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Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) may act as an excellent theragnostic
tool if properly coated and stabilized in a biological environment, even more, if they have targeting
properties towards a specific cellular target. Humanized Archaeoglobus fulgidus Ferritin (HumAfFt)
is an engineered ferritin characterized by the peculiar salt-triggered assembly-disassembly of the
hyperthermophile Archaeoglobus fulgidus ferritin and is successfully endowed with the human H
homopolymer recognition sequence by the transferrin receptor (TfR1 or CD71), overexpressed in
many cancer cells in response to the increased demand of iron. For this reason, HumAfFt was
successfully used in this study as a coating material for 10 nm SPIONs, in order to produce a new
magnetic nanocarrier able to discriminate cancer cells from normal cells and maintain the potential
theragnostic properties of SPIONs. HumAfFt-SPIONs were exhaustively characterized in terms of
size, morphology, composition, and cytotoxicity. The preferential uptake capacity of cancer cells
toward HumAfFt-SPIONs was demonstrated in vitro on human breast adenocarcinoma (MCF7)
versus normal human dermal fibroblast (NHDF) cell lines.
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1. Introduction

Nanotechnology is at the leading edge of the rapidly developing new therapeutic and
diagnostic concepts in all areas of medicine. Among many drug delivery systems (DDSs),
magnetic nanoparticles (MNPs) have gained important attention in the last decades [1].
MNPs are a class of theragnostic nanoparticles that can be manipulated under the influence
of an external magnetic field. MNPs are commonly composed of magnetic elements,
such as iron, nickel, cobalt, and their oxides [2]. They are classified by their response
to an externally applied magnetic field [3]. The orientation of the magnetic moments in
a particle allows identifying of different types of magnetism observed in nature. The
magnetic properties of these particles are classified by the dependence of the magnetic
induction B on the magnetic field H [4]. In most materials, the relation between B and
H is linear: B = µ × H; where µ is the magnetic permeability of the particles. Iron oxide
particles exhibit paramagnetism if µ > 1; and diamagnetism if µ < 1. One important
advantage for the magnetic nanoparticles is their superparamagnetism which enables
their stability and dispersion upon removal of the magnetic field as no residual magnetic
force exists between the particles. Below approximately 15 nm, these particles are so
small that the cooperative phenomenon of ferromagnetism is no longer observed and
they magnetize strongly under an applied magnetic field but do not retain this property
once the field is removed. Nanoparticles with this feature are called superparamagnetic
particles and they are usually composed of a solid core made up of iron oxides (magnetite,
Fe3O4, and/or maghemite, Fe2O3) coated with biocompatible polymers [5]. The versatility
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of the superparamagnetic iron oxide nanoparticles (SPIONs) allows the production of
theranostic, multimodal and multifunctional devices that can be used for simultaneous drug
delivery [6] and imaging [7,8], biomolecular tracking, and cellular labeling [9]. Although
bare SPIONs exert some toxic effects, coated SPIONs have been found to be relatively
nontoxic, they were approved by the US Food and Drug Administration (FDA) due to
being quite benign toward humans [10]. To make SPIONs stable and suitable for biomedical
applications, it is important to disperse the nanoparticles in water and modify their surface
with small molecular surfactants or polymers. These surfactants or polymers protect the
iron oxide core from agglomeration, to provide chemical handles for conjugation with
biomolecules, and to reduce non-specific cell interactions. Additionally, studies have shown
that the iron released from degrading SPIONs is metabolized by the body, reducing the
potential for long-term cytotoxicity [11]. Various methodologies have been developed
to synthesize SPIONs [12–15] and to functionalize them with specific coatings [16,17].
Targeting methods generally fall into one of two categories [18]: passive targeting, which
relies on the physiological differences between cancerous and normal tissues; and active
targeting, which relies on ligands conjugated to the surface of the SPIONs to recognize
specific surface markers on cancerous tissue.

The biocompatible coating of SPIONs is essential for most biomedical applications
since this increases the stability of the iron oxide core, preventing aggregates formation and
allowing functionalization of the surface of the nanoparticles with targeting ligand [19].
There are many natural and synthetic polymers that can be used, such as dextran [20,21],
starch [22], alginate [23,24], poly(D,L-lactide-co-glycolide) [25], and poly(ethylene-glycol)
(PEG) [26,27], but also monoclonal antibodies, folic acid, biotin, transferrin, lactoferrin,
albumin, insulin, growth factors, etc [28]. Among these, we used a specific ferritin, the
Humanized Archaeoglobus fulgidus Ferritin (HumAfFt), as a biomimetic coating for SPIONs.

