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Abstract: Functionalizing polyfluorene-wrapped carbon nanotubes without damaging their proper-
ties is effective via Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC). However, the length
and nature of polymer side-chains can impact the conductivity of polyfluorene-SWNT films by
preventing close contact between the nanotubes. Here, we investigate the functionalization of a
polyfluorene-SWNT complex using photocleavable side-chains that can be removed post-processing.
The cleavage of the side-chains containing an ortho-nitrobenzyl ether derivative is efficient when
exposed to a UV lamp at 365 nm. The photoisomerization of the o-nitrobenzyl ether linker into the
corresponding o-nitrosobenzaldehyde was first monitored via UV-Vis absorption spectroscopy and
1H-NMR spectroscopy on the polymer, which showed efficient cleavage after 2 h. We next inves-
tigated the cleavage on the polyfluorene-SWNT complex via UV-Vis-NIR absorption spectroscopy.
The precipitation of the nanotube dispersion and the broad absorption peaks after overnight irradi-
ation also indicated effective cleavage. In addition, Raman spectroscopy post-irradiation showed
that the nanotubes were not damaged upon irradiation. This paper reports a proof of concept that
may find applications for SWNT-based materials in which side-chain removal could lead to higher
device performance.

Keywords: carbon nanotubes; conjugated polymers; photocleavable sidechains; supramolecular
functionalization; click chemistry

1. Introduction

Since the discovery of single-walled carbon nanotubes in 1991 [1], significant effort
has been made to take advantage of their mechanical [2,3], optical [4,5], and electronic
properties [6,7]. Numerous applications of SWNTs such as sensors [8,9], thin-film tran-
sistors [10,11], organic photovoltaics [12,13], flexible electronics [14,15], and conductive
inks [16,17] have been developed [18,19]. However, due to inter-tube π–π interactions,
SWNTs tend to aggregate into insoluble bundles in organic solvents [20]. Moreover, all
commercial techniques to produce SWNTs [21,22] result in a complex mixture of amor-
phous carbon, leftover catalyst particles, and a mixture of semiconducting and metallic
species (sc- and m-SWNTs, respectively) that impede their performance within several ap-
plications [23]. To address this issue, covalent or non-covalent functionalization of SWNTs
has been developed to improve their solubility and purity. Covalent functionalization
requires strongly oxidizing conditions that damage SWNTs’ properties by destroying the
sp2 hybridized surface and therefore impact on SWNTs’ properties [24,25]. In contrast,
non-covalent functionalization uses sonication in the presence of a dispersant to form a
dispersant-SWNTs supramolecular complex that provides solubility in organic solvents and
prevents SWNTs reaggregation into bundles [26–28]. To this end, dispersants such as small
aromatic compounds [29–31], surfactants [32–34], biomolecules [35–37], and conjugated
polymers [38–41] have been used. Due to their facile synthesis and structural modifi-
cation [42–46], conjugated polymers can be used to achieve different properties such as
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selective dispersion of either sc- or m-SWNTs [47–50], reversible assembly on the nanotube
surface [51–56], or depolymerization in response to a stimulus to release SWNTs [57–59].

Attention has also been given to conjugated polymers that exhibit reactive function-
ality post-supramolecular assembly with SWNTs. Specifically, polyfluorene derivatives
containing azide groups in the side-chains have been prepared and used to noncovalently
functionalize SWNTs [60–62]. The resulting polyfluorene-SWNTs complexes, dispersed
in organic or aqueous solvents, were then functionalized using either Copper-Catalyzed
Azide–Alkyne Cycloaddition (CuAAC) or Strain-Promoted Azide–Alkyne Cycloaddition
(SPAAC) without damaging SWNTs’ optoelectronic properties [60–62]. However, the in-
troduction of large side-chains that are non-conductive results in a dramatic decrease in
conductivity of the polymer-SWNTs complex by preventing good contact between adjacent
nanotubes. A potential approach to solve this problem is the use of cleavable side-chains
that can be removed after the device’s fabrication. In 2019, Kawamoto and coworkers
prepared SWNTs thin films dispersed using polythiophene functionalized with carbonate
linkers in their side-chains. When heated at 350 ◦C, the carbonate linkers were cleaved by
decarboxylation resulting in higher conductivity [63]. More recently, our group prepared a
polyfluorene-SWNTs complex functionalized with thermally cleavable side-chains that also
contain a carbonate linker. The conductivity increased over time upon heating the films at
170 ◦C and reached a plateau of (2.0 ± 0.1) × 10−2 S/m after 17 h of heating, which was
20 times higher than the non-cleavable sample. This demonstrates the effect of removing
the side-chains post processing [64].

