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Abstract: In this study, a flower–like BiVO4/MIL–101–NH2 composite is synthesized by a facile
and surfactant–free process. The –COO−–Bi3+ ionic bond construction was conductive to enhance
the interface affinity between BiVO4 and MIL–101–NH2. Due to the highly efficient light capture
and sufficient electron traps induced by oxygen vacancies and the formation of a heterostructure,
the improved separation and transportation rates of charge carriers are realized. In addition, the
MIL–101–NH2/BiVO4 composite is favorable for Cr(VI) photocatalytic removal (91.2%). Moreover,
FNBV–3 (Fe/Bi = 0.25) also exhibited an excellent reusability after five cycles.

Keywords: photocatalyst; hexavalent chromium; Z–scheme heterojunction; charge separation
efficiency

1. Introduction

Heavy metal ions have increasingly attracted attention in wastewater pollutants [1].
Among the contaminants, the toxic hexavalent chromium ion is seriously threating for
the ecosystem and poses a great carcinogen risk to human survival [2]. In this regard, the
USEPAs guidelines considered that the concentration of Cr(VI) in drinking water exceeding
0.1 mg·L−1 may lead to negatives carcinogenic effects. At present, several available methods
have been proposed to remedy the pollution, including catalytic reduction, chemical
precipitation, membrane–based separation, and absorption [3]. Very recently, the removal
of photocatalytic–based pollutants has become a feasible way to solve this problem as it
is environmentally friendly and of a low cost. Since 1970, research on high–performance
photocatalysts has been booming [4]. To date, countless explorations such as noble metals,
semiconductor metal oxides, polymers, and inorganics have been used for the removal of
light–driven pollutants [5–7].

BiVO4 has proven to be one of the classical photocatalysts with non–toxicity, a good
stability, and a suitable band gap [8–10]. However, BiVO4 needs to surmount the low
surface and displays a poor performance in photogenerated electron–hole pairs separation.
Against that, regulating the properties of a photocatalytic system via optimizing the mor-
phologies or structure of the photocatalyst has become a promising research topic. In a
general way, the addition of surfactants, a high temperature, or a template are commonly
applied for morphological modifications. The CTAB–assisted synthesis of the BiVO4 micro–
tube by Ying et al. [11] showed a nearly five–fold enhancement compared to a micro–rod
in photocatalytically decomposed MO (95%, 240 min) under a visible illumination. They
reported that the hollow and tubular structures favored a large, specific surface area and
the porous properties facilitated the removal activity. Similarly, Liu et al. [12] produced
a sandwich–like BiVO4 sheet with the addition of surfactant PEG–1000 under 140 ◦C,
which was nearly twice (86%, 150 min) as capable of photocatalytically removing MO
as irregular BiVO4. Both of their exception activities can be attributed to the active sites
enhancement, corresponding to the greater surface area [13]. There commonly exist some
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inevitable issues during use, such as: (1) surfactants may block the surface active sites;
(2) surfactants are prone to residue; and (3) there may be surfactants with high levels of
toxicity and low biodegradability. In addition, metal–organic frameworks (MOFs) possess
a great potential in photocatalysis as the charming porous and semiconductor–like prop-
erty [14,15]. Their organic linkers are natural for valence, and amine group introduction
was contributes to facilitating the charge separation by the effect of a ligand–to–metal
charge transfer (LMCT) [16]. Compared to other MOFs, the merits of water stability and
facile preparation make MIL–101–NH2 an ideal catalytic candidate for wastewater purifica-
tion. MIL–101–NH2 exhibited great promise in photocatalytic activity because of the Fe–O
cluster which can cause direct excitation and induce an electron transfer [17]. Additionally,
the large active surface for photogenerated charge carriers interact with the pollutant is also
help in the promotion [18]. All these characteristics enable MIL–101–NH2 to be utilized
in photocatalysis. Huang et al. [19] studied the preparation of a Z–Scheme V2O5/NH2–
MIL–101 (Fe) composite, which can perform well a photocatalytic degradation toward the
removal of TC (88.3%, 120 min). Immobilizing CrPd nanoparticles over MIL–101–NH2,
Cr0.4Pd0.6/MIL–101–NH2 was employed in the generation of hydrogen from formic acid at
323 K (2009 mol H2 mol Pd−1h−1) and was much more superior than the vast majority of
noble metal catalysts reported [20]. Nonetheless, MIL–101–NH2 is still limited in its actual
application due to the expensive cost.

