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Abstract: Coffee (Coffea arabica L.) is one of the most popular and widely consumed products
throughout the world, mainly due to its taste, aroma, caffeine content, and natural antioxidants.
Among those antioxidants, anthocyanins are one of the most important natural pigments, which can
be found in coffee husks. It is widely known that anthocyanins have multiple health benefits partially
linked to their antioxidant properties. However, anthocyanins have low stability and are sensitive
to all types of changes. In order to prevent its degradation, anthocyanins can be stabilized with
nanoparticles. Thus, the main objective of this study was to evaluate the stability of the anthocyanins
extracted from coffee husks, using three different extracting agents (ethanol, methanol, and water)
and stabilizing them through conjugation with zinc oxide nanoparticles. The anthocyanins extracts
were mainly composed of cyanidin-3-rutinoside (97%) and the total phenolic compounds of the
fresh extracts were 458.97 ± 11.32 (methanol), 373.53 ± 12.74 (ethanol), and 369.85 ± 15.93 (water)
mg GAE/g. On the other hand, the total phenolic compounds of the nanoparticle–anthocyanin
conjugates underwent no significant changes after stabilization as the major loss was less than 3%.
Furthermore, the percentage of anthocyanins’ degradation was less than 5% after 12 weeks of storage.
On top of that, fresh anthocyanin extracts and anthocyanin–nanoparticle conjugates exhibited a strong
protective effect against oxidative stress and increased the survival rate of Caenorhabditis elegans.

Keywords: Coffea arabica; anthocyanin extraction; anthocyanin stabilization; zinc oxide nanoparticles;
in vivo antioxidant activity; Caenorhabditis elegans

1. Introduction

Coffee (Coffea arabica L.) is one of the most consumed products around the globe and
is highly appreciated for its taste, aroma, and caffeine content [1]. From 2016–2017, the
world’s production of coffee was 9.1 thousand million kilograms, increasing to 10.1 and
10.2 thousand million kilograms in 2017–2018 and 2018–2019, respectively, thus demon-
strating its economic and commercial importance around the world [1–3]. The grain of the
fruit of coffee is the main-processed product from the plant, and it is necessary for it to be
separated from the surrounding pulp. This process, known as coffee pulping, generates
large amounts of organic residues that must be treated in order to not contaminate the
environment [4]. Favorably, this organic matter can be used as a source of biogas and other
biofuels including, ethanol and solid biofuel, which are highly appreciated for diverse
purposes [5,6]. On the other hand, the peel of the fruit of coffee is rich in polyphenols,
bioactive compounds with numerous properties beneficial to human health [7]. A kind of
polyphenols present in coffee husks, among other kinds of compounds, are anthocyanins,
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one of the most important natural pigments the human eye can recognize; their color
variation goes from vibrant red to different types of purple and blue [5,7,8]. Anthocyanins
have a basic structure C6C3C6 as the rest of the flavonoids, albeit anthocyanins, have a
particular ability to form the flavylium cation, which provides them with their unique
positive charge [9–11]. Their basic structure is an anthocyanidin, which is an aglycone, with
at least one glucoside substitute [11,12].

The main interest in studying these pigments is their multiple health benefits. It has
been proven that anthocyanins have anti-inflammatory effects for different diseases, such
as colitis, reflux, and pain diminution, among others [13]. This anti-inflammatory response
is due to the blocking of the expression of the transcription factor NF-κB for the synthesis of
pro-inflammatory enzymes (COX-2) and the MAPK activation pathway [14,15]. In addition,
anthocyanins play a protective role in cardiovascular diseases through the increment of
PPAR and the downregulation of CD36 expression to prevent platelet aggregation and
LDL oxidation; moreover, anthocyanins increase polyunsaturated fatty acid levels over
saturated fatty acid levels [12,16–18]. Furthermore, these pigments have hypoglycemic
and anti-obesity properties by increasing GLUT4 expression through AMPK activation
leading to better glucose catchment by muscles and fat tissue [19,20]. Furthermore, antho-
cyanins decrease PEPCK expression and upregulate PPAR, CPT1A, and ACO, providing a
reduction in lipid liver levels [21,22]. Moreover, anthocyanins have neuroprotective effects
in Parkinson’s disease and Alzheimer’s disease through the activation of FKBPs and a
reduction in TAU protein levels. Moreover, anthocyanins decrease Ca2+ intracellular levels
and enhance neurons myelination [23,24]. Aspects that stand out for anthocyanins are their
antioxidant properties, by far the most important benefit, and as a result, their ability to pre-
vent or inhibit molecular oxidation by neutralizing free radicals. Their antioxidant capacity
depends on the ring orientation and the –OH substituents. These pigments inhibit cancer
cell proliferation and induce apoptosis. It has been proven that anthocyanins provoke apop-
tosis in CaCo-2 cells, diminish Hep3B cells’ migration by decreasing phosphorylation of
GSK3β, and β-catenin expression. In addition, these wild pigments regulate proteins such
as p-53 and c-myc that participate in different inflammation and carcinogenesis signaling
cascades [17,25–28].