Here, we report a different type of cleavable side-chain that contains an ortho-nitroben-
zyl (oNB) ether linker. This linker is cleaved when exposed to a 300–365 nm UV light [65,66].
The cleavage time varies from minutes to a few hours, depending on the intensity of the
light, which usually ranges from 1 to 60 mW.cm−2 [65]. oNB linkers have been widely used
as cross-linkers for photodegradable polymers [67], side-chain functionalization [68–72],
solid-phase synthesis [73–75], photolithography [76,77], self-immolative polymers [78,79],
and other applications [65,66,80,81]. In this work, we prepared a polyfluorene-SWNTs
complex functionalized with either photocleavable or non-cleavable side-chains. The
cleavage study was first performed on the polymers using UV-Vis absorption and 1H
NMR spectroscopy. We next studied the polyfluorene-SWNTs complexes using UV-Vis-
NIR absorption spectroscopy. Characterization post irradiation was also performed using
Raman spectroscopy to verify that the irradiation did not damage the nanotubes.

2. Results and Discussion
2.1. Polymer Synthesis and Characterization

To begin our study, we first synthesized an azide-containing polyfluorene (PF-N3) ac-
cording to procedures in the literature [62]. Bromination of fluorene using N-bromosuccini-
mide (NBS) was performed to obtain precursor 1 (Scheme S1 (Supplementary Materials)),
which was then alkylated with 1,6-dibromohexane to afford monomer 2. Borylation of this
monomer using Miyaura conditions afforded the diboronic ester 3. Monomers 2 and 3
were then copolymerized using a Suzuki polycondensation to obtain the homopolymer
(PF-Br) (Scheme 1). Gel permeation chromatography (GPC) revealed an Mn of 33 kDa and
a dispersity (Ð) of 2.2. PF-N3 was then prepared via reaction between PF-Br and NaN3 in
the presence of nBu4NBr. The homopolymers were characterized by 1H NMR spectroscopy
to confirm the presence of alkyl azides (3.15 ppm) in PF-N3 and the disappearance of the
signal of the alkyl bromides (3.31 ppm) in PF-Br (Figure S1).
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To introduce our photocleavable side-chains, we first prepared an oNB-TEG-alkyne
via activation of triethyelene glycol monomethyl ether with tosyl chloride (Scheme S4),
followed by alkylation with 5-Hydroxy-2-nitrobenzaldehyde to obtain compound 5. Com-
pound 5 was then reduced using sodium borohydride to afford the corresponding alcohol
6. Nucleophilic substitution of this alcohol with propargyl bromide was finally performed
to obtain oNB-TEG-alkyne. The non-cleavable analog was prepared via nucleophilic sub-
stitution of triethylene glycol monomethyl ether (TEG-OH) with propargyl bromide to give
TEG-alkyne (Scheme S5). PF-N3 was then functionalized with either TEG-alkyne (P1)
or oNB-TEG-alkyne (P2) (Figure 1) using copper-catalyzed azide-alkyne cycloaddition
(CuAAC) (see Supplementary Materials for details). The reaction was monitored by in-
frared (IR) spectroscopy via the disappearance of the polymer azide stretch at ~2090 cm−1

(Figure S2). The resulting polymers were also characterized by 1H–NMR spectroscopy to
confirm the disappearance of the alkyl azides (3.15 ppm), the appearance of the aromatic
proton in the triazole ring (7.51 ppm), as well as the appearance of alkyl protons from the
side-chain between 3 and 5 ppm (Figure S3).
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Figure 1. Chemical structure of PF-TEG (P1) and PF-oNB-TEG (P2).

