds to the C=C double bond of 1,6-enyne followed by
5-exo cyclization, formation of a Cu'! complex containing the ester group, and reductive
elimination Cu'L,, to give product 62a.
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Scheme 62. Synthesis of cyanoalkyl and ester-functionalized 1-indanones.
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A visible light-induced radical reaction of benzene-tethered 1,6-enynes for the synthe-
sis of the thiosulfonylated pyrrolo[1,2-a]benzimidazoles was reported by the Chen group
in 2021. The reaction of 1,6-enynes and PhSO,SPh in CH3CN under the photo catalysis of
Nay-Eosin Y gave 63 in moderate-to-good yields (Scheme 63) [75]. The reaction mechanism
suggests that the sulfonyl radical derived from PhSO,SPh adds to the C=C double bond
of 1,6-enynes followed by 5-exo cyclization and coupling with the SPh radical to afford
product 63a.
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Scheme 63. Synthesis of the thiosulfonylated pyrrolo-[1,2-a]benzimidazoles.

The Tu and Jiang groups, in 2016, reported a radical reaction of 1,5-enynes for the
synthesis of sulfonylated indenol[1,2-d]pyridazines. The reaction of 1,5-enynes, arylsulfonyl
hydrazides in CH3CN and in the presence of I, and TBHP gave products 64 in good yields
(Scheme 64) [76]. A reaction mechanism suggests that sulfonylhydrazone, generated from
the condensation of 1,5-enynes with the arylsulfonyl hydrazide, reacts with the tosyl radical,
which is also derived from arylsulfonyl hydrazide followed by 5-exo cyclization, 1,6-H
atom transfer, 6-endo cyclization of the N-radical, and aromatization to give product 64a.

A Pd-catalyzed radical cyclization of 1,7-enynes for the synthesis of functionalized (E)-
3,4-dihydro-naphthalen-1(2H)-ones was reported by Jiang, Tu and their coworkers in 2018.
The reaction of 1,7-enynes, sulfinic acids and N-fluorobenzenesulfonimide (NFSI) in THF
under the catalysis of [Pd(CH3CN)4](BF4), gave 65 in good yields and high stereoselectivity
(Scheme 65) [77]. A possible reaction mechanism suggests that 1,7-enynes generate a
Pd" complex which then reacts with NFSI to form Pd!Y complex M-44 for following two
pathways. Under the reaction conditions for path a, complex M-44 eliminates HBs;N,
followed by the addition of R3SO, radical, 6-exo cyclization, and reductive elimination
of Pd catalyst to give fluorosulfonated product 65. Under the reaction conditions for
path b, HF is released from complex M-44 followed by the similar reaction process of
R3S0, radical addition, 6-exo cyclization, and reductive elimination of Pd catalyst to give
benzenesulfonylated products 66.
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Scheme 64. Synthesis of disulfonylated indeno[1,2-d]pyridazines.

Using of benzene-tethered 1,8-dienes for Ir-catalyzed oxidative difluorinative radical
cyclization for the preparation of enol and CF,-containing benzoxepines was reported by
the Yang group in 2018. The reaction of 1,8-dienes and BrCF,CO,Et in CH,Cl, /H,O under
the photoredox catalysis with Ir(dtbbpy)(bpy),PFs afforded benzoxepine product 67 in
good yields (Scheme 66) [78]. A reaction mechanism suggests that the CF,CO,Et radical,
generated from BrCF,CO,Et under the photocatalysis of Ir(dtbbpy)(bpy).PFs, adds to the
C=C double bond of 1,8-dienes followed by 7-exo cyclization, the formation of an iminium
ion through the oxidization of [Ir'V (dtbbpy)(bpy).PFs]*, and iminium hydrolysis to give
product 67.