HumAfFt is an engineered ferritin characterized by the peculiar salt-triggered assembly-
disassembly of the hyperthermophile Archaeoglobus fulgidus ferritin and which is success-
fully endowed with the human H homopolymer recognition sequence by the transferrin
receptor (TfR1 or CD71), overexpressed in many cancer cells in response to the increased
demand of iron. Ferritin proteins have played an important role in recent years as smart
nanocarriers for drug delivery due to their hollow cage-like structures and their unique
24-mer assembly [29,30]. Ferritin H-homopolymers have been extensively used as nanocar-
riers for different applications in the targeted delivery of drugs and imaging agents [31,32],
due to their ability to bind the transferrin receptor (TfR1 or CD71), highly overexpressed
in iron avid, fast replicating, tumor cells. On average it takes less than five minutes to
complete an entire ferritin internalization cycle, which yields an approximate turnover
rate of 20,000 ferritin molecules per cell per minute. This is a greatly advantageous feature
of ferritin targeting because it allows a larger number of drug or other molecules to be
internalized in the cells [33]. Virtually all proposed applications are based on the delivery
of small therapeutic molecules or metal labels encapsulated within the human H-ferritin
homopolymer with a procedure that entails subunit dissociation of the ferritin 24-mer at
extreme pH values (<2.0 or >10.0) followed by neutralization and then the encapsulation of
the small molecules [34,35]. This technique, however, is not amenable to the encapsulation
of molecules that are highly sensitive to drastic pH changes. In contrast, the ferritin from
Archaeoglobus fulgidus (AfFt) has emerged as an alternative to human ferritin homopoly-
mers, since it requires mild cargo material encapsulation conditions in view of the unique
self-assembly properties that entail divalent cation-driven assembly at neutral pH values.
AfFt assembles in a distinctive tetrahedral geometry as a result of a particular packing
between four hexameric units into a unique 24-mer structure, which results in the formation
of four wide triangular pores (45 Å) on the protein shell. As such, AfFt has been proven
to be the ideal scaffold to host molecules or nanoparticles within the internal cavity in a
reversible manner [36–38].

Archaeoglobus fulgidus ferritin was genetically modified by grafting a 12 aminoacidic loop
(BC loop in ferritin topology), typical of H-ferritin homopolymer, into the archaeal ferritin
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itself. The resultant chimeric protein, referred to as “humanized Archaeoglobus fulgidus ferritin”
was shown to be able to interact with the extracellular moiety epitopes of the CD71 receptor
of target cells in a similar way as the human H ferritin [39]. The engineered HumAfFt thus
combines the versatility in assembly and cargo incorporation properties of AfFt with binding
capabilities and cellular uptake properties of human H homopolymer.

The aim of this study was to use HumAfFt as a coating material for 10 nm SPIONs, in
order to create a new magnetic nanocarrier able to discriminate cancer cells from normal
cells and to be influenced by a magnetic field as well. The obtained complex (HumAfFt-
SPIONs) was characterized in terms of HumAfFt and SPIONs content, morphology, size,
and stability. Moreover, the preferential target of the HumAfFt-SPIONs towards cancer
cells was demonstrated in vitro by biological assays.

2. Results and Discussion
2.1. Preparation and Characterization of HumAfFt-SPIONs

The effect of mutations on the MgCl2-mediated self-assembly of HumAfFt has been
previously studied by size exclusion chromatography (SEC), in order to separate different
possible oligomers according to their molecular size [40]. The increasing of the MgCl2
concentration allows the self-assembly of the dimers until they reach a stable polymeric
structure around 500 kDa, corresponding to the expected 24-mer cage-like structure, at
50 mM MgCl2. The data highlighted that the chimeric HumAfFt maintained the cation-
induced association/dissociation properties of archaeal ferritin and is possibly assembled
into a 24-mer typical structure. The disassembled HumAfFt was incubated in the presence
of the SPIONs (HumAfFt-SPION ratio = 1) and by restoring the concentration of MgCl2 to
50 mM (Figure 1).
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Figure 1. Schematic representation of the SPIONs coating with HumAfFt. The disassembled HumAfFt
was incubated in the presence of the SPIONs and by restoring the concentration of MgCl2 to 50 mM.