2.2. Photocleavage Study of The Polymers

With PF-TEG (P1) and PF-oNB-TEG (P2) in hand, we studied the cleavage of the
side-chain using UV-Vis absorption spectroscopy. To confirm that the polyfluorene does
not degrade upon irradiation, PF-N3 was also studied. Polymers were dissolved in tetrahy-
drofuran (THF), transferred into quartz cuvettes, and irradiated at 365 nm in a UV reactor.
The UV-Vis spectrum of each sample was measured every 15 min for a total duration of 2 h,
when no further changes in absorbance were observed (Figure 2). Not surprisingly, PF-N3
and PF-TEG do not show any degradation during the irradiation process (Figure 2A,B). As
shown in Figure 2C, when P2 was subjected to the irradiation process, a decrease in the
absorbance is observed at 300 nm, corresponding to the cleavage of the o-nitrobenzyl linker.
Meanwhile, as the peak at 300 nm decreases, a new peak at 350 nm arises. This new peak
corresponds to the o-nitrosobenzaldehyde compound produced during the cleavage (see
Figure S4) [65]. As shown in the spectrum, this new peak overlaps with the absorption
of the polyfluorene. Therefore, the cleavage was also monitored on the oNB-TEG-alkyne
side-chain (Figure 2D) and provided similar observations. This suggests that the cleavage
is effective, and 2 h is sufficient to cleave the side-chain.
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Figure 2. UV-Vis absorbance spectra overlays of (A) PF-N3, (B) PF-TEG, (C) PF-oNB-TEG, and (D)
o-NB-TEG-alkyne side-chain only upon irradiation for 2 h at 365 nm in THF (0.1 mg/mL).

To further characterize the cleavage, we used 1H–NMR spectroscopy (Figure 3). Poly-
mers were dissolved in CDCl3 and irradiated for 2 h. Despite the appearance of new signals
at 11 ppm and in the aromatic region (6.5–8 ppm) corresponding to the aldehyde and the
nitrosobenzaldehyde derivative, respectively, the cleavage of the side-chain was incom-
plete after 2 h. Therefore, the irradiation was resumed for one more hour. Surprisingly,
the degradation was still incomplete as observed by the presence of the aromatic signals
corresponding to the oNB linker (Figure 3). The sample was then irradiated overnight and,
as shown in Figure 3, the complete disappearance of aromatic signals corresponding to
the oNB linker was observed. The control sample PF-TEG was also irradiated overnight,
and no changes were observed (see Figure S5). The difference in the irradiation time
evaluated by UV-Vis absorption spectroscopy and 1H NMR spectroscopy can be explained
by the significant difference in concentration of the samples between the two techniques
(~0.1 mg/mL for the UV-Vis absorbance spectroscopy sample compared to ~5 mg/mL for
the 1H-NMR spectroscopy sample).
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2.3. Polymer-SWNTs Dispersions and Characterization

Having shown that cleavage of the side-chains is effective on the polymer in solution,
we next investigated polymer-SWNTs complexes. Based on our previous work [64], direct
dispersion of SWNTs using functionalized polyfluorene led to poorly dispersed samples.
Therefore, PF-N3 was functionalized post-dispersion. PF-N3 and raw HiPco SWNTs (av-
erage tube diameter 0.8–1.2 nm) complexes were prepared following the procedures in
the literature [60], Briefly, a mixture of 7.5 mg of PF-N3 and 5 mg of SWNTs in 10 mL of
THF was sonicated using a probe sonicator for 1 h. The resulting black suspension was
centrifuged at 8346× g for 30 min, and the supernatant was carefully removed to isolate
the PF-N3-SWNTs dispersion. The side-chains were then introduced in situ by CuAAC
following the procedures in the literature (Scheme 2) [60]. The reactions were monitored
by IR spectroscopy via the disappearance of the polymer azide stretch at ~2090 cm−1

(Figure S6). Once the complete disappearance of the azide stretch was observed, the sample
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was filtered through a Teflon membrane with 0.2 µm pore diameter and thoroughly rinsed
with THF until the filtrate did not fluoresce when excited with a hand-held UV lamp at
365 nm. The resulting thin films were then redispersed in 10 mL of THF.
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Scheme 2. Schematic representation of a CuAAC functionalization of PF-N3-SWNTs using TEG-
alkyne andoNB-TEG-alkyne.