Using unique benzene-tethered 1,5-enynes, the use of 4-(2-ethynylbenzylidene)cyclohexa-
2,5-dien-1-ones for the synthesis of substituted spiroindene compounds was introduced by Yao
in 2018. The reaction of 1,5-enynes, TMSN3 and NIS in dioxane in the presence of TBPB gave
product 68 in good-to-excellent yields (Scheme 67) [79]. The suggested reaction mechanism
indicated that N3 radical derived from TMSNj3 adds to the double bond of 1,5-enynes to
give cyclohexadienone radical M-45 (path a), which then undergoes 5-exo cyclization to form
spirocyclic vinyl intermediates M-46, followed by iodine atom transfer from NIS to selectively
give iodo- and azido-functionalized spiroindene products 68a as an E-isomer. Due to the
steric hindrance of M-47, cyclization through path b leading to the formation of Z-product
68a’ is unfavorable.
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Scheme 65. Synthesis of functionalized 3,4-dihydroquinolin-2(1H)-ones.



Molecules 2023, 28, 1145

39 of 57

fo) o HO
= Ir(bpy)2(dtbbpy)PFg (1 mol %) Y/
de/\NMez BrCF,CO,Et NaOAc (2 equiv) P00
i + Br
- 22 CHoCly/H;0, rt, 48 h R
30 W white LED (6]
I1-J o
HO
o Mo o Mo o HO
y, y, / N
Br CF,CO,Et CF,CO,Et CF,COzEt CI ¢ CF,CO,Et
0 MeO o F o o
67a, 51% 67b, 52% 67c, 53% 67d, 64%
NMe2 NMe2 MeZN
R
o/\/‘CcmozEt
||4 *CF,CO,Et

\

o] \
CF,CO,Et ﬂ. CF2CO-Et
- NHMe,R

Scheme 66. Synthesis of enol and CF,-containing benzoxepines.
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Scheme 67. Synthesis of iodo- and azido-functionalized spiroindenes.

A metal-catalyzed radical spiroannulation of 1,5-enynes for the synthesis of fluorine-
containing (Z)-spiroindenes was reported by Jiang’s group in 2020. The reaction of 1,5-
enynes and ICF,CO;Et in DCE at 70 °C under the catalysis of PdCl, and 9,9-dimethyl-
4,5-bis(diphenylphosphino)xanthenes (Xant-Phos) gave iododifluoro-acetylated product
69 in good yields (Scheme 68) [80]. However, the use of BrCF,CO,Et or C4F¢l as the
fluoroalkylation reagents failed to give the corresponding (Z)-spiroindenes. Another
reaction of 1,5-enynes, Togni’s reagent and TMSCN in CH3CN at 50 °C under the catalysis of
Cu(OAc); and 34,7 8-tetramethyl-1,10-phenanthroline (tmphen) gave trifluoromethylated
products 70. For the synthesis of 69a, the reaction mechanism suggests that the CF,CO,Et
radical derived from ICF,CO,Et adds to the C=C double bond of 1,5-enynes followed by
5-exo spirocyclization, formation of the Pd-I complex, and reductive elimination of Pd
catalyst to afford iododifluoroacetylated product 69a. In the synthesis of CF3-functionalized
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products 70, the CF; radical derived from Togni’s reagent has a similar spirocyclization
mechanism to form cyanotrifluoromethylated spiroindene product 70a. The Tu and Jiang
groups extended this reaction in the synthesis of iodosulfonylated spiroindenes, which
involves an ionic instead of a radical cyclization [81].
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Scheme 68. Synthesis of functionalized spiroindene compounds.

Using dicyano-substituted benzene-tethered 1,5-enynes for a visible light-driven rad-
ical haloazidative cyclization for the synthesis of holoazido-functionalized indenes was
accomplished by the Li group in 2020. The reaction of 1,5-enynes, TMSN3, and N-iodo
(bromo or chloro) succinimide in DMF under the radiation of LED (380-385 nm) afforded
product 71 in moderate-to-good yields (Scheme 69) [82]. The suggested reaction mechanism
indicated that the azide radical generated from TMSNj3 under the photo conditions adds to
the double bond of 1,5-enyne followed by 5-exo cyclization and I-atom transfer from NIS to
give product 71a.