The superparamagnetic behavior of HumAfFt-SPIONs at room temperature was
observed macroscopically by attracting HumAfFt-SPIONs dispersed in water with an
external magnet, as shown in Figure 2. Upon the magnet application outside the vial,
HumAfFt-SPIONs were rapidly recovered and accumulated near the magnet, whereas a
homogeneous nanoparticle dispersion was established again as the magnetic field was
removed, suggesting superparamagnetic behavior and good physical stability of the coated
nanoparticle. The above procedure resulted in a valid method for recovering and purifying
HumAfFt-SPIONs, warranting the elimination of not assembled ferritin.
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Figure 2. Pictures of a HumAfFt-SPIONs Milli-Q water dispersion during (a) and after (b) the
application of an external magnet.

The thermogravimetric analysis of the solid residue of HumAfFt-SPIONs showed that
the new nanosystem has a water content of 1% and a Fe3O4 content of 40%, measured as
sample weight loss between 25 and 560 ◦C (Figure 3).
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Figure 3. TGA analysis of HumAfFt-SPIONs.

ATR spectra acquired for each sample are reported in absorbance mode in the range
4000–400 cm−1 (Figure 4) and present expected absorption peaks previously reported in
the literature [41], confirming the composition of prepared HumAfFt-SPIONs. The peaks
around 570 cm−1 and 630 cm−1 are attributed to the stretching vibrations from Fe-O and
confirm the existence of nanoparticles with magnetite core [42]. Broad bands at the region
3000–3600 cm−1 corresponding to the vibrations of the hydroxyl group (O-H) are present in
HumAfFt and HumAfFt-SPIONs spectra, in these compounds the water content is higher
than in the SPIONs. Sharp peaks at 1650 cm−1 and at 1550 cm−1 in the HumAfFt spectrum
are assigned to the N–H bending vibration of primary amines. The bands in the range
1450 cm−1 and 1100 cm−1 were attributed to C-H deformation vibrations and the C-O
stretching, respectively. The appearance of these peaks in the HumAfFt-SPIONs spectrum
suggests that the HumAfFt is coating the SPION surface.
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Figure 4. ATR-FTIR spectra of HumAfFt, SPIONs, and HumAfFt-SPIONs complex.

The morphology and the size of prepared HumAfFt-SPIONs were evaluated by AFM
analysis. AFM images (Figure 5) clearly showed a spherical particle population with a
mean diameter size between 30 and 39 nm.
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Figure 5. 2D AFM micrograph (a) and 3D AFM image of HumAfFt-SPIONs (b).

With the aim of confirming the presence of a ferritin coating around HumAfFt-
SPIONs, an Energy Dispersive X-Ray (EDX) analysis was performed by SEM analysis [17]
(Figure 6a–d). It revealed that HumAfFt-SPIONs aggregates are coated with oxygen and
carbon-bearing organic material, such as ferritin; no iron is visible on the surface, demon-
strating that the SPIONs constitute the core of the nanostructure. As a control, an elemental
analysis of uncoated SPIONs was performed (Figure 6e). Differently, this analysis demon-
strated that the same SPIONs without coating are composed of iron and oxygen in the ratio
89.8% and 10.2%, respectively.
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Stability Studies of the HumAfFt-SPIONs

The stability of nanoparticles is an important parameter concerning applications of
nanovectors. These should be stable in terms of size when dispersed in a physiological
medium avoiding aggregation phenomena. Therefore, the stability of the HumAfFt-SPIONs
was studied by measuring the hydrodynamic diameter and zeta potential by DLS analysis.
As shown in Table 1, HumAfFt-SPIONs were found to be stable with low PDI maintaining
a hydrodynamic diameter size below 150 nm in the hydrated state [43]. This characteristic
was maintained for up to one month, when the analysis was repeated. Furthermore, the
surface potential (Zp) of SPIONs was found to be negative (−31.3) before coating, then,
decreases to −5.1 when they are coated by the HumAfFt. This finding is strictly coherent
with the deposition of ferritin units around the SPIONs surface. The lowering of the
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polydispersity index (PDI) value further demonstrates the formation of a homogeneous
and stable nanosystem.