Characterization using UV−Vis−Near-Infrared (NIR) absorption spectroscopy was
next performed (Figure 4). Each SWNTs species present within the polymer-SWNTs
sample exhibits its own absorption signals. Three main regions are observed for HiPco
SWNTs: two semiconducting regions, S11 (830−1600 nm) and S22 (600−800 nm), and
one metallic region, M11 (440−645 nm) [5]. The absorption spectra were normalized
to the maximum absorption of the peak at 1140 nm to compare the different SWNTs’
species. PF-N3-SWNTs and the post-click dispersions (PF-TEG-SWNTs and PF-oNB-TEG-
SWNTs) show similar absorption features, suggesting a successful post-functionalization
redispersion. As shown in Figure 4, both m- and sc-SWNTs’ species are present within the
polymer-SWNTs complexes, suggesting a lack of selectivity for specific SWNTs’ species
under the dispersion conditions used.
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To further characterize our polymer-SWNTs complexes, Raman spectroscopy was
performed. In this technique, laser excitation wavelengths overlap with the Van Hove
singularities present in the density of states for specific SWNTs’ species [82]. Therefore, this
technique allows examination of both m- and sc-SWNTs’ species present in the polymer-
SWNTs sample [83]. Since electronic transitions depend on SWNTs’ diameter and type,
multiple excitation wavelengths are needed to achieve full characterization [83]. The
polymer-SWNTs samples for Raman spectroscopy were prepared by drop-casting the
dispersion onto a silicon wafer, followed by evaporation at RT. A reference sample was
prepared by sonicating raw SWNTs in chloroform and depositing on silicon using the
same drop-casting method. For HiPco SWNTs, two excitation wavelengths were used:
633 and 785 nm. Using these wavelengths, both m- and sc-SWNTs are separately probed [84].
Figure 5 shows the radial breathing mode (RBM) for PF-N3-SWNTs, PF-TEG-SWNTs, and
PF-oNB-TEG-SWNTs dispersions. The spectra were normalized to the G-band
(~1590 cm−1) for comparative analysis. Using the 633 nm excitation wavelength, both
m- (175−230 cm−1) and sc-SWNTs (240−300 cm−1) are in resonance and signals corre-
sponding to both nanotube types are observed (Figure 5A) [85]. We then used the 785 nm
excitation wavelength to characterize our samples. sc-SWNTs are primarily in resonance
(175–280 cm−1) when using this wavelength. When raw HiPco SWNTs are excited at
785 nm, a peak at 265 cm-1 corresponding to bundled (10,2) SWNTs is observed [86]. As
shown in the spectra (Figure 5B), the intensity of this peak is significantly lower compared
to the reference sample of unfunctionalized SWNTs. This indicates that our samples are
relatively well dispersed.
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2.4. Photocleavage Study of the PF-SWNTs Complexes

PF-TEG-SWNTs and PF-oNB-TEG-SWNTs dispersed in THF were transferred into
quartz cuvettes and irradiated at 365 nm. The UV-Vis-NIR data were collected every 15
min for the first 2 h, and the final data were collected after overnight irradiation. As
shown in Figure 6A, no changes were observed for the control sample. Figure 6B shows
that the absorbance of the different SWNTs’ species in the photocleavable sample de-
creased upon cleavage of the side-chains. As shown in Figure 6B, overnight irradiation
caused the dispersion to precipitate, resulting in broad absorption peaks for the nan-
otubes. This indicates that the loss of side-chains eliminates the steric stabilization of the
nanotubes’ dispersion.
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2.5. Conductivity Measurements

Using UV-Vis-NIR absorption spectroscopy, we observed that the side-chain cleavage
is effective and complete after overnight irradiation. We next performed conductivity
measurements. PF-TEG-SWNTs and PF-oNB-TEG-SWNTs thin films were prepared by
filtering the dispersions through a Teflon membrane with a 0.2 µm pore diameter followed
by overnight drying at 75 ◦C in a vacuum oven. Before irradiation, no conductivity could
be detected for either of the samples. The films were then placed into the UV reactor and
irradiated at 365 nm overnight. The samples were then washed with hot methanol to
eliminate the o-nitrosobenzaldehyde derivative produced from the cleavage and placed
under vacuum at 75 ◦C for 1 h (in a vacuum oven). However, no conductivity was detected
for either of the samples, probably as a result of the limited light penetration through
the black polymer-SWNTs thin films (see the Supplementary Materials for details), thus
resulting in limited side-chain cleavage in the solid state.