Using benzene-tethered 1,7-diynes for the synthesis of iododifluoroacetal tetrahy-
dronaphthalen-1-ols was introduced by the Jiang group in 2021. The reaction of 1,7-
diynes and ICF,CO,Et under photoredox catalysis with fac-Ir(ppy)s gave difluoromethyl-
containing (1E,2E)-tetrahydronaphthalen-1-ols 72 bearing two exocyclic C=C double bonds
as major stereoisomers in good yields (Scheme 70) [83]. A reaction mechanism suggests
that the CF,CO,E radical derived from ICF,CO,Et under the photocatalysis adds to the
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terminal alkyne of 1,7-diyne followed by 6-exo cyclization, SET of DIPEA to form cation,
and nucleophilic addition with iodide anion to give (1E,2E)-product 72a as a major isomer.
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N XN N N
R | by o+ TMSNe LeD@sosssom) el
A NXS DMF, tt, 1 h Z { CN
R! X=1, Cl, Br R
lI-F 71 X
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| | I Cl r
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TMSN
’ > hv N3 Nj Ns
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3 . _
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A A \ \
Il-F Ph Ph Ph TMa | Ph
Scheme 69. Synthesis of holoazido-functionalized indenes
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Scheme 70. Synthesis of iododifluoroacetal tetrahydronaphthalen-1-ols.

4. Reaction of Arene-Terminated Alkenes and Alkynes

Presented in this section are the radical addition and cyclization-initiated difunctional-
ization reactions of arene-terminated alkenes and alkynes with a reaction sequence shown
in Scheme 71. For the class of substrates shown in Scheme 72, the initial radical addition
happens at the alkene or alkyne groups instead of the arene. Sequential radical cyclization
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leads to the formation of spiro- or fused-ring compounds. The only exception is the reaction
of substrate III-E. The radical is added to the benzyne ring (via the benzyne intermediate).
Among the general substrates, the reactions of alkynes III-A (arylpropiolamides if Y is NR)
for making spiro compounds are much more popular than those of substrates III-B to III-E
for making fused cyclic products.

2" functionalization

S

z

18t functionalization

X

X

Y. \

I
In

z

X Y

« W X ————>= or —_— or X

27O addition Z70 " yclization ! !
oy o

z7 | z

Scheme 71. General reaction scheme for the difunctionalization of arene-terminated alkenes and alkynes.

Q A @RZ h QA;\% @QN @TQRZ

oTf
1 A -8 M- c -D I-E

Scheme 72. Aryl-terminated alkenes and alkynes with the pointed position for the initial radical addition.

There are several reports on the reaction of arylpropiolamides for the synthesis of 3-
functionalized azaspiro[4,5]trienones. In 2014, Li and co-workers reported a radical spirocy-
clization reaction of arylpropiolamides for the synthesis of 3-acylated azaspiro[4,5]trienones.
The reaction of alkynyl amides and aldehydes in the presence of TBHP gave product 73
in good-to-excellent yields (Scheme 73) [84]. The reaction mechanism suggests that the
carbonyl radical generated from aldehyde adds to alkyne followed by ipso-carbocyclization,
coupling with OH radical and oxidation of OH group to give 3-acylspiro[4,5]trienone 73a.
In 2014, Li’s group also reported a Cu-catalyzed radical spirocyclization of aryl alkynyl
amides for the synthesis of azaspiro[4,5]trienones. The reaction of arylpropiolamides and
cyclic ethers in +-BuOAc under the catalysis of Cu'! and TBHP gave product 74 in good
yields (Scheme 74) [85].

7 N\ +-BuOOH
< /
RZ\— 4 n-BuOAc
N + RicHo —27%¢
/ 110 °C, 36 h
R3 o
-A
0 o, PMe 0
A\ A\ A\
Ph
(0] o] N\ o] (o]
MeO P _N
CeHep-OMe CeHap-OMe B" [ corup-ome 0 Pn CaHyn
73a, 85% 73b, 91% 73c, 88% 73d,94%  73e, 86%

Ph

t-BuOOH

% ;4 Q N

n-A

Scheme 73. Synthesis of 3-acyl azaspiro[4,5]trienones.
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Scheme 74. Synthesis of substituted azaspiro[4,5]trienones.

A Cu-catalyzed radical spirocyclization of arylpropiolamides for the synthesis of 3-
triflouromrthylated azaspiro[4,5]trienones was reported by the Liang group in 2015. The
reaction of alkynyl amides and NaSO,CF3 (Langlois’ reagent) in CH3CN in the presence
of TBHP, MnO, and CuCl gave product 75 in good-to-excellent yields (Scheme 75) [86].
The reaction mechanism suggests that the CF3 radical derived from the Langlois’ reagent
adds to the C=C triple bond followed by ipso-carbocyclization, coupling with the +-BuOO
radical, and elimination of t-BuOH to give product 75a.