Because of all their health benefits and their bright colors, anthocyanins can be used
as natural colorants as well as functional foods. Coffee peels are rich in anthocyanins,
particularly cyanidin-3-rutinoside, which is one of the most active anthocyanins, acting
as a powerful antioxidant [5,8,29]. Nevertheless, their low stability makes them sensitive
to all types of changes, including pH, temperature, light, enzymes, oxygen, and so forth.
At a pH just under 3, anthocyanins are in their most stable forms. Between pH 3–6, the
flavylium cation is lost; as a result, these pigments become non-colored. At an alkaline pH,
anthocyanins are in their most unstable forms; at this point, their positive charges become
negative, which could lead to irreversible damage [30–32]. In the same way, above 40 ◦C,
the glucoside substituent is lost, creating an unstable base [33–36]. Additionally, at higher
water activity, there is more interaction between water and the flavylium cation, leading
once again to an unstable base [37–39].

Nanoparticles may stabilize anthocyanins preventing their degradation due to their phys-
ical, biological, and chemical unique properties; nanoparticles can be used as a bio-encapsulant
agent for drugs and bioactive substances, improving their bioavailability [40–45]. In addition,
nanoparticles are useful in the prevention of some cancers, enhancing the permeability
of bioactive substances [46–48]. In addition, the biological model Caenorhabditis elegans
has been used as a research model for understanding the metabolic, pathological, and
molecular mechanisms associated with the aging process, the development of diseases,
the function, antioxidant capacity, and toxicity of foods, bioactive compounds, and plant
extracts [49,50]. For the aforementioned reasons, C. elegans has become a model to evaluate
the augmented lifespan and/or resistance against oxidative stress when exposed to natural
antioxidants, with the advantage to evaluate the effect across multiple generations due to
its capacity to produce multiple descendants [51,52].
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ZnO has been extensively used in the biomedical, pharmaceutical, cosmetic, and
dental industries, but it has also been explored for food applications. In the case of the
nanoparticles of ZnO, because they are more soluble than bulk ZnO, they can be used as
biocompatible materials, with the additional advantage that they are cheap and can be
easily synthesized [53–57]. It has been observed that ZnO is less toxic to biological systems,
with Zn2+ being released from this material, a trace element in biological systems, thus
making this compound biocompatible [58,59]. Nevertheless, ZnO is not completely inert
because it has small but controlled chemical reactivity [60].

The main objective of this study was to evaluate the stability of anthocyanins extracted
from coffee husks, using ZnO nanoparticles as immobilizing agents, following the time
evolution related to their antioxidant capacity and phenolics concentration. Characteriza-
tion of the ZnO nanoparticle–anthocyanins preparations was evaluated, demonstrating a
stabilization process because of the formation of those conjugates. The antioxidant effect
was also tested in vivo using the biological model C. elegans, comparing the protective
effect of the nanoparticle–anthocyanin conjugates in an oxidative environment versus the
fresh extract of anthocyanins.

2. Results and Discussion
2.1. Extraction and Phenolic Compounds’ Determination

Three different extracting agents were used (MeOH, EtOH, and water) to extract an-
thocyanins from 30 g of coffee husks. The results indicate that the organic extracting agents
had a better performance than water, especially MeOH. MeOH extracts presented more
phenolic compounds than the other extracts (p < 0.05), with 458.97 ± 11.32 mg of GAE/g
obtained, in comparison to the 373.53 ± 12.74 mg GAE/g and 369.85 ± 15.93 mg GAE/g
obtained from EtOH and water, respectively (Figure 1). The extraction using methanol
reached 20% higher yields of phenolic compounds than EtOH and water, which relates to
previous reports [61].
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Figure 1. Comparison of total phenolic compounds (A), total monomeric anthocyanins (B), and
antioxidant activity (C) of anthocyanins extracted from coffee (Coffea arabica L.) husks with MeOH,
EtOH, or water (H2O) versus anthocyanins attached to zinc oxide nanoparticles (initially and after
12 weeks). The data shown correspond to means ± standard deviations (n = 3).
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Other studies focused on measuring the total phenolic compounds’ concentration of
fruits of the berry family [62] reported that blackcurrant (Ribes nigrum) had the highest
values of phenolic compounds, followed by blackberry (Rubus ulmifolius) and strawberry
(Fragaria sevatis). The Supplementary Information Table S1 summarizes the values of
phenolic compounds and monomeric anthocyanins and the antioxidant activity of some
reported berries and other fruits [63,64].

2.2. Anthocyanins’ Determination

The anthocyanin profile was obtained by HPLC at a wavelength of 520 nm (Figure 2A).
The spectrum showed two peaks at retention times of 13.8 and 15.8 min, representing 11%
and 89%, respectively. These results agree with previous reports [8,65,66]. Those peaks
correspond to cyanidin 3-glucoside and cyanidin 3-rutinoside, with the wider peak and
the most anthocyanin extracted being shown for the latter. The spectrum also shows a
high purity of the anthocyanins. Cyanidin 3-rutinoside is also the majority of the antho-
cyanin in lychee with a 97% composition [67–69]. Additionally, for the identification of
the anthocyanins extracted, they were applied to NMR spectroscopy (Figure 2B). The H1

spectrum shows two singlets at 8.421 ppm and at 7.090 ppm with a J of 1.365 Hz and
1.509 Hz, respectively. In addition, two doublets were found at 7.808 and 7.789 ppm and at
6.280–6.284 corresponding to 2′, 5′, and 3′ protons and to 8′ and 6′protons, respectively. A
triplet can be found at 6.780 ppm. These results correspond to the characteristic signals to
the cyanidin aglycone [5,66], confirming that cyanidin-3-rutinoside is the most extracted
anthocyanin from the coffee cherry.