Herein, by combining the advantages between BiVO4 and MIL–101–NH2, we have
surprisingly obtained the flower–like MIL–101–NH2/BiVO4 composite without surfactants.
The three–dimensional structure facilitates the improved absorption of visible light. Other-
wise, the preparation was facile and free of surfactants. In this hybrid, the stability of the
composite promoted through the new connection was constituted as –COO−–Bi3+ bond.
The separation of photogenerated electron–hole pairs are fostered with the construction of
the built–in electric field and it enhances the photocatalysis under a visible illumination. In
this work, the characterization of MIL–101–NH2/BiVO4 was proposed and the appropriate
experimental condition of the photocatalytic reduction of Cr(VI) was optimized.

2. Results and Discussion
2.1. Materials Characterization

Following the method illustrated in Scheme 1, the construction of the MIL–101–
NH2/BiVO4 composite was achieved and the product is yellowish–brown in color. The
pre–prepared addition of MIL–101–NH2 drove the self–assembly of BiVO4 into a flower–
like structure through a facile hydrothermal method. Additionally, FNBV–3 was chosen for
the materials’ characterization, outlined below, based on its impressive performance in the
photocatalytic reduction of Cr(VI).
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(65.2%) component in FNBV–3 was assessed by TG curve analysis. The BET specific sur-
face area promotion is demonstrated in Figure S3 and strongly proves the existence of 
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Scheme 1. Schematic illustration of the MIL–101–NH2/BiVO4 composite’s construction.
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SEM studies were utilized to lay bare the morphology and microstructure of the as–
prepared samples (Figure 1). It can be clearly observed from Figure 1a that bare BiVO4
particles have a sphere–like structure. The pristine MIL–101–NH2 was well–organized
octahedral in shape with a 100 nm diameter (Figure S1a). As disclosed in Figure 1b, flower–
like FNBV–3 was assembled by BiVO4 nanosheets and embedded with MIL–101–NH2
intimately, which is helpful for charge carriers and a mass transfer. The structure of the
flower–like composite becomes more pronounced in Figure S1b as there is less MIL–101–
NH2 content in FNBV–1, and becomes overloaded in FNBV–7 (Figure S1c). Microcosmic
appearance changes upon the complex are credited to the electrostatic attractions of the
ions and hydrophobicity groups (–COOH). Predictably, Bi3+ ions were bonded to Fe–MOF
to reinforce the interaction as well as to control the growth and nucleation rate of BiVO4.
A similar situation was confirmed in the study from Malathi et al. [21]. In addition, the
elemental mapping analysis of FNBV–3, depicted in Figure 1c,d, reveals that the elemental
distribution of Bi and Fe was both unambiguously included in the position, while Bi and
Fe were taken for the characteristic element of BiVO4 and MIL–101–NH2 to disclose the
distribution of the two components, respectively. For a further confirmation, ICP–OES was
detected to investigate the actual molar ratio of Fe/Bi in the sample. The actual value of
Fe/Bi in the acquired FNBV–3 (0.23) is approximated compared to the nominal amount. As
revealed in Figure S2, the real introduction of the MIL–101–NH2 (34.8%) and BiVO4 (65.2%)
component in FNBV–3 was assessed by TG curve analysis. The BET specific surface area
promotion is demonstrated in Figure S3 and strongly proves the existence of MIL–101–NH2.
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Figure 1. SEM images of BV (a) and FNBV–3 (b); SEM–EDS elemental mapping of FNBV–3; (c) Bi
and (d) Fe.