R}’ A\ AT NaOAc (2 equiv), MnO, (3 equiv) O\ A Ar
/ CuCl (10 mol%), TBHP (7 equiv)
_ + NaSO,CF3 ;/\ AN CFs
v CH3CN/H,0 (2:1) R?2 ™ vy
e} 60 °C, 10 h, air 75 5
n-A Y=N,0
Oy Ph Ox Ph Ox Ph O Ph
N—CF3 N—CF, N—=CF, ! N—CF,
/N /N MeO /N cl s
O 0 o) e}
75a, 58% 75b, 47% 75¢, 53% 75d, 54%
t-BuOOH
NaSO,CF3 £BuOO"
cat
0, Ph

o
5a

CFs Ph H
Ph Ph Ph 5 ~
? \«.CF3 CFj £BUOO t-BuOH o
~ f‘
// e I———— N CF3 N 3
N £BuOO" N Y
N / © N"So s
/ /
¢} e} 7

n-A

Scheme 75. Synthesis of 3-trifluoromethyl azaspiro[4,5]trienones.

In 2015, the Wang group introduced an Ag-catalyzed radical spirocyclization of aryl-
propiolamides for the construction of 3-arylthiolated azaspiro[4,5]trienones. The reaction of
alkynyl amides, thiophenols and H,O in 1,4-dioxane under the catalysis Ag' gave product
76 in moderate-to-good yields (Scheme 76) [87]. A proposed reaction mechanism suggests
that the thiyl radical produced from thiophenol adds to the carbon triple bond of arylpro-
piolamides followed by the ipso-carboncyclization, SET to form carbocation, nucleophilic
addition of H,O, and oxidization of OH to give product 76.

A TEMPO-mediated radical nitrative spirocyclization of arylpropiolamides for the
preparation of 2-nitrated azaspiro[4,5]trienones was introduced by Li’s group in 2015. The
reaction was carried out using arene-terminaled 1,5-enynes and t-BuONO in EtOAc in the
presence of Op and TEMPO to give nitrated spiro compound 77 in moderate-to-good yields
(Scheme 77) [88]. A reaction mechanism suggests that NO, generated from the oxidization
of NO adds to the carbon triple bond of arylpropiolamide followed by ipso-carbocyclization,
TEMPO oxidation to form cation, nucleophilic addition of H,O, and oxidization to give
product 77a.



Molecules 2023, 28, 1145 44 of 57

AgCI (10 mol%)
- - @ 5
1,4-dioxane, 80 °C
H>0 (3 equiv), air

76a, 76%
ArsH,— Ag” air
Ag air R '?‘r o A'/:\A R! A O\ R’
) g r
Ar /
e RS \éj / N—g [O] N5
] /N - 2H* /N Ar
R N (@] /N R2 o) R2 (6]
/ R2 R® 0 76
h
\
N
/
R2 O mA

Scheme 76. Synthesis of 3-arylthiolated azaspiro[4,5]trienones.
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Scheme 77. Synthesis of 3-nitralated azaspiro[4,5]trienones.

In 2015, Wang and co-workers developed an oxidative radical spirocyclization reac-
tion of arylpropiolamides for the preparation of 3-sulfonated azaspiro[4,5]trienones. The
reaction of arylpropiolamides and sulfonylhydrazide in the presence of TBHP and 1,05
afforded product 78 in moderate-to-good yields (Scheme 78) [89]. The reaction mecha-
nism suggests that the sulfonyl radical derived from sulfonylhydrazide adds to the carbon
triple bond of amides followed by ipso-cyclization, SET to form cyclohexadienyl cation,
nucleophilic addition of H,O, and finally oxidation with TBHP to give product 78.
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Scheme 78. Synthesis of 3-sulfonated azaspiro[4,5]trienones.