Table 1. DLS data (zeta average and polydispersity index) and Z-potential values of HumAfFt-
SPIONs in Milli-Q water (0.06 mg/mL).

Za (nm) PDI Zp (mV)

HumAfFt 20.42 0.392 −4.1
SPIONs 27.65 0.295 −31.3

HumAfFt-SPION 145.8 0.202 −5.1

2.2. In Vitro Biological Characterization of HumAfFt-SPIONs
2.2.1. Cytotoxicity Assay

The evaluation of the cytotoxicity effect of a novel material yields important data for
predicting the safety of the new system for in vivo applications. Toward this goal, the viability
of two different cell lines was assessed in the presence of various concentrations of HumAfFt-
SPIONs. Cell viability was estimated by the MTS assay using human breast adenocarcinoma
(MCF7) and normal human dermal fibroblasts (NHDF) cell lines. MCF7 is a cancer cell line
where the transferrin receptor is overexpressed, and it is used to investigate the anti-cancer
activity of many drugs and the associated mechanism of action; NHDF is a non-tumoral cell
line extensively used as a model of normal cells to screen cytotoxicity of novel compounds or
carriers. These cells were incubated with uncoated SPIONs and HumAfFt-SPIONs at three
different concentrations of 10, 50, and 150 µg/mL, for 4 and 24 h. The results, in terms of cell
viability (%) as a function of sample concentration, are shown in Figure 7. These results show
that the viability of both normal and cancer cells was always above 80% for all the tested
concentrations, both after 4 and 24 h of incubation, indicating a good cytocompatibility of the
new vector HumAfF-SPIONs. No statistical significance was revealed in the cell viability of
all tested samples at the same concentration and incubation time (p > 0.05).
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Figure 7. Cell viability of SPIONs (white) and HumAfFt-SPIONs (black) in MCF7 (a) and NHDF
(b) cells after 4 and 24 h of incubation. Statistical significance (Student’s two-tailed t-test): p > 0.05 for
all samples at the same concentration and incubation time.
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2.2.2. Uptake Studies in Cell Culture Experiments by Fluorescence Microscopy

To further investigate the preferential targeting of HumAfFt-SPIONs into tumor cells,
uptake experiments of cancer and normal cells were performed. MCF7 and NHDF cell lines
were incubated with fluorescein labeled HumAfFt-SPIONs for 4 and 24 h; then particle
internalization was investigated by fluorescence microscopy. Analyzing the obtained
images (Figure 8), the internalization of HumAfFt-SPIONs is markedly higher in MCF7
cells in comparison with NHDF, endorsing the excellent capacity of HumAfFt-SPIONs to
discriminate between cancer and normal cells. It was noticed that the ability of magnetic
nanoparticles to discriminate their uptake between tumoral and non-tumoral cells strongly
depends on the presence of HumAfFt that improves the nanoparticles internalization;
this result is supported by the fact that the transferrin receptors are overexpressed on the
cancer cell membranes [39]. Finally, the merge images (c, f, i, and l) confirmed that the
HumAfFt-SPIONs predominantly have a cytoplasmic localization in MCF7 cells (images i
and l) starting from 4 h post incubation.
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3. Materials and Methods
3.1. Expression and Purification of HumAfFt

The gene encoding for a mutated ferritin from Archaeoglobus fulgidus was synthesized
by Gene Art (ThermoFisher) and subcloned into a pET22b vector (Novagen) between the
restriction sites NdeI and HindIII at 5′ and 3′, respectively. The recombinant plasmid
was transformed into Escherichia coli BL21 for protein expression upon induction with
1 mM IPTG (isopropyl-β-D-1-thiogalactopyranoside) at OD600 = 0.6 for 16 h. Cells were
harvested by centrifugation 3 h post-induction at 37 ◦C. Bacterial paste from 1 L culture
was resuspended in 20 mM HEPES buffer, pH 7.5, containing 200 mM NaCl, 1 mM TCEP
(tris(2-carboxiethyl)phosphine), and a complete TM Mini Protease Inhibitor Cocktail Tablet
(Roche). Cells were disrupted by sonication and the soluble fraction was purified by heat
treatment at 78 ◦C for 10 min. Denatured proteins were removed by centrifugation at
15,000 rpm at 4 ◦C for 1 h. The soluble protein was further purified by ammonium sulfate
precipitation. The precipitated fraction at 70% ammonium sulfate was resuspended in
20 mM HEPES, 50 mM MgCl2, pH 7.5 and dialyzed versus the same buffer. As the final
purification step, the protein was loaded onto a HiLoad 26/600 Superdex 200 pg column
previously equilibrated in the same buffer using an ÄKTA-Prime system (GE Healthcare).
Purified protein was concentrated to obtain the final protein preparation of 1 mg/mL and
protein concentration was calculated by measuring the UV spectrum using an extinction
coefficient of 32,430 M−1cm−1. Protein yield was ~40 mg/L culture.