The vibrational frequencies obtained by FTIR spectroscopy can be observed in Figure 3;
the graphs show a well-defined peak at 1000 cm−1 and these peaks correspond to the antho-
cyanins [70,71]. After the stabilization with ZnO nanoparticles, most of the peaks diminish
or disappear, suggesting an interaction between the nanoparticles and the anthocyanin
extracts. The interaction changes the usual vibrational frequencies of the functional groups;
however, the anthocyanins’ reference peak at 1000 cm−1 remains with no apparent changes
in all of the graphs [71]. According to previous reports [72], ZnO can bond with –OH func-
tional groups by forming hydrogen bonds between the zinc and the –OH in the positions
R1, R2, R5, or R7. Because of the electrostatic nature of the bonds, their bonding energies
are week, which may help the anthocyanin to adopt a non-stressed conformation and just a
dislocation of the electronic density. To evaluate the stabilization of the anthocyanins, the
phenolic compounds and the antioxidant activity were measured over the time.

The AAS analysis was performed after the dissolution of ZnO nanoparticles with
the extracts of anthocyanins. Our results provide evidence of stabilization of anthocyanin
mediated by uncoated nanoparticles dissolving more than three-fold when maintained for
120 h in solution, compared to the ZnO–anthocyanin preparation (Figure 4). The fast release
of Zn2+ from ZnO was evidenced from the beginning of this study, reaching a loss of 54.9%.
On the other hand, the sample prepared with anthocyanins attached to nanostructured
ZnO evidenced a loss of 17.3%. These findings confirm the stabilization of the nanoparticles
in the solution.
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2.3. Measurements of Stabilized Nanoparticles

The total phenol compounds for the fresh anthocyanins were 458.97 ± 11.32 mg
GAE/g for the methanol extract, 373.53 ± 12.74 mg GAE/g for the ethanol extract, and
369.85 ± 15.93 mg GAE/g for the water extract (Figure 1). After the stabilization with
the ZnO nanoparticles, the variation in the values of the total phenol compounds did not
represent a significant change (p > 0.05); the graph comparing the initial values of the
un-stabilized anthocyanin extract and the stabilized anthocyanin extract can be found
in Figure 1. ZnO stabilization should not affect the phenol compounds in the extracts,
and, as the values confirmed, the stabilization did not significantly change the values in
comparison to the unstabilized ones (p > 0.05). Water-stabilized anthocyanins presented
the most radical decrease of all the extract agents used in this study. However, that change
was from 369.85 ± 15.93 mg GAE/g to 359.43 ± 10.21 mg GAE/g. The difference of 10 mg
GAE/g represents a decrease of 2.82% which can be considered negligible (p > 0.05). After
12 weeks of measurements, the values of the phenolic compounds were 452.87 ± 12.62 mg
GAE/g, 356.31 ± 11.29 mg GAE/g, and 354.37 ± 7.3 mg GAE/g for the methanol, ethanol,
and water extracts, respectively. Those differences exhibit a decrease of 1.33%, 4.61%, and
4.18%, respectively, after a period of 12 weeks. These results suggest that in 12 weeks,
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the percentage of anthocyanins degradation was less than 5%. Santos and Gonçalves [73]
reported degradation of the phenolic compounds in ethanolic, methanolic, and water
extracts from flour prepared by using a mix of selected fruits, with values reaching higher
than 77% of loss after 25 weeks of storage and more than 50% after 10 weeks.
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Figure 4. The maximal concentration of Zn2+ was quantified by digesting 10 mg of ZnO or ZnO–
anthocyanin in HNO3 (concentrated) for 2 h and measuring the concentration of Zn2+ by AAS. The
Zn2+ concentration was calculated using a calibration curve prepared previously (Figure S1) and the
measures were performed at pH 7 and at room temperature.

Prata and Oliveira [8] and Murthy et al. [66] reported the presence of cyanidin 3-
glucoside and cyanidin 3-rutinoside as monomeric anthocyanins in coffee cherry, in quanti-
ties of 19 and 25 mg C3G/100 g sample, respectively. In our study, values of 16.7 (MeOH),
14.9 (EtOH), and 12.3 (water) mg C3G/100 g sample were achieved. Some authors have
previously addressed the monomeric anthocyanins’ content of various fruit, which are
described in the Supplementary Information in Table S1. Similar to those observed for
phenolic compounds, the methanol extract exhibits a higher content of monomeric antho-
cyanins compared to the ethanol extract (7%) and to the water extract (25%).

For the ZnO-stabilized anthocyanins, the value of 14.9 mg C3G/100 g sample was
achieved for the methanol extract. This value represents 89% of the retained anthocyanins
on the nanomaterial, compared with the original methanolic extract. Similarly, 11.0 mg
C3G/100 g sample was measured when the ethanol extract was stabilized with ZnO
nanoparticles (73.8% retention) (Figure 1).
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The initial values of antioxidant activity for the anthocyanins’ extracts, without sta-
bilization, were 1576 µmol eq. Trolox for the methanol extract; 1309 µmol eq. Trolox for
the ethanol extract; and 1057 µmol eq. Trolox for the water extract. The methanol extract
presented the highest antioxidant activity at the beginning (p < 0.05).