A new method for radical spirocyclization of arylpropiolamides to synthesize 3-
sulfonated azaspiro[4,5]trienones was reported by Liu’s group in 2016. The reaction of
amides and AgSCF; in CH3CN in the presence of K;5,05 and TBHP gave product 79
in excellent yields (Scheme 79) [90]. A proposed reaction mechanism suggests that the
CF;S radical derived from AgSCF3 adds to the carbon double bond of amides, followed by
ipso-carbocyclization, coupling with ¢t-butylperoxy radical, and elimination of -BuOH to

give product 79a.
N
R | K2S,0s (3 equiv)
X R TBHP (3 equiv) R?
i 3
2/NT/ + AgSCF, HMPA (3 equiv) R N
R z CH4CN, 80°C, Ar, 12h  R2™
n-A o
O\ O\ O\
CeHs CgHap-Br CgH40-Me
N SCFs SCFs N SCF,4
(e} (o] (e}
79a, 91% 79b, 84% 79¢c, 75%
KZSZOB ””””””””””””””””””””””””””””””””
AgSCFs t-BuOO,
SCF3
t-BUOOH N
SCF
\F Q Q—SCF ‘?SCFS 3
—N N
| SCF3 Bro
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Scheme 79. Synthesis of SCF;-substituted azaspiro[4,5]trienones.
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Other than the reactions of arylpropiolamides for making the spiro compounds de-
scribed above, the reactions of N-phenylacrylamides have also been developed for making
fused-cyclic products. In 2022, Zhang and co-workers reported a Co-promoted reac-
tion for the synthesis of bromoarylthiolated heterocyclic compounds. The reaction of
N-arylacrylamides and disulfides in CH3CN in the presence of CoBr, and (NH4);5,0g
gave functionalized product 80 in good-to-excellent yields (Scheme 80) [91]. The reaction
mechanism suggests that bromine and PhS radicals for the difunctionalization are gener-
ated from the reaction of CoBr, and PhSSPh. The PhS radical adds to the terminal carbon
of the double bond of amides, followed by cyclization and bromo radical coupling to give
product 80a.

Ar

1

n-8 R1 80
06H4P Me CGH4p OMe
Br
o)
N
\
80b, 86% 80c, 909@ 80d, 8296

e

) PhSBr N
oo T T 0

80a

Scheme 80. Preparation of cyclopentanes.

The reaction of methacryloyl benzamides could result in six-membered ring-fused
products. This work was reported by Tang, Chen and their co-workers in 2016 in the
development of a Cu-catalyzed radical reaction for the synthesis of dicyanoisoproylated
isoquinolinediones. The reaction of methacryloyl benzamides and AIBN in dioxane in the
presence of Cul, KF, and K3 PO, gave product 81 in good-to-excellent yields (Scheme 81) [92].
The reaction mechanism suggests that homolytic cleavage of AIBN gives two CNMe,C
radicals. One of them adds to the carbon double bond of amides, followed by 6-exo
cyclization to the benzene ring, selectively trapping the second CNMe,C radical under the
assistance of Cul, and final step aromatization to give isoquinoline-1,3(2H,4H)-dione 81a.

The reaction of N-propargylindoles could result in the formation of products with a
core of 9H-pyrrolo[1,2-a]indol-9-one. In 2022, Du and coworkers developed photoredox
radical cyclization of N-propargylindoles for the synthesis of 2-substituted 9H-pyrrolo-
[1,2-alindol-9-ones. The photo reaction of N-propargylindoles and cyclic ethers in MeCN
at 80 °C in the presence TBHP and dual catalysts Cu(OAc), and Eosin Y give product
82 in moderate yields (Scheme 82) [93]. The proposed mechanism suggests that a THF
radical, generated from the reaction of THF with TBHP and the catalysts, adds to the carbon
triple bonds of N-propargylindoles followed by 5-exo cyclization to give intermediate M-48.
Intermediate M-48 could have three paths to give product 82a, (1) M-48 couples with
t-BuOO radical and then oxidation; (2) M-48 traps O, then reacts with TBHP and Cul
catalyst; (3) M-48 oxidized to cation through SET process and then oxidized OH to C=0.
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Scheme 81. Synthesis of dicyanoisoproylated isoquinolinediones.
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Scheme 82. Synthesis of 2-substituted 9H-pyrrolo[1,2-a]indol-9-ones.