The XPS analysis of the material is summarized in Figure 2. The relevant peaks were
calibrated with the C 1s signal of contaminant carbon and have been labeled on the side,
respectively [22]. Figure 2a depicts the XPS typical survey spectrum investigating the
existence of Bi, V, O, C, N, and Fe elements in the FNBV–3 composite. Additionally, both
elements were consistent with two monomer samples. Supported by the same circumstance
in the study from Sun [23], the lattice oxygen intensity in the O 1s XPS spectra decreased
with the lack of the O atom and the presence of oxygen vacancies for FNBV–3, as shown
Figure S4. The high–resolution orbital scan for C 1s in Figure 2b exhibited binding energies
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at 284.8, 286.0, 286.6, and 288.6 eV. These peaks can be associated with C–C, C–N, C–O,
and C=O bonds, confirming the presence of benzoic rings and H2ATA linkers in FNBV–3.
Contrasted with the corresponding peaks of pure FN, C=O shifted towards the positive
side, which may be due to the charge density promotion over C=O after the protonation of
FN [24]. As presented in Figure 2c, two typical signals for Bi 4f7/2 and Bi 4f5/2, a consensus
among the previous theory, were resolved into 159.0 and 164.4 eV, which represented
the characteristic of the Bi3+ state. The opposite shifted compared with the pristine over
bismuth and C=O, suggesting there is an electrovalent bonding force between Bi3+ and
–COO− [25]. BV can serve as a charge donor, and the electrons were transferred to FN in the
FNBV–3 system. Consequently, it is recommended that FN to BV pose an efficient charge
migration for the formation of a heterojunction between the two components. Similar
circumstances have arisen in Zhao’s paper [26]. In addition, 711.5 and 724.9 eV in the Fe
2p spectrum can be ascribed to Fe 2p3/2 and Fe 2p1/2, with satellite peaks being located at
716.7 and 730.6 eV (Figure 2d). These peaks can manifest the presence of iron (III) oxide
in FNBV–3 [16]. Consequently, the outcome of XPS provides adequate support for the
constitution of the MIL–101–NH2/BiVO4 compound via the hydrothermal method.
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Figure 2. XPS spectra of BV, FN, and FNBV–3 samples: (a) survey scan; (b) C 1s; (c) Bi 4f; (d) Fe
2p spectra.

XRD patterns (Figure 3a) were determined to ascertain the formation and crystal-
lographic structure of the MIL–101–NH2/BiVO4 composite. The diffraction peaks of
FN were consistent with the reference, evidencing the successful synthesis of MIL–101–
NH2 [27]. Confirming the effective preparation of pure BiVO4, BV displaying narrow line
width peaks can be indexed to the high crystallinity monoclinic BiVO4 (JCDPDS Card No.
83–1699) [22,28]. Moreover, the detection of any peaks can be ascribable to other phases or
impurities. For FNBV–n, the characteristic signal coexistence strongly inherits with those of
FN and BV compounding when n = 3–7. The low content and high distribution of FN may
lead to FNBV–1 and FNBV–2 being undetectable. Accordingly, the successful complexation
of FN and BV was thus suggested, and oxygen vacancies show a negligible influence on
the hybrids of MIL–101–NH2 and BiVO4.
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To determine the constitution of the functional group, FT–IR patterns were conducted
in Figure 3b. Typically, the stretching and bending vibration of the O–H bond at around
3430 cm−1 and 1630 cm−1 in all the spectra is assigned to the presence of absorbed H2O
molecules. For FN, the characteristic absorption of 528 cm−1 is associated with Fe–O.
Furthermore, peaks at 1257 cm−1 and 2900 cm−1 are attributed to C–N and –NH2 in the
linker of the framework [29]. The absorption of 744cm−1 took place in the BV spectrum in
respect of the V–O stretching vibration peak and confirmed the observation of monoclinic
scheelite BiVO4, which was synthesized from XRD [30]. Seen from the FNBV–n spectra,
the presence of MIL–101–NH2 and BiVO4 was distinctly proved. Thereby, the introduction
of oxygen vacancies cannot destroy their chemical structure’s stability. The slight red shift
of the V–O bond in FNBV–n accounts for a length increase and the Raman spectra were
utilized to prove it [31,32]. As shown in Figure S5, the peak position of υas(V–O) shifted
towards the lower wavelength region with MIL–101–NH2. This further supports that the
V–O bond length of BiVO4 increased corresponding to the empirical relation below [33]:

υ = 21349·e−1.9176·R (1)

where υ is the location of the stretching mode and R is related to the length of the bond.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 15 
 

 

where υ is the location of the stretching mode and R is related to the length of the bond. 