Additionally, it also showed the highest value of phenolic compounds (p < 0.05),
which is clearly related. This is because the more anthocyanins that are present, the
more radicals can stabilize, thus, increasing the antioxidant activity. The initial values of
the antioxidant activity of the fresh anthocyanin extract and the values of the stabilized
anthocyanin extract were compared, and this comparison is shown in Figure 1. The
anthocyanins in methanol exhibited a minor loss effect after stabilizing the extracts with
ZnO nanoparticles, displaying a 5.3% decrease in antioxidant activity after the stabilization,
while the water extract demonstrated major loss after the stabilization (p < 0.05) with a
decrease of 22.6%. For the antioxidant activity measurements of the anthocyanins stabilized
with ZnO, monitoring for a period of 12 weeks was carried out. ZnO nanoparticles without
the anthocyanin extract were used as controls, and zinc ions from ZnCl2 were evaluated
to measure if the ZnO nanoparticles or the Zn2+ ions had any effect on the antioxidant
activity by themselves. The process to determine the antioxidant activity of the ZnO
nanoparticles and Zn2+ ions was exactly the same as the one described in the Materials
and Methods, with the ABTS+ radical. Both, ZnO nanoparticles and Zn2+ ions did not
present any antioxidant activity, as expected, meaning that they do not directly influence
the antioxidant activity. After an evaluation period of 12 weeks, the antioxidant activity
of the stabilized anthocyanins decreased more than the total phenolic compounds. Again,
the water-extracted anthocyanins presented the most prominent decrease in antioxidant
activity (p < 0.05), which corresponds to a 58.2% reduction. That variation is attributed to
the easy degradation process that the anthocyanins may suffer during the 12 weeks [74].
Although the loss in antioxidant activity of the water-extracted anthocyanins may seem like
a considerable loss, the normal antioxidant activity of the anthocyanins in usual conditions
does not exceed two weeks, with some exceptions [75], and at 12 weeks, our stabilized
anthocyanins still preserved almost 50% of their activity, while for the methanol and ethanol
extracted anthocyanins, the values of the antioxidant activity were considerably higher.
For the methanol-extracted anthocyanins, the final value after 12 weeks was 1352 µmol
eq. Trolox, and 973 µmol eq. Trolox for the ethanol-extracted anthocyanins; both values
correspond to decreases of 14.2% and 25.7% in antioxidant activity, respectively. Figure 1
shows those losses in antioxidant activity regarding time.

As for visual effects, neither a precipitate after the whole 12 weeks nor a significant
change in the coloration were observed. The anthocyanins also served to “stabilize” the
ZnO nanoparticles in polar solvents, meaning that the anthocyanins kept the ZnO nanopar-
ticles without aggregation, which is a highly desired characteristic for several applications,
such as electronic applications and in particular biomedical applications [55–58]. Since
anthocyanins are antioxidants with highly biocompatible and non-toxic compounds, they
can also decrease the toxicity of the bare ZnO nanoparticles or other kinds of nanoparti-
cles [56,59], which is a highly debatable topic.

2.4. Biological Assay

A helpful approach to evaluate the protective effect in oxidative stress is the use of
nematode C. elegans to evaluate its adaptive capacity to those stressful conditions, which
can be enhanced by the use of antioxidant molecules. Phenolic compounds as part of a
person’s diet are beneficial to human health due to their antioxidant capacities [76–78]. An-
thocyanins have beneficial effects due to their property of neutralizing free radicals, which
are responsible for cell damage and complications in different pathologies related to oxida-
tive stress. Anthocyanins maintain normal vascular permeability, show anti-inflammatory
response protection against cancer, and prevent neuronal damage during aging [75,78].
Coffee is rich in antioxidant compounds; particularly, coffee cherry is considered as an
excellent source of anthocyanins because of richness in cyanidin-3-rutinoside [8]. For the
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oxidative stress resistance assay, 10 mM H2O2 was used; it is important to mention that
only the ethanol-extracted anthocyanins and the nanoparticles attached to anthocyanins
from the same extract were used for the biological assay; the above is due to the fact that
methanol is highly toxic to biological systems [79] and the stabilized water extracts exhibit
low antioxidant capacity. Two assays of response to oxidative stress were performed in
nematodes from P0 to F4 generation in the larvae stage L4, which were treated with antho-
cyanins extract from coffee husks and with ZnO nanoparticles attached to anthocyanins
from the same extract. Both treatments were compared versus the control group, which
did not receive any treatment. The nematodes were transferred to plates with pro-oxidant
conditions (H2O2) and their vitality was tested each hour. Once individuals received the
treatment with the ethanol extract of anthocyanins or with the ZnO nanoparticles attached
to anthocyanins extracted with ethanol, they were transferred to plates with H2O2, and
their mobility was analyzed until the control group was entirely dead. The number of living
individuals on the treated experiments varies along the five generations of worms tested.
During the generation P0, the entire control group died after 7 h of the initial exposition to
H2O2, meanwhile 4% of the group treated with the anthocyanins extract were alive after 9 h
(p < 0.05). The group treated with ZnO nanoparticles with anthocyanins vary related to the
group treated with a fresh extract, presenting with 11% survival after 9 h (p < 0.10). For the
generation F1, none of the worms survived the exposition of H2O2 after 9 h of treatment,
which is contrary to the 16% and 17.7% (p < 0.05) of survival of the worms treated with
anthocyanins in extract or attached to ZnO nanoparticles, respectively. For the case of
the F2 and F3 generations, similar behavior was observed, whereby the control group in
both generations showed a survival rate of 0.33% and 0%, respectively. The worms treated
with the anthocyanin extract registered a survival rate of 13.7% (F2) (p < 0.05) and 17%
(F3) (p < 0.05), and for those treated with anthocyanins attached to ZnO nanoparticles, the
survival rates were 30.3% (p < 0.05) and 31.3% (p < 0.05), respectively. Finally, for the F4
generation, similar behavior was observed; 1% of the worms survived in the control group,
26% (p < 0.05) survived for the anthocyanin extract, and 30% (p < 0.05) of the individuals
survived for the experiments using ZnO nanoparticles attached to coffee anthocyanins
(Figure 5).