Other than the addition of an initial radical to the alkene or alkyne group on the side
chain presented in previous cases, a radical could add to benzene if the ring is converted to
a benzyne. In 2021, the Studer group reported such a reaction in the synthesis of substituted
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five-membered heterocycles. The reaction of arenes bearing 1,2-TMS and OTs groups with
TEMPO in the presence of CsF and 18-crown-6 ether gave product 83 in moderate yields
(Scheme 83) [94]. A proposed reaction mechanism suggests that arene is first converted to
benzyne with the treatment of CsF and then reacts with TMPO radical followed by 5-exo
cyclization and coupling with the second TEMPO to give product 83a.

/Y\/\ R O/Y OTMP
/@i CsF 18-crown-6 ether R

I
n- hexane rt

2
TEMPO Y=C,S R OTMP
III-E 83
&\/OTMP /&\/OTMP OTMP O OTMP
OTMP OTMP CC:M/P OTMP
83a, 59% 83b, 42% 83c, 46% 83d, 38%
______________________________________________________ dr5:1
o NF o NF o 0 o OTMP
CETMS CsF @ TEMPO @\ TEMPO
- |
OTf OTMP OTMP OTMP
III-E 83a

Scheme 83. Synthesis of diTEMPO-substituted benzofuran and analogs heterocycles.

5. Reaction of Other Alkene and Alkyne Compounds

Presented in this section are the radical addition-initiated difunctionalizations of
alkene- and alkyne-related compounds that cannot be fit in the previous sessions in terms
of substrates or reaction mechanism. As shown in Scheme 84, substrates IV-A to I'V-C are
1,n-eneallenes; the cyano group in enenitrile IV-D is responsible for the second function-
alization; arene-terminated enyne IV-E has a preexisting MeO group on the benzene ring
which will be converted to a new functional group during the reaction; arene-terminated
IV-F has a leaving group X which will be displaced by a new group at the step of second
functionalization. Since the reactions of these substrates are not the major focus of this
paper, only selected examples are highlighted.

AN
AR Setvalvg My e Rust s

IV-A

Iv-B IV-C IV-D IV-E IV-F

Scheme 84. Other alkene and alkyne compounds with the pointed position for the initial radical addition.

An early example of radical difunctionalization of eneallenes was reported by the
Hatem group in 1995 for the synthesis of bromo- and tosyl-functionalized cyclopantenes.
The reaction of eneallenes and tosyl bromide in benzene using AIBN as a radical initiator
gave product 84 (Scheme 85) [95]. A proposed reaction mechanism suggests that the tosyl
radical generated from TsBr adds the central carbon of allene, followed by 5-exo cyclization
and coupling with bromine radical, to give product 84a. Addition of tosyl radical to alkene
instead of allene could be possible. However, since no expected product 84a’” was isolated,
path b is less favorable than path a.
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Scheme 85. Preparation of tosyl-substituted cyclopentanes.

A later example for the reaction of eneallenes was reported by the Ma group in 2012.
It is a Zn-catalyzed radical cyclization for the synthesis of iodoperfluoroalkylated five-
membered rings. The reaction of eneallenes and Rpl in CH;,Cl; in the presence of Zn
powder and HOAc gave product 85 in moderate-to-good yields (Scheme 86) [96]. It is
worth mentioning that the two diastereomers of the product 85 could be converted into
3-(1-enylidene)heterocyclopentanes 86 through the TBAF-promoted dehydroiodination
reaction. A mechanism for the racial reaction suggests that the perfluoroalkyl radical
generated from Rpl adds to the alkene carbon of eneallenes followed by 5-exo cyclization
and coupling with the iodine radical from Rl to give product 85.

Re
-.p1
P 3 .~7"R | . 3
R R < B Zn (50 mol %), HOAc (20 mol %) | —/ R3 Rr TBAF (2.1 equiv) R>1=CR
\ + ‘\ —_—
N R2 ‘\_ F CH,Cl,, 40-45 °C “-R? toluene, 80 °C g2 X
X= 0, NBn, (CO;Me),
IV-B g5 X 86
C4Fon | CeFzmn Bn CaFen | CoF1a-
=
COzMe
O Bn 7
CO,Me
85a, 56% 85b, eo% 85c, 86% , 85e, 89% -

Scheme 86. Synthesis of iodoperfluoroalkyl substituted five-membered rings.