2.6. Characterization of the Polymer-SWNTs Dispersions Post-Irradiation

To verify that the irradiation did not damage the surface of the nanotubes, Raman
spectroscopy with an excitation wavelength of 633 nm was performed. Comparing the
intensity of the D-band centred at ~1290 cm−1 relative to the G-band at ~1590 cm−1 provides
an indication of the presence of sp3 carbon defects [87]. As shown in Figure 7, there is
no significant difference between pre-and-post irradiated samples when observing the
G and D-band. This suggests that no nanotube defects have been generated upon the
irradiation process.
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3. Materials and Methods
3.1. General

Flash chromatography was performed using an Intelliflash280 by AnaLogix. Un-
less otherwise noted, compounds were monitored using a variable wavelength detector
at 254 nm. Solvent amounts used for gradient or isocratic elution were reported in col-
umn volumes (CV). Columns were prepared in Biotage® SNAP KP-Sil cartridges using
40–63 µm silica or 25–40 µm silica purchased from Silicycle. 1H–NMR and 13C-NMR
spectra were recorded on Bruker Avance 600 MHz and shift-referenced to the residual
solvent resonance. Electrospray MS was performed using a Micromass Quattro triple
quadrupole instrument in positive mode. Polymer molecular weights and dispersities
were analyzed (relative to polystyrene standards) via GPC using a Waters 2695 Separations
Module equipped with a Waters 2414 refractive index detector and a Jordi Fluorinated DVB
mixed bed column in series with a Jordi Fluorinated DVB 105 Å pore size column. THF
with 2% acetonitrile was used as the eluent at a flow rate of 2.0 mL/min. Sonication was
performed using a QSonica Q700 Sonicator equipped with a 13 mm probe at an amplitude
of 60 µm and a sonication power of 30 Watts. Centrifugation of the polymer-SWNTs’
samples was performed using a Beckman Coulter Allegra X-22 centrifuge. UV-Vis-NIR
absorption spectra were recorded on a Cary 5000 spectrometer in dual beam mode, using
matched 10 mm quartz cuvettes. Raman spectra were collected with a Renishaw InVia
Laser Raman spectrometer, using two different lasers: a 500 mW HeNe Renishaw laser (633
nm, 1800 L/mm grating); and a 300 mW Renishaw laser (785 nm, 1200 L/mm grating).
Photoirradiation of the samples was performed in a home-built UV reactor equipped with
two 25W lamps exhibiting emission at 365 nm.

3.2. Experimental Procedures

Raw HiPCO SWNTs were purchased from NanoIntegris (batch #HR30-166 and #HR37-
033) and used without further purification. All reagents were purchased from commercial
chemical suppliers and used as received. Compounds 1, 2, and 3 were prepared according
to the procedures in the literature [62]. Synthesis schemes and characterization data are
provided in the Supplementary Materials.
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3.2.1. Poly(bis(6-bromohexyl)fluorene) (PF-Br) [62]

A Schlenk tube equipped with a stir bar was charged with 2 (0.87 g, 1.34 mmol),
3 (1.00 g, 1.34 mmol), THF (6.7 mL), toluene (6.7 mL), and 3M K3PO4(aq) (13.4 mL). The
reaction mixture was degassed by three freeze–pump–thaw cycles. The biphasic mixture
was frozen under liquid nitrogen, then [(o-tol)3P]2Pd (14 mg, 20.2 µmol) was added under
a positive pressure of nitrogen. The Schlenk tube was evacuated and backfilled three
times, and the reaction was vigorously stirred at 60 ◦C for 2 h 30 min. The phases were
allowed to separate, and the organic layer was filtered through a plug of celite and neutral
alumina (1:1 composition). The plug was washed with THF, and the filtrate was concen-
trated in vacuo. The crude polymer was precipitated in MeOH (~200 mL) and filtered to
afford PF-Br as a yellow solid (1.16 g, 88%). 1H–NMR (600 MHz; CDCl3): δ 7.86 (m, 2H),
7.73–7.67 (m, 4H), 3.31–3.28 (m, 4H), 2.15 (m, 4H), 1.71–1.69 (m, 4H), 1.28–1.25 (m, 4H),
1.18 (m, 4H), 0.88 (m, 4H).