When the treatments were compared, there were not any significant differences ob-
served among the treatments (p > 0.05). Nevertheless, a protective effect is evident in the
nematodes treated with fresh anthocyanins and with ZnO nanoparticles with anthocyanins
attached. To demonstrate the lack of an effect assigned to ZnO nanoparticles, an experiment
was carried out using ZnO nanoparticles as antioxidant agents, prepared as described in
Materials and Methods.

According to these results, we can affirm a beneficial and protective effect of the
anthocyanins extracted from coffee husks versus oxidative stress, with an increase in the
resistance of the nematodes being evident in both of the two treatments for each generation
when compared to the controls. The protective effect could be demonstrated, but no
significant statistical differences were found between the treatments (p > 0.05).
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Figure 5. Comparison of the survival rate of Caenorhabditis elegans treated with 50 µM anthocyanins
extracted from coffee (Coffea arabica L.) husks using ethanol as the extracting agent. Fifty µM antho-
cyanin conjugates from the same extract attached to zinc oxide nanoparticles [fresh (purple) and after
12 weeks (light blue)] and exposed to oxidative stress conditions (10 mM H2O2). All treatments were
compared versus the control group (orange), which did not receive any treatment. The effects of the
anthocyanins were analyzed in the parental line (P0) and four offspring generations (F1, F2, F3, and
F4). The data shown correspond to three independent studies.

3. Materials and Methods
3.1. Materials

Coffee (Coffea arabica L.) cherry was acquired from “El Dos” Ranch, Atotocoyan,
Yaonáhuac, Puebla in Mexico. Zinc chloride from Sigma Aldrich (Toluca, Mexico), hy-
drochloric acid (37%) from Sigma Aldrich (Toluca, Mexico), sodium hydroxide from Sigma
Aldrich (Toluca, Mexico), potassium chloride from Sigma Aldrich (Toluca, Mexico), acetic
acid from Sigma Aldrich (Toluca, Mexico), sodium acetate from Sigma Aldrich (Toluca,
Mexico), potassium persulfate from Sigma Aldrich (Toluca, Mexico), ethanol (99.8%) from
Sigma Aldrich (Toluca, Mexico), methanol (99.8%) from Sigma Aldrich (Toluca, Mexico), 6-
hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) from Sigma Aldrich (Toluca,
Mexico) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) were purchased
from Sigma Aldrich (Toluca, Mexico). Folin–Ciocalteu reagent was purchased from Hycel
(Zapopan, Mexico). All chemical reagents were used without further purification.
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3.2. Anthocyanin Extraction

The extraction of anthocyanins from coffee (Coffea arabica) husks was based on the
previously reported methodology [66,80]. Briefly, 600 mL of three different extracting
agents, water, methanol, or ethanol, were added to 30 g of coffee husks and left stirring for
2 h in the absence of light. For the case of anthocyanin extraction only using water as an
extracting solvent, 30 g of coffee husks were ultrasonicated with distilled water for 10 min.
The supernatant of all of the samples was centrifuged at 6000 rpm, then filtered to remove
any solid material from the coffee skins and concentrated using a rotary evaporator Büchi
461 (Flawil, Switzerland) with a vacuum pressure of 56 cm of Hg at 35 ◦C, until a 35.5%
concentration of soluble solids was reached. The extracts were stored frozen in darkness
and hermetically sealed until further use (Figures S2 and S3).

3.3. Anthocyanin Purification

In order to get rid of all other undesirable components that may also be extracted
during the procedure described previously, the extracts were purified by column chromatog-
raphy using Amberlite XAD7HP from Sigma Aldrich (Toluca, Mexico) as the stationary
phase. The purification process was performed as reported elsewhere [30,81]. Acidic
methanol (0.01% v/v HCl) was used as eluent phase. The extracts were washed three times
with distilled water and acidic methanol. Lastly, the anthocyanin extracts were redispersed
in their respective solvents, i.e., methanol, ethanol, and water.