3.2. Preparation of HumAfFt-coated SPIONs

Superparamagnetic iron oxide nanoparticles (SPIONs) (10 nm average particle size)
water dispersion were purchased from Sigma Aldrich (Milan, Italy). The HumAfFt was
disassembled by dialysis with demineralized water (Milli-Q quality) using a molecular
porous membrane tubing MWCO: 3.5 kD (Spectral/Por Dialysis Membrane Standard RC
Tubing) pH 7.4 in order to remove the MgCl2. Finally, the HumAfFt was reassembled in the
presence of the SPIONs (HumAfFt-SPION ratio=1) and by restoring the concentration of
MgCl2 to 50 mM. HumAfFt-SPION was collected and purified using an external magnet.

3.3. Characterization of the HumAfFt-SPIONs

Size and zeta potential values of HumAfFt, SPIONs, and the new complex HumAfFt-
SPIONs were recorded by Dynamic Light Scattering (DLS) analysis (Malvern Zetasizer
NanoZS, Worcestershire, UK). A complex concentration of 0.06 mg/mL at pH 7.4 was
used for DLS and Z-potential measurements (mV), at 25 ◦C using an instrument fitted
with a 532 nm laser at a fixed scattering angle of 173◦. Thermogravimetric analysis (TGA)
was performed using a LABSYS Evo STA TGA-DSC (Caluire, France) at heating rates of
7 ◦C/min between 30 ◦C and 500 ◦C and alumina crucibles were used in all experiments.
Nitrogen purge gas was used with a flow rate of 5 mL/min.

An FTIR spectrometer (Bruker ATR FTIR, model ALPHA, Ettlingen, Germany) in
attenuated total reflection (ATR) mode, equipped with a diamond measurement interface
and controlled by OPUS software, was used to collect IR spectra. Spectra have been
acquired in the range 4000–400 cm−1 with a resolution of 2 cm−1. Each measurement is
the result of the average of 64 scans. The ATR diamond crystal was cleaned with 70%
ethanol/water and a background measurement was performed between each sample.
Sample was compressed against the diamond to ensure good contact between sample and
ATR crystal.

Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis
were performed using a scanning electron microscope, ESEM Philips XL30 (Massachusetts,
USA). Samples were dusted on a double-sided adhesive tape previously applied on a
stainless steel stub. The HumAfFt-SPIONs were then sputter-coated with gold prior to
microscopy examination.

Atomic force microscopy (AFM) analyses were performed in Tapping mode in air
by a Bruker Dimension FastScan microscope (Santa Barbara, CA, USA) equipped with
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closed-loop scanners. Triangular FastScan A probes (resonance frequency = 1400 KHz,
Tip radius = 5 nm) were used for acquisitions. The nanosystem was dropped onto a
freshly cleaved mica surface as a thin layer aqueous dispersion (0.001 µg/mL−1) and
dried overnight before observation.

3.4. In Vitro Biological Evaluations
3.4.1. Cytotoxicity Assay

The cytotoxicity assays were carried out by the tetrazolium salt (MTS) assay, using
a commercially available kit (Cell Titer 96 Aqueous One Solution Cell Proliferation assay,
Promega). Human breast adenocarcinoma (MCF7) and normal human dermal fibroblast
(NHDF) cell lines were used for the experiments.