3.2.2. Poly(bis(6-azidohexyl)fluorene) (PF-N3) [62]

A round bottom flask equipped with a stir bar was charged with PF-Br (1.00 g,
2.03 mmol), NaN3 (1.32 g, 20.3 mmol), nBu4NBr (1.32 g, 4.1 mmol), and THF (200 mL). The
reaction mixture was heated to reflux for 24 h. The reaction mixture was filtered through a
neutral alumina plug, washed with THF, and precipitated in MeOH (~200 mL) to afford
PF-N3 (0.73 g, 86%).1H–NMR (600 MHz; CDCl3): δ 7.87–7.85 (m, 2H), 7.72–7.68 (m, 4H),
3.16–3.14 (m, 4H), 2.15 (m, 4H), 1.46, 1.40 (m, 4H), 1.25–1.20 (m, 8H), 0.88–0.83 (m, 4H).

3.2.3. 2-(2-(2-methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (4) [88]

A 20 mL vial equipped with a stir bar was charged with triethylene glycol monomethyl
ether (1 g, 6.09 mmol), Tosyl chloride (1.05 g, 5.53 mmol) in 6 mL of dichloromethane.
Triethylamine (1.23 g, 12.2 mmol) was added dropwise. The solution was stirred for 4 h.
The reaction was quenched with water (6 mL) and extracted with DCM (3 × 12 mL). The
combined organic layers were washed with brine (3 × 12 mL), dried with MgSO4, and
concentrated in vacuo. The product was purified by flash chromatography Hex/EtOAc
(0% to 75%) to give a colourless oil (1.5 g, 77%). 1H–NMR (600 MHz, CDCl3): δ 7.82 (d,
J = 8.2 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 4.15 (m, 2H), 3.68 (m, 2H), 3.60 (m, 6H), 3.53 (m,
2H), 3.36 (s, 3H), 2.44 (s, 3H).

3.2.4. 5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-nitrobenzaldehyde (5) [89]

A 10 mL vial equipped with a stir bar was charged with 5-Hydroxy-2-nitrobenzaldehyde
(0,5 g, 2.9 mmol), compound 4 (0.86 g, 2.7 mmol), and potassium carbonate (0.41 g,
2.9 mmol) in 6 mL of dimethylformamide. The solution was stirred at 50 ◦C overnight.
The solution was quenched with water (6 mL), and the mixture was extracted with EtOAc
(3 × 12 mL). The recombined organic layers were washed with water (3 × 12 mL) and
brine (3 × 12 mL). The organic layer was dried with MgSO4 and concentrated in vacuo.
The compound was purified by flash chromatography Hex/EtOAc (0% to 50%) to give a
colourless oil (0.78 g, 83%). 1H–NMR (600 MHz, CDCl3): δ 10.47 (s, 1H), 8.1 (d, J = 9.04 Hz,
1H), 7.35 (d, J = 2.9 Hz, 1H), 7.19–7.17 (dd, J = 9.05, J= 2.9 Hz, 1H), 4.27 (m, 2H), 3.90 (m,
2H), 3.73 (m, 2H), 3.67 (m, 2H), 3.64 (s, 2H), 3.54 (s, 3H), 3.37 (s, 3H).