3.4. Anthocyanin Separation and Identification

To determine the anthocyanins extracted, HPLC Waters 600, Agilent (Santa Clara,
CA, USA) coupled with a diode array detector was applied. The extract obtained from
coffee peels was analyzed by HPLC equipped with a 20 µL loop, using a reverse phase
column C18 LiChroCART (25 × 0.4 cm, 5 µm) Merck (Darmstadt, Germany). A gradient
was established using acetonitrile (A) and 4.5% formic acid (B): isocratic 9:91 (A:B) for
25 min, 26–28 min, 100:0 (A:B) and 28–30 min, 9:91 (A:B) at a flow rate of 1.5 mL/min.
Detection was carried out using a Waters 996 PDA detector at 520 nm [66,82,83].

The NMR spectrum was acquired using an NMR Varian Gemini 2000 (Palo Alto,
CA, USA) spectrometer at 200 MHz, with a pulse sequence configuration for H1, using
5 mm sample tubes. The extract was diluted in deuterochloroform solution with TMS as
the standard for the proton reference frequency (δ = 0) [66,84]. The FTIR spectra for the
anthocyanins with and without a stabilizing agent were acquired using a Cary 60 Agilent
Technologies (Tokyo, Japan) by measuring from 4000 cm−1 to 500 cm−1 [70,71].

3.5. Quantification of Total Phenolic Compounds

The total phenolic compounds of the anthocyanin extracts were determined using the
Folin–Ciocalteu method. The Folin–Ciocalteu regent is a combination of phosphomolybdic
acid and phosphotungstic acid, which reduces at contact with phenol compounds resulting
in an intense blue coloration. For the determination, 7.5 mL of distilled water was added to
1 mL of the diluted extract (1:100) and 300 µL of the diluted Folin–Ciocalteu reagent (1:1 v/v).
After 3 min, 1 mL of sodium carbonate (20% w/v) was added in order to neutralize organic
acids. The measures were acquired 20 min after the addition of sodium carbonate, using
a Shimadzu UV-1800 spectrophotometer (Tokyo, Japan) with a measuring wavelength
of 760 nm. The absorbance of all the samples was compared to a previously prepared
calibration curve of gallic acid and the results were expressed in milligrams of gallic acid
per gram of sample (mg GAE/g) [85,86].
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3.6. Total Monomeric Anthocyanins

Determination of total monomeric anthocyanins was performed following the pH
differential methodology, described by Giusti and Wrolstad [87]. Briefly, the method is
based on the shift of the anthocyanin structure in spite of pH, from intense red at pH 1
(flavylium cation) to colorless at pH 4.5 (hemiacetal). A 10 µL aliquot of sample was diluted
to 1 mL with buffer pH 1 (HCl/KCl 0.025 M) and left to stand for 15 min. After that, the
resulting sample was spectrophotometrically measured at 520 nm, ensuring the absorbance
of the sample was on the 0.200–1.200 interval. The sample was set to pH 4.5 using 0.4 M
acetic acid/sodium acetate buffer, measuring the absorbance at 700 nm and at λmax. The
final absorbance (Afinal) was calculated using the following equation:

Afinal = (Amax vis − A700nm)pH1.0 − (Amax vis − A700nm)pH4.5

The Afinal value was substituted in the following equation to obtain the anthocyanin
concentration in the sample:

Monomeric anthocyanins (mg/L) = (Afinal) (MW) (DF) (1000)/(ε)

where MW is the molecular weight of the anthocyanin most common in nature (cyanidin
3-glucoside, 449.2 g/mol) [88], DF is the dilution factor of the sample, and ε the coefficient
of molar absorptivity (26,900 L/mol·cm).

3.7. Antioxidant Activity

The antioxidant activity was measured following the ABTS method [89], based on the
capacity of the sample to catch the ABTS+ radicals; this can be monitored by measuring the
fading of the color, which is proportional to the antioxidant activity. The ABTS+ radical was
produced by adding a solution of 7 mM of ABTS with a 2.45 mM solution of K2S2O8 and it
was left incubating for 16 to 24 h at room temperature in darkness. The ABTS+ solution
was diluted with ethanol until an absorbance of 0.70 ± 0.02 was reached with a 754 nm
wavelength. The extract was diluted with ethanol by adding 990 µL of ethanol to 10 µL
of the anthocyanin extract to obtain an inhibition of 20–80% compared to the absorbance
of the ABTS+ in ethanol. A solution containing 980 µL of the diluted ABTS+ was mixed
with 20 µL of the diluted anthocyanin extract and left for 7 min until the absorbance was
measured. To quantify the inhibition percentage, the following equation was used:

Inhibition percentage =
( Absini − Abs f inal

Absini

)
(100)

where Absini is the initial absorbance and Absfinal is the final absorbance. The reference
antioxidant used was Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), and
the results were based on a Trolox calibration and expressed in units of Trolox micromoles
equivalent (µmol eq Trolox).

3.8. Preparation of ZnO Nanoparticles

Zinc oxide nanoparticles were prepared following our previous methodology [72].
Briefly, a solution of 0.10 M of ZnCl2 in ethanol was added dropwise to a 0.10 M solution
of NaOH in ethanol. The mixture was left stirring for 2 h and then washed three times by
centrifugation using ethanol to remove the excess of ions.