A more recent example of eneallene reaction was reported by the Shi group in 2021. Itis
a visible light-induced radical reaction of ene-vinylidenecyclopropanes (ene-VDCP) for the
synthesis of iodoperfluoro-alkylated N-heterocycles. The reaction of ene-VDCP, ICF,CO,Et
or ICF,CF,CF,CF; in 1,4-dioxane under the blue LED photocatalysis with fac-Ir(ppy); gave
87 in good yields and stereoselectivity (Scheme 87) [97]. The reaction mechanism suggests
that the CF,CO;Et radical, generated from ICF,CO,Et under the photolysis, adds to the
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terminal carbon of alkene followed by 5-exo cyclization, cyclopropane ring-opening, and
extraction of iodine atom from ICF,CO,Et to give the final product 87a.

R2

> #I fac-Ir(ppy)s (0.5 mol%) //
X + |I-R 2
P 1adioxane, it, 12h, Ar X R
1 n=12 30 W blue LED n Re
R X = NTs, NBs R!
IV-C
CF,CO,Et 5 CF,CO,E CF,CO,Et CF,COEt P07 CyFe-
87a, 83% 87b, 73% 87¢, 50% 87d, 40% 87e, 48%
ICF,CO,Et
A |||
C:Q c
“CFaCOREL ICcmozEt
— TsN — TsN
TSN\/\ TN
Iv-C CFZCOQEt CF,CO.Et CF,CO,Et 87a CF,CO,Et

Scheme 87. Synthesis of iodoperfluoroalkylated N-heterocycles.

An interesting example of using the cyano group as a radical acceptor for the difunc-
tionalization reaction was reported by the Li group in 2015. It is a Cu-catalyzed radical
cyclization of arene-tethered enenitrile for the synthesis of substituted quinoline-2,4(1H,3H)-
diones. The reaction of o-cyanoarylacrylamide and diphenyl-phosphine oxide in CH3CN
in the presence of CuBr; and Mg(NO3),-6H,O gave phosphinylated quinoline-2,4(1H,3H)-
diones 88 in good-to-excellent yields (Scheme 88) [98]. The reaction mechanism suggests
that the Ph,P(O) radical derived from PhyP(O)H under Cu'! catalysis adds to the C=C
double bond of amide followed by 6-exo cyclization to the CN group and hydrolysis with
H,O to give final product 88a.

o)
L R®
CuBr, (10 mol %) N
Mg(NO3),- 6H,0 (0.3 equiv)
/\/E + Ph,P(O)H e T RT
CHSCN, 100 °C X~ NS0
X=C,N >
IV-D R 88
o) F O 0
| POPh, I POPh, | POPh2 POth(\/ﬁ\/ﬁ'
:ri;io lil 0 :rﬂiio ;:ji
88a, 94% 88b, 94% 88c, 95% 88d, 90% 88e, 91%
Cu'u' """""""""""""""""""""""""""""""""""
PhoP(O)H
CN POPh, POP
©: 0 thP ©\/ hydronS|s
']‘ )H/\POPhZ
IV-D 8a

Scheme 88. Synthesis of phosphinylated quinoline-2,4(1H,3H)-diones.
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In 2016, the Li group also reported a decarboxylative radical reaction of o-cyanoary-
lacrylamides for the preparation of carbonylated quinoline-2,4(1H,3H)-diones. The reaction
of o-cyanoarylacrylamide and a-keto acids in acetone-H,O at 120 °C under the catalysis of
AgNO; and (NHy4);5,03g gave product 89 in good yields (Scheme 89) [99].

AgNO; (5 mol%)

' O 0 NH4),S,0s (1 equi
R—.\ _ )J\’/ .\ )S(OH (NH4)2520g (1 equiv)
X N Ph 1:1 acetone/H,0O

R2 @) 120 °C

N~ O A
| Bn |

89a, 74% 89b, 61% 89c, 71% 89d, 88%

Scheme 89. Synthesis of phosphinylated quinoline-2,4(1H,3H)-diones.