MCF7 and NHDF cell lines were obtained from the Laboratory of Cell Cultures of
Advanced Technologies Network Center (ATEN Center) of the University of Palermo. Cells
were seeded at a density of 2.5 × 104 cells/well in 96-well plates in Dulbecco’s modified
Eagle’s medium (DMEM, Euroclone, Italy) containing 10 vol% fetal bovine serum (FBS),
1 mM glutamine, 1% penicillin and 2% amphotericine B (0.25 mg/mL) (Sigma-Aldrich,
Italy), under standardized conditions (95% relative humidity, 5% CO2 and 37 ◦C) and
cultured for 24 h. Starting dispersions of SPIONs or HumAfFt-SPIONs (10, 50, 150 µg/mL)
were prepared in the same medium, and 150 µL of each dispersion was added per well.
Untreated cells were used as negative control. After 4 and 24 h of incubation, the medium
was removed and cells were washed with DPBS. Then 150 µL of fresh medium and 20 µL
of a MTS solution were added to each well. Plates were incubated for an additional
2 h at 37 ◦C. Then, the absorbance at 492 nm was measured using a microplate reader
(PlateReader AF2200, Eppendorf, Hamburg, Germany). MTS assay was performed in
triplicate and the viability was expressed as percentage obtained from the ratio between
each sample with respect to their negative control (100% of cell viability).

3.4.2. Uptake Studies by Fluorescence Microscopy

The uptake of HumAfFt-SPIONs was evaluated on culture of normal and cancer cell
lines by fluorescence microscopy. NHDF and MCF7 cells were seeded at a density of
105 cell type/well into 8-well plates and cultured for 24 h in Dulbecco’s modified Eagle’s
medium (DMEM, Euroclone, Italy) containing 10 vol% fetal bovine serum (FBS), 1 mM
glutamine, 1% penicillin and 2% amphotericine B (0.25 mg/mL) (Sigma-Aldrich, Milan,
Italy), under standardized conditions (95% relative humidity, 5% CO2 and 37 ◦C). The
complex HumAfFt-SPIONs were labeled with the fluorescein sodium salt (Sigma-Aldrich)
according to the manufacturer’s standard protocol. After 24 h, cells were incubated with
350 µL per well of cell culture medium containing HumAfFt-SPIONs at a final complex
concentration per well of 150 µg/mL for 4 h and 24 h. Following, the cells were washed
with DPBS and analyzed by fluorescence microscopy. The images were recorded using an
Axio CamMRm (Zeiss, Jena, Germany). Untreated cells were used as negative control to
set the auto-fluorescence.

3.4.3. Statistical Analysis

The student’s two-tailed t-test was used to carry out statistical analysis. The crite-
rion p < 0.05 was chosen to assign statistical significance. Data are the average of three
experiments ± standard deviation.

4. Conclusions

In this work, a new magnetic nanocarrier targeted toward cancer cells was developed.
In detail, an engineered ferritin was synthetized and used as a coating material for 10 nm
SPIONs. For this purpose, the engineered ferritin was the humanized Archaeoglobus fulgidus
ferritin (HumAfFt) characterized by the peculiar salt-triggered assembly-disassembly of
the hyperthermophile Archaeoglobus fulgidus ferritin and which is successfully endowed
with the human H homopolymer recognition sequence by the transferrin receptor (TfR1
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or CD71), overexpressed in many cancer cells in response to the increased demand of
iron. The newly engineered ferritin assembled in a distinctive tetrahedral geometry as a
result of a particular packing between four hexameric units into a unique 24-mer structure,
representing an ideal scaffold to host molecules or nanoparticles within the internal cavity.
Thanks to the salt-triggered assembly mechanism and to the 24-mer typical structure of
the ferritin, 10 nm diameter SPIONs were successfully coated with the HumAfFt. The new
complex HumAfFt-SPIONs formation was confirmed by ATR-FTIR and EDX techniques.
HumAfFt-SPIONs were found to be stable with low PDI and a hydrodynamic diameter size
below 150 nm in the hydrated state and about 40 nm in the dry state. The obtained complex
maintained the superparamagnetic property of SPIONs and the presence of ferritin coating
was confirmed using the EDX analysis.

Biological studies on MCF7 and NHDF cell lines have shown that HumAfFt-SPIONs
do not induce toxicity in cells even at high concentrations. Uptake assay confirmed the
magnetic nanocarrier’s ability to preferentially accumulate into MCF7 cancer cells versus
NHDF (non-tumoral cells), in agreement with the fact that the TfR1 is overexpressed in a
cancer cell. After only 4 h post incubation, the HumAfFt-SPIONs predominantly have a
cytoplasmic localization in MCF7 cells. Therefore, HumAfFt-SPIONs represent an excellent
theragnostic tool with high stability and biocompatibility. The obtained results stimulate
further exploration of cancer-targeted therapies.
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