Molecules 2023, 28, 1353 13 of 20

3.9. Anthocyanin Stabilization Using ZnO Nanoparticles

To stabilize the anthocyanins extracted from coffee husks with the prepared ZnO
nanoparticles, 7 mL of the purified anthocyanin extract in their extracting agent (methanol,
ethanol, or water) was added to previously synthetized ZnO nanoparticles and left stirring
for 48 h in darkness. After stabilization, the anthocyanins in the ethanol changed their
color, from an intense red coloration to an intense blue, but when the pH was stabilized
with HCl, the red coloration was recovered; in addition, the water-extracted anthocyanins
changed from a red coloration into dark brown; the methanol-extracted anthocyanins kept
their initial red coloration after stabilization. In order to evaluate the stabilization of the
anthocyanins by the ZnO nanoparticles, a determination of total phenolic compounds,
total monomeric anthocyanins, and antioxidant activity were measured over a period of
12 weeks [72].

3.10. Quantification of Anthocyanins Stabilized with ZnO Nanoparticles

To determine the mass of the anthocyanins coated by the ZnO nanoparticles, atomic
absorption spectrometry Varian SpectrAA 220FS (Palo Alto, CA, USA) was used. For the
determination, 1 mL of the stabilized anthocyanins with the ZnO nanoparticles was dried
and dissolved completely by adding 1 mL of concentrated hydrochloric acid for 1 h. After
the nanoparticles were completely dissolved, they were filled with distilled water until 1 L
was reached and then measured with the instrument. The intensity of the signal obtained by
the atomic absorption spectrometer was compared to a calibration curve previously made,
to convert the intensity into the mass of the zinc ions. After the mass of the zinc ions was
obtained, the total mass of ZnO was calculated according to stoichiometry and subtracted
to the mass that was dried before, in order to obtain the milligrams of anthocyanins coating
the nanoparticles [72].

3.11. Caenorhabditis Elegans Culture, Maintenance, and Syncronization

The nematode Caenorhabditis elegans (strain N2, Bristol wild type) [90] was grown
to maintain a continuous supply using M9 buffer and NGM prepared as previously de-
scribed [91–93]. Escherichia coli strain OP50 serves as food for C. elegans; this was cultured
in LBM until it was seeded on NMG plates for C. elegans intake. C. elegans was main-
tained in NGM agar plates and transferred to fresh plates every 5–7 days by washing the
nematodes with M9 buffer, following the methodology proposed by Stiernagle [91]. It
was necessary to synchronize nematodes to the same larvae stage to make comparable
observations. To synchronize C. elegans, parental nematodes were grown on 10-cm NGM
plates and observed under a microscope to count the number of individuals with the same
size and characteristics (100 individuals). Synchronization was realized using a alkaline
hypochlorite solution. This treatment is based on the fact that gravid adults are sensitive to
the bleach solution and when they become in contact with it, they dissolve, while embryos
are protected by the eggshell [94]. When enough parental nematodes could be observed
under the microscope, the NGM plates with C. elegans were washed with M9 buffer and put
into Eppendorf tubes and centrifuged for 1 min at 4600 rpm (4 ◦C). The worms in the pellet
were washed with 1 mL of NaOH, vortexed for 30 s, and centrifuged for 30 s at 4000 rpm
(4 ◦C). The supernatant was removed and the worms were washed with 1 mL of sodium
hypochlorite 5%:1 M NaOH (2:3, v:v), vortexed for 1 min, and centrifuged under the same
conditions. Finally, the embryos were washed 2–3 times with 1 mL M9 buffer and then
transferred onto NGM agar plates with E. coli OP50.
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3.12. Biological Assay

To determine the antioxidant effect of the anthocyanins extracts, and to compare
the efficiency of the stabilized anthocyanins with ZnO nanoparticles against the pure
extract, the nematode C. elegans was exposed to a severe treatment of oxidative stress
using hydrogen peroxide (H2O2). For that purpose, a dietary supplementation of C.
elegans with anthocyanins was planned. Since E. coli OP50 is the only food source for
C. elegans, any treatment addressed to C. elegans will be absorbed via E. coli. Therefore,
dietary supplementation must be addressed to E. coli [95]. The biological assay consisted
in the growth of C. elegans eggs in the following manner: (a) control, NGM with E. coli;
(b) NGM with E. coli supplemented with a 50 µM fresh extract of anthocyanins of each
solvent (water, ethanol, and methanol; (c) NGM with E. coli supplemented with 50 a µM
ZnO–anthocyanin complex obtained from each solvent. C. elegans was cultured under
those conditions for 48 h, then transferred to new plates (100 nematodes per plate in
triplicate) prepared with the oxidant agent (10 mM H2O2). Survival was tested each
hour and the nematodes were counted as being dead when no response was observed
to a stimulus caused with a platinum handle [96,97]. To determine the effects of the
treatment in the second generation, the treated nematodes were synchronized, and the eggs
obtained were plated with antioxidants (fresh extract of anthocyanins and a nanoparticle–
anthocyanin complex) until L4 phase was reached. The survival was evaluated following
the methodology above. This procedure was repeated until the oxidative stress resistance
of five generations was evaluated.