  
Figure 3. (a) XRD patterns of FN, BV, FNBV–n (n = 1–7) samples; (b) FT–IR spectra of FN, BV, FNBV–
n (n = 1–7). 

2.2. Photocatalytic Behaviours on Cr(VI) Reduction 
The Cr(VI) PCR over different materials was performed on the K2Cr2O7 solution. Be-

fore it was exposed to an illumination, a dark adsorption in 1 h was set for the adsorption 
and desorption equilibrium achievement. The blank examination was operating as well, 
assuring that the spontaneously Cr(VI) depoisonous under irradiation without catalysts, 
and a direct reaction with Cr(VI) in the absence of light as well. Figure 4a shows the re-
moval efficiency of several products in Cr(VI)–containing solution (10 mg·L−1). It is clear 
that the elimination capacity was increased after BV coupled with FN and that the en-
hancement of the photocatalytic activity was consistent with DRS. Such an enhancement 
may be related to the factual accessible active site. For FNBV–n (n = 1–3) could be bound 
up with the high separation of photogenerated carriers while overloading may block the 
transfer [34]. Meanwhile, the promotion can also be related to oxygen vacancies. It has 
shown a capability in trapping electrons and the obstacle effect for a photogenerated re-
combination. The adsorption performance of FNBV–7 was similar to FN. This phenome-
non may be explained by the excessive coverage of FN, served as a kind of aggregation 
and hindering the irradiation’s penetration and absorption [35]. Among catalysts, FNBV–
3 demonstrated an outstanding PCR efficiency (95.0%) compared to BV (20.5%) and the 
FN/BV physical mixture (FN: 28,1 mg, BV: 13.9 mg; 47.5%). Hence, the potent heterostruc-
ture between FN and BV was fabricated successfully; that is, it was valid in virtue of the 
promotion in the PCR. Meanwhile, oxygen vacancies which are capable of capturing light 
also contributed. At the same time, Cr(VI) with tap water was carried out under the uni-
form experimental conditions to ensure the result of the coexisting ions (95.5%). It is also 
noted that the superior adsorption of FN contributed to the similar removal capacity with 
FNBV–3. However, the expensive cost and the worse photoreaction rate were the key to 
explain its limitation, nonetheless. Additionally, the reaction kinetic study was acquainted 
by the pseudo–first–order (PFO) (Equation (2), Figure S6a,b) and pseudo–second–order 
(PSO) (Equation (3), Figure S6c,d), respectively [36,37]. In agreement with previous re-
ports, the correlation kinetic curves fitted well with the Langmuir–Hinshelwood (L–H) 
first–order model [38] as a coefficient (R12 for PFO and R22 for PSO), which alluded to the 
fitness of the models with the relative data obtained. The highest value of κ1 was obtained 
from FNBV–3, which was about 20–fold compared to that of BV. Moreover, the synergistic 
factor sκ (Equation (4)) for FNBV–3 is applied for quantitatively appraised the synergistic 
effect [36]. The value of 2.6 revealed an interaction enhancement between the two compo-
nents for the photocatalytic activities. Above, FNBV–3 was consequently chosen for the 
following investigation. 

-ln(C/C0) = κ1t (2)

FN

FNBV-7

FNBV-6
FNBV-5

FNBV-4

FNBV-3

FNBV-2

FNBV-1
BV

10 20 30 40 50 60

In
te

ns
ity

 (a
.u

.)

2 Theta (Degree)

(a)

FN

FNBV-7

FNBV-6

FNBV-5

FNBV-4

FNBV-3

FNBV-2

FNBV-1

BV

4000 3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)

(b)

Figure 3. (a) XRD patterns of FN, BV, FNBV–n (n = 1–7) samples; (b) FT–IR spectra of FN, BV, FNBV–n
(n = 1–7).