Having a MeO group on the benzene ring is a useful synthetic approach to assist
radical cyclization and for dearomatization. In 2017, Li and co-workers developed a Ni-
promoted radical spirocyclization of N-(p-methoxyaryl)propiolamides for the synthesis of
3-substituted azaspiro[4,5]trienones. The reaction of amides and a-bromo esters in DMF in
the presence of Ni(acac)y, 1,2-bis(diphenylphosphino)ethane (dppe), TBHP and K,HPO4
gave product 90 in moderate yields (Scheme 90) [100]. A proposed mechanism suggests
that alkyl radical derived from a-bromo esters adds to the triple bond of amide followed
by ipso-carbocyclization, oxidation with TBHP to form oxonium cation, and a final step
of demethylation to give product 90a. The MeO group on the aromatic ring is critical for
the radical cyclization and formation of the carbonyl group through diaromatization. The
product generated from this method is similar to that presented in Scheme 73, in which
there is no preexisting MeO group on the benzene ring.

Ar
Ni(acac), (20 mol%)
MeO | | R3 0 dppe (40 mol%)
| A %)J\ , _TBHP (4equiv)
+ 4 B ——— e —
SN0 R OR™ T HPO, (2 equiv)
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O, O\ O
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Scheme 90. Synthesis of 3-alkyl azaspiro[4,5]trienones.
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Using a similar synthetic strategy and the alkyne substrate, in 2018, Liu and co-
workers reported a visible light-mediated radical spirocyclization of N-(p-methoxyaryl)-
propiolamides for the synthesis of 3-acylspiroc (Scheme 91) [101]. The photo reaction of
alkynes and benzoyl chloride in CH3CN in the presence of Ir'!!(ppy); and 2,6-lutidine gave
product 91 in good-to-excellent yields.

// .\ )J\ [Ir(ppy)s], 2,6-Iutidine
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Scheme 91. Synthesis of 3-acyl azaspiro[4,5]trienones.

Scheme 92 shows another example of the reaction of N-(p-methoxyaryl)-propiolamides
developed by Liu’s group also for the synthesis of 3-acylspiro[4,5]trienones [102].The
photoredox reaction of alkynes, acyl oxime esters, HyO under the catalysis of Ir(ppy)s gave
product 92 in good yields.

Ar
| | O Ir(ppy)s (1Mol%)
. R3JJ\( H,0 ( 3 equiv) _
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Scheme 92. Synthesis of 3-acyl azaspiro[4,5]trienones.

The last example in this section is the reaction of arene-terminated alkene, which has
a leaving group X on the aromatic ring. Liao and coworkers employed this substrate in
the synthesis of functionalized benzosultams. The reaction of N-(2-haloaryl)cyanamide,
bromodifluoroalkyl reagents and Na;S,O5 in DMF and H,O at 80 °C afforded product 93 in
good yields (Scheme 93) [103]. A proposed reaction mechanism suggests that the CF,CO,Et
radical derived from BrCF,CO,Et SO, adds to the carbon double bond of amide followed
through 5-exo cyclization to the CN group, capture of SO; (generated from NayS,05) to
form sulfonyl radicals, cyclization to the benzene ring at the carbon with iodine, and a last
step of deiodo aromatization to give product 93a.
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Scheme 93. Synthesis of functionalized benzosultams.

6. Conclusions

Radical reactions are powerful and versatile synthetic methods for making carbon-
carbon and carbon-heteroatom bonds. Designing one-pot and cascade radical transforma-
tions to make cyclic ring skeletons are highly efficient and operationally straightforward
methods. Summarized in this article are the radical addition followed by cyclization re-
actions to make difunctionalized cyclic molecules. The second functionalization could be
achieved through radical coupling, transition metal-assisted reaction, and nucleophilic or
electrophilic substitution reactions, which significantly broaden the scope of difunction-
alization reactions. Reactions of substrates such as dienes, diynes, and enynes, as well as
of their arene-bridged and terminated analogs, are presented. In addition to conventional
radical reactions using radical initiators or under transition metal-catalysis, the recent
development of photoredox and electrochemical reactions have enhanced the scope of the
radical difunctionalizations. In addition to the difunctionalization of unsaturated carbons
such as alkenes and alkynes, we expect to see more development on difunctionalization
reactions involving other functional groups, such as CN and N3 We also expect to see more
applications in the synthesis of biologically significant molecules and natural products.
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