3.13. Statistical Analysis

To analyze the obtained results, the statistical software Minitab 18th version (State
College, PA, USA) and GraphPad Prism 6.0 (San Diego, CA, USA) were used. The resistance
to oxidative stress was analyzed using the differential proportions test, and the treatments
were analyzed through the ANOVA test.

4. Conclusions

Polar organic solvents such as methanol and ethanol are good alternatives to extract
anthocyanins from coffee husks. However, water is not the best extracting agent, since it
may cause faster oxidation and decomposition of the anthocyanins, not mentioning that
the number of phenolic compounds extracted with water was not as good as the number of
phenolic compounds extracted with methanol and ethanol.

ZnO nanoparticles where synthetized through an easy methodology, followed by
easier anthocyanin stabilization. Although the anthocyanin stabilization methodology
did not present much difficulty, the results obtained were better than expected, because
at 12 weeks, in the best scenario, the anthocyanins only lost 14% of their antioxidant
activity and less than 5% of the phenolic compounds. The interactions between the ZnO
nanoparticles and the anthocyanins extracted from coffee husks may explain these results.
We believe that the attachment is caused by purely weak electrostatic interactions that
help anthocyanins to organize and probably re-organize, as they need to entering a less
energetic state. This can be achieved by a different polarization of the electronic density of
the anthocyanins.

Anthocyanins are a very promising coating, since they are easily extracted from veg-
etables and fruits and do not present any toxicity risk. Therefore, it is possible to use these
preparations for biomedical applications, since they can reduce the toxicity caused by the
use of other materials. Further work regarding the stabilization of anthocyanins with other
nanoparticles is currently being carried out in order to better understand the interactions
formed by ZnO and anthocyanins. The positive antioxidant effect of the anthocyanins’
ethanolic extract, free or bonded to nanoparticles, observed in five generations of C. elegans
cultures can be attributed to the positive effect against strong oxidative conditions of these
natural pigments.
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The findings of this study demonstrate the positive antioxidant effect of anthocyanins
from coffee husks, a by-product of the food industry. Additionally, the high stabilization of
these bioactive compounds has been achieved, shown by the low stability of free antho-
cyanins. The addition of nanostructured ZnO for the stabilization of these antioxidants
has no effect on their optical properties nor on their beneficial effects, as evidenced in
biological trials on C. elegans. Nevertheless, we can mention that more studies must be
performed to evaluate the application of these preparations to human illnesses and that
these preparations are limited to low-scale syntheses. On the other hand, it is possible
to study the in vivo performance of free and stabilized anthocyanins from coffee, over
human cancer lines cells or the murine model. In addition, it is possible to synthesize large
amounts of ZnO nanoparticles to prepare conjugates with anthocyanins that can be useful
for the pharmaceutical, biomedical, and cosmetic industries. For all of the above, we can
affirm that ZnO nanoparticles are useful in stabilizing anthocyanins for several weeks and
that these compounds can be applied to evaluate their beneficial properties in biological
systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031353/s1, Table S1: Phenolic compounds (PC) and
monomeric anthocyanins (MA) contents of some selected fruits; Figure S1: Standard calibration curve
of Zn2+ prepared using Zn2+ concentrations from 2–10 mg/mL and measured by AAS; Figure S2:
Colors of the different extracts obtained from coffee husks and of the preparations with ZnO nanopar-
ticles. The images show the change in the color of anthocyanins because of the change in pH;
flavylium cation (red) at pH1 and hemiketal form (colorless) at pH 4.5. The same behavior was ob-
served with free anthocyanins and those associated to ZnO nanoparticles. Also, similar characteristics
was observed for all the extracts (water, ethanol, and methanol); Figure S3: UV-Vis spectra of the
water (A), ethanol (B), and methanol (C) extracts obtained from coffee husks, and of the preparations
with ZnO nanoparticles. The pH effect over the samples is demonstrated with the presence of peaks
on the interval of 260–360 nm, when the sample is at pH 4.5 (hemiketal form, colorless), and the
appearance of a particular peak on the interval of 460–560 nm, when the sample is at pH 1.0 (flavylium
cation, red). To highlight that the presence of ZnO nanoparticles did not affect the absorbance of
anthocyanins
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Abbreviations

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)
COX-2 (cyclooxygenase-2)
MAPK (mitogen-activated protein kinase)
PPAR (peroxisome proliferator-activated receptor)
CD36 (cluster of differentiation 36)
LDL (low-density lipoprotein)
GLUT4 (glucose transporter type 4)
AMPK (AMP-activated protein kinase)
PEPCK (phosphoenolpyruvate carboxykinase)
CPT1A (carnitine palmitoyl transferase 1A)
ACO (acyl-CoA oxidase)
FKBPs (FK506 binding proteins)
CaCo-2 cells (colorectal adenocarcinoma cells)
Hep3B cells (human hepatocyte carcinoma cells)
GSK3β (glycogen synthase kinase 3 beta)
GAE (gallic acid equivalents)
EtOH (ethanol)
MeOH (methanol)
HPLC (high-performance liquid chromatography)
NMR (nuclear magnetic resonance)
FTIR (Fourier transform infrared)
AAS (atomic absorption spectrometry)
ZnO (zinc oxide)
C3G (cyanidin-3-glucoside)
ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
NGM (nematode growth medium); LBM (luria–bertani medium)
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