2.2. Photocatalytic Behaviours on Cr(VI) Reduction

The Cr(VI) PCR over different materials was performed on the K2Cr2O7 solution.
Before it was exposed to an illumination, a dark adsorption in 1 h was set for the adsorption
and desorption equilibrium achievement. The blank examination was operating as well,
assuring that the spontaneously Cr(VI) depoisonous under irradiation without catalysts,
and a direct reaction with Cr(VI) in the absence of light as well. Figure 4a shows the
removal efficiency of several products in Cr(VI)–containing solution (10 mg·L−1). It is
clear that the elimination capacity was increased after BV coupled with FN and that the
enhancement of the photocatalytic activity was consistent with DRS. Such an enhancement
may be related to the factual accessible active site. For FNBV–n (n = 1–3) could be bound up
with the high separation of photogenerated carriers while overloading may block the trans-
fer [34]. Meanwhile, the promotion can also be related to oxygen vacancies. It has shown a
capability in trapping electrons and the obstacle effect for a photogenerated recombination.
The adsorption performance of FNBV–7 was similar to FN. This phenomenon may be
explained by the excessive coverage of FN, served as a kind of aggregation and hindering
the irradiation’s penetration and absorption [35]. Among catalysts, FNBV–3 demonstrated
an outstanding PCR efficiency (95.0%) compared to BV (20.5%) and the FN/BV physical
mixture (FN: 28.1 mg, BV: 13.9 mg; 47.5%). Hence, the potent heterostructure between FN
and BV was fabricated successfully; that is, it was valid in virtue of the promotion in the
PCR. Meanwhile, oxygen vacancies which are capable of capturing light also contributed.
At the same time, Cr(VI) with tap water was carried out under the uniform experimental
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conditions to ensure the result of the coexisting ions (95.5%). It is also noted that the supe-
rior adsorption of FN contributed to the similar removal capacity with FNBV–3. However,
the expensive cost and the worse photoreaction rate were the key to explain its limitation,
nonetheless. Additionally, the reaction kinetic study was acquainted by the pseudo–first–
order (PFO) (Equation (2), Figure S6a,b) and pseudo–second–order (PSO) (Equation (3),
Figure S6c,d), respectively [36,37]. In agreement with previous reports, the correlation
kinetic curves fitted well with the Langmuir–Hinshelwood (L–H) first–order model [38] as
a coefficient (R1

2 for PFO and R2
2 for PSO), which alluded to the fitness of the models with

the relative data obtained. The highest value of κ1 was obtained from FNBV–3, which was
about 20–fold compared to that of BV. Moreover, the synergistic factor sκ (Equation (4)) for
FNBV–3 is applied for quantitatively appraised the synergistic effect [36]. The value of 2.6
revealed an interaction enhancement between the two components for the photocatalytic
activities. Above, FNBV–3 was consequently chosen for the following investigation.

−ln(C/C0) = κ1t (2)

1/C = κ2t + 1/C0 (3)

Sκ = κ/(x·κBV + y·κFN) (4)

where C0 (mg·L−1) is the initial concentration of the Cr(VI) solution and C (mg·L−1) is
that at time t; κ1 (h−1) is the rate of reduction given as the slope in PFO while PSO is the
rate constant for κ2 (L·h·mg−1); and κ, κBV, and κFN are the fitted reaction rate constants of
FNBV–3, BV, and FN, respectively.
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Figure 4. (a) Photocatalytic reduction of 10 mg·L−1 Cr(VI) solution via the preparation; effect of Cr(VI)
concentration (b) and pH value (c) on the reduction over FNBV–3; (d) recycling test for photocatalytic
reduction of 15 mg·L−1 Cr(VI) solution. Reaction conditions: 1g·L−1, λ > 420 nm, room temperature.



Molecules 2023, 28, 1218 7 of 14

The effect of the initial concentration study was unveiled in Figure 4b. Evidently, the
total reduction efficiency was gradually inclined to deteriorate as the concentration was
increasing, which may be influenced by system with the lack of photo–induced active
substances. In addition, the surface of the photocatalyst accumulated by the saturation of
Cr(VI) can also be detrimental to the performance. Given that FNBV–3 exhibited a similarity
in terms of the removal result in 10 and 15 mg/L (95.0%, 91.2%), the latter allowed for
obtaining the optimal one in the present study after measuring the removal capacity (9.5
and 13.7 g·mg−1).

It is noteworthy to mention that the reaction system’s pH value was considered to be
a crucial parameter in the reduction of Cr(VI) [39]. Figure 4c and Figure S8 disclosed the
photocatalytic reduction of Cr(VI) with different pH value gradients. The photoreduction
property declined as the pH value increased, which may be because of the existing form
of Cr(VI) and the surface potential of the catalyst. The zeta potential was tested and is
plotted in Figure S9. The surface of FNBV–3 was covered and positively charged above
3.1 as the zero–point charge (pHZPC) pointed to ca. 3.1. This can explain why FNBV–3
performed best when adopted as pH = 2 with the electrostatic attraction effect between
FNBV–3 and Cr2O7

2− or HCrO4
− (the dominating species of Cr(VI) in an acidic aqueous

dispersion) [40]. The abundant H+ surroundings are a great help in the detoxification of
Cr(VI) as well. The photocatalytic activity of FNBV–3 under the optimal condition was
compared to other BiVO4–based catalysts reported with a different morphology in previous
literatures, as tabulated in Table S1.

According to Figure S10, the removal capability of Cr(VI) without visible light was
attribute to the adsorption of Cr(VI) over FNBV–3. Furthermore, a subsequent reusability
assessment played a vital role in the industrial application estimate. As illustrated in
Figure 4d, the recovered can retain a superior reduction quality after five cycles. For the
used FNBV–3, the XRD (Figure 5a) and FTIR (Figure 5b) results argued that there is no
contravention with the new one and they provide evidence of the composition being self–
steady. XPS analysis (Figure 5c,d) was applied to monitor the valence state of the Cr element
on the surface of the sample used. There are two discernible peaks supporting the existence
of Cr(III) which appeared in the high–resolution spectrum of Cr 2p [41]. It can be deduced
that the poisonous Cr(VI) can convert to harmless Cr(III) with the help of visible light and
FNBV–3. The ICP detection confirmed that the lixiviating of Fe3+ in the reaction solution
was negligible. Such can be presumed as the as–prepared sample was a perfect match
with the recyclability and stability in real photocatalysis. Thus, MIL–101–NH2/BiVO4
composite can serve as an appropriate photocatalyst to solve the pollution of heavy ions
Cr(VI) in water.

UV–vis DRS was measured to access the optical absorption quality and band gap
energy (Eg, eV) of the samples. As demonstrated in Figure 6a, the absorption threshold
was red shifted to the visible region (about 700 nm) in BiVO4–based hybrids, interpreting
the substantially boosted photocatalytic reduction [42]. The Tauc plot method is defined in
Equation (5) and is calculated for the Eg evaluation in Figure 6b [43].

(Ahυ)1/n = A·(hυ − Eg) (5)

where A and hυ are the absorption coefficient and the photon energy, respectively. The
value of n was linked to the characteristic direct or indirect transition in the semiconductor.
A represents a constant.
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The values of Eg for FN, BV, and FNBV–3 were estimated to be 1.9, 2.4, and 2.3 eV.
Collectively, FNBV–3 was accompanying by a narrow band gap as well as a sensitivity to
visible light. To some extent, the addition of FN brings an intimate heterointerface to BV,
which endows a great facilitator for competence in the spatial separation of photogenerated
electron–hole pairs [44].

2.3. Mechanism on the Photocatalytic Efficiency Promotion

On the basis of previous research papers, PCR was processed with the contribution
of multitudinous reactive substances. To identify the major active specie responsible
for the Cr(VI) reduction over FNBV–3, control experiments with a few scavengers are
executed in Figure S11 [45]. Among the radical quenching research, AgNO3 (0.2 mmol·L−1),
Ethylenediaminetetraacetic acid disodium (EDTA–2Na, 0.2 mmol·L−1), p–benzoquinone
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(BQ, 0.2 mmol·L−1), and tertiary butanol (TBA, 0.2 mmol·L−1) were selected to consume
the electronics (e−), holes (h+), superoxide anion radicals (·O2

−), and hydroxyl radicals
(·OH), respectively. This weakened the removal rate with the trapping of AgNO3, deducing
that e− led a predomination in the photocatalytic process, while the capture of O2

− or ·OH
could also contribute to the drop. The influence caused by the TBA should be ascribed to the
equilibrium transmitting to Cr(VI) [46,47]. On the contrary, the removal promotion with the
addition of EDTA–2Na may correlated to the enhanced separation of the photogenerated
pairs and the increase in the e− [48].

In light of the estimated band structure, a conceivable mechanism for the improvement
of the photoreduction manifestation in FNBV–3 is suggest in Figure 7 tentatively [49]. As is
well known, the composite proposed a type–II staggered band alignment, which is in a con-
dition that the heterojunction interface between MIL–101–NH2 and BiVO4 was followed by
the conventional separation of photogenerated electron–hole pairs. The O2

− and ·OH could
not form, which conflicted with the quenching test, as the band was located at the position
which was either more positive or negative than E(O2/O2

−) and E(H2O/·OH) [46,50,51].
Therefore, carrier transfers do obey with the Z–scheme heterojunction model. The aggre-
gate was photogenerated at the CB of MIL–101–NH2 and VB of BiVO4, so that FNBV–3
could generate O2

− and ·OH under irradiation.
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From the analysis above, in this paper we raised a plausible mechanism for the removal
of Cr(VI). Before irradiation, the MIL–101–NH2/BiVO4 composite facilitated in the adsorp-
tion by a large specific surface area and the charge effect on the surface. Then, the involved
photolysis after being exposed to visible light is documented in Equations (6)–(13). Based
upon the aforementioned results, the direct Z–scheme heterojunction was confirmed and
illustrated in Scheme 2, which was consistent with the previous correlated literature [52].

FNBV–3 hυ→ h+ + e− (6)

O2 + e− → ·O2
− (7)

Cr2O7
2− + ·O2−

hυ→ 2Cr3+ + O2 (8)

Cr2O7
2− + 14H+ + 6e− → 2Cr3+ + 7H2O (9)

2H2O + 2h+ → H2O2 + H+ (10)

Cr2O7
2− + 3H2O2 + 8H+ → 2Cr3+ + 7H2O + 3O2 (11)

Fe3+ + e−(CB) → Fe2+ (12)

Fe2+ + Cr2O7
2− → Fe3+ + Cr3+ (13)
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3. Experimental
3.1. Material

The chemical reagents used were all commercially available without further purifica-
tion and the corresponding specific information is outlined in the Supplementary Materials.

3.2. Synthesis of MIL–101–NH2/BiVO4 Composite

The MIL–101–NH2 powder was prepared via a modified facile solvothermal method,
as has been previously documented in the literature, and was denoted as FN [17,53]. The
MIL–101–NH2/BiVO4 composites with varying molar ratios were synthesized through a
hydrothermal method and the preparation process was illustrated in Scheme 1. At first,
0.3 mmol of Bi(NO3)3·5H2O and 0.02 mmol of FN were ultrasonically dispersed into 40 mL
of DI. Subsequently, 0.3 mmol of Na3VO4·12H2O was added slowly stirred for 30 min. The
above mixture was kept under 373 K for 24 h in a 100 mL Teflon–lined autoclave. After
centrifugation and washing, the powder was collected. The obtained powder was placed
in a vacuum oven and kept dry at 333K overnight. The final sample was nominated as
FNBV–3. Likewise, FNBV–n (n = 1–7) composites were created with a different molar ratio
of Fe to Bi (0.05, 0.10, 0.25, 0.50, 1.00, 2.00, 4.00). For comparison, the pristine BiVO4 was
yielded under the same manner as outlined above, with the absence of MIL–101–NH2, and
was referred to as BV.

3.3. Characterization

Scanning electron microscope (SEM) images (JSM–7600F) were used to obtain the
morphology and structure of the product. Meanwhile, the energy–dispersive X–ray spec-
troscopy (EDS) of the composite was recorded on INCA X–Act, Oxford Instruments. The
gas adsorption isotherm and specific surface area were deduced on the basis of Brunauer
Emmett Teller (BET) methods (BSD–PM2). Moreover, XRD patterns were conducted by an
Ultima IV equipped with Cu Kα radiation, and the crystal data and phase structure were
analyzed. The chemical states and the composition of the elements on the surface can be
detected through X–ray photoelectron spectroscopy (XPS) (AXIS UltraDLD). VERTEX 80v,
referring to a KBr disk, was employed to document the Fourier transform infrared spec-
troscopy (FT–IR). The UV–vis absorption spectra were acquired on a UV–2802 spectrometer.
The UV–vis diffuse reflection spectra (UV–vis DRS) of the specimens were acquired by
using UV–2600 with BaSO4 performed as has been documented.
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3.4. Photocatalytic Reduction of Cr(VI)

The photocatalytic reduction (PCR) activity on Cr(VI) under visible light was sys-
tematically investigated at room temperature. The catalytic reaction was performed
through a Xe lamp equipped with a 420 nm cut–off filter (CEL–HXF300, 300 W light
intensity: 100 mW·cm−2). Before illumination, the as–prepared product was added into
Cr(VI) solution (1 g·L−1, 15 mg/L) and was stirred in the dark for 1 h until it reached
an adsorption–desorption equilibrium. During the process, the reaction samples (each
in 3 mL) were filtered (0.22 µm syringe filter) at each interval of time and the filtrate
concentrations were monitored by the purple complex absorbance at 540 nm, according
to the 1,5–diphenylcarbazide colorimetric (DPC) method [17]. Data were averaged for
each sample after triple–testing to determine the result. In addition, the same reduction
experiment was carried out five times with the used material being gathered to ensure the
stability of the as–prepared composite, as well as a dark adsorption in a 12 h study. The
PCR efficiency of Cr(VI) was evaluated based on η = (C0 − Ct)/C0 × 100%, where η refers
to the removal ability and C0 and Ct represents the solution concentration before and after
the experiment.

A necessity is obtaining the band structure of the semiconductor to fully investigate
the separation behavior of the heterostructures. The potential of the value band (VB) and
conduction band (CB) component were estimated by the empirical formulas [22,54]:

EVB = X + 0.5Eg + Ee (14)

X = [x(A)a x(B)b x(C)c x(D)d]1/(a + b + c + d) (15)

ECB = EVB − Eg (16)

where EVB and ECB correspond to the VB and CB edge position, respectively; X is the
electronegativity of the semiconductor; Eg relates to the band–gap energy; and Ee represents
the energy of free electrons vs. hydrogen (4.5 eV). In the report, the above equations
(Equations (14)–(16)) were the value of VB and CB from BiVO4. Based on the band gap
of MIL–101–NH2 and BiVO4, the mechanism which refers to the MIL–101–NH2/BiVO4
composite efficiently and photocatalytically reducing Cr(VI) is exhibited in Scheme 2.

4. Conclusions

In summary, flower–like MIL–101–NH2/BiVO4 composites with varying molar ratios
of Fe/Bi were successfully prepared and characterized, with the existence of oxygen
vacancies and the newly formed interaction between –COO− in MIL–101–NH2 and Bi3+ in
BiVO4. The as–synthesized materials were evaluated by the reduction of the hexavalent
chromium under a visible–light illumination. Fe/Bi = 0.25 (FNBV–3) was selected for the
optical molar ratio according to its photocatalytic performance (15 mg/L, pH = 2, 91.2%,
3 h). It could be reasonable to infer that the modification of BiVO4 with MIL–101–NH2
enhanced the light–harvesting ability and accelerated the migration of the photogenerated
carrier, contributing to the prominent photocatalytic activity. Moreover, the material
also bared an outstanding stability and recyclability. This study announced the feasible
utilization in detoxifying Cr(VI) under the co–effect of a light irradiation and MIL–101–
NH2/BiVO4 composite. With this work, we hope to share some insight and reflect on the
recent photocatalytic practices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031218/s1, Figure S1: SEM image of (a) FN; (b) FNBV–1
and (c) FNBV–7; Figure S2: TG curves of BV, FN and FNBV–3; Figure S3: N2 adsorption–desorption
isotherms of FN, BV and FNBV–3; Figure S4: O 1sXPS spectra of BV and FNBV–3 samples; Figure S5:
Raman spectra of FN, BV and FNBV–3; Figure S6: The corresponding (a,b) pseudo–first–order and
(c,d) pseudo–second–order reaction kinetic linear simulation curves; Figure S7: The corresponding
first–order Langmuir–Hinshelwood model of reaction kinetic study; Figure S8: The corresponding
first–order Langmuir–Hinshelwood model of reaction kinetic study; Figure S9: Zeta Potential mea-
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surement of BV and FNBV–3; Figure S10: The removal performance of FNBV–3 in dark; Figure S11:
Influence of scavengers in the performance of FNBV–3 composite; Table S1: Comparison of various
photocatalysts efficiency in pollutants removal.
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