3.2.5. (5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-nitrophenyl)methanol (6) [89]

A 20 mL vial equipped with a stir bar was charged with compound 5 (0.75 g,
2.24 mmol) in 6 mL of dry THF. Sodium borohydride (0.13 g, 3.35 mmol) was added,
and the solution was stirred at 0 ◦C for 1 h. After completion, the mixture was diluted with
EtOAc, filtered through a silica plug using EtOAc as eluent, and concentrated in vacuo to
give a yellowish solid (0.64 g, 85%). 1H–NMR (600 MHz, CDCl3): 8.17 (d, J = 9.04 Hz, 1H),
7.30 (d, J = 2.9 Hz, 1H), 6.90 (dd, J = 9.05, J= 2.9 Hz, 1H), 4.98 (s, 2H), 4.47 (m, 2H), 3.89 (m,
2H), 3.73 (m, 2H), 3.67 (m, 2H), 3.64 (m, 2H), 3.54 (m, 2H), 3.37 (s,3H).
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3.2.6. 4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1-nitro-2-((prop-2-yn-1-yloxy)methyl)
-benzene (oNB-TEG-alkyne)

A 100 mL round bottom flask equipped with a stir bar was charged with compound
6 (0.6 mg, 1.90 mmol) and sodium hydride (54 mg, 2.28 mmol) in 20 mL of dry THF. The
solution was stirred at 0 ◦C for 1 h, and propargyl bromide (0.34 g, 2.85 mmol) was added
dropwise. The mixture was stirred overnight at RT, then quenched with water (10 mL),
extracted with dichloromethane (3 × 20 mL), washed with water (3 × 30 mL) and brine
(3 × 30 mL). The organic layer was dried with MgSO4, and concentrated in vacuo. The
compound was purified by flash chromatography Hex/EtOAc (0% to 90%) to give a brown
oil (0.5 g, 75%). 1H–NMR (600 MHz; CDCl3): δ 8.16 (d, J = 9.1 Hz, 1H), 7.30 (d, J = 2.8 Hz,
1H), 6.91 (dd, J = 9.1, 2.8 Hz, 1H), 4.99 (d, J = 6.5 Hz, 2H), 4.27–4.25 (m, 2H), 3.90–3.88 (m,
2H), 3.74–3.63 (m, 6H), 3.55–3.54 (m, 2H), 3.37 (s, 3H), 2.71 (t, J = 6.6 Hz, 1H).13C–NMR
(151 MHz; CDCl3): δ 163.5, 140.49, 140.34, 127.9, 114.6, 113.9, 71.9, 70.89, 70.70, 70.55, 69.6,
68.2, 62.9, 59.0. ESI-MS: m/z calculated for C17H23NO7 [M+]: 353.15 found [M+Na]+: 376.1.

3.2.7. Triethylene glycol methyl propargyl ether (TEG-alkyne) [90]

A round bottom flask equipped with a stir bar was charged with triethylene glycol
monomethyl ether (1.00 g, 6.09 mmol) in 60 mL of anhydrous THF at 0 ◦C. NaH (0.28 g,
6.69 mmol) was added to the solution, and the reaction mixture was stirred at 0 ◦C. After
1 h, propargyl bromide (80% in toluene, 1.43 g, 7.91 mmol) was added dropwise. The reaction
mixture was stirred at RT overnight, quenched with water (30 mL) and extracted with DCM
(3 × 30 mL). The organic layers were combined, washed with brine (3 × 25 mL), dried
with MgSO4 and concentrated in vacuo to afford TEG-alkyne as an orange oil (1.05 g, 85%).
1H–NMR (600 MHz; CDCl3): δ 4.20 (d, J = 2.4 Hz, 2H), 3.71–3.63 (m, 10H), 3.55–3.54 (m, 2H),
3.37 (s, 3H), 2.42 (t, phJ = 2.4 Hz, 1H).

3.2.8. CuAAC Procedure for PF-TEG (P1)

A glass vial was charged with PF-N3 (30 mg, 70 µmol) in 7 mL THF and 2.1 equiv-
alents of TEG-alkyne (30 mg, 150 µmol). To the reaction mixture, 4 mg of Cu(OAc) and
10 equivalents of Hünig’s base with respect to Cu(OAc) (40 mg, 0.36 mmol) were added.
The reaction mixture was stirred at RT, and reaction progress was monitored by IR spec-
troscopy for the disappearance of the azide stretch at ~2090 cm−1. The solution was filtered
through an alumina plug, concentrated in vacuo and redissolved in a minimum of THF.
The polymer was precipitated in ∼50 mL of cold MeOH to give a yellow solid (51 mg,
87%). 1H–NMR (600 MHz; CDCl3): δ 7.90–7.85 (m, 2H), 7.77–7.67 (m, 4H), 7.53–7.48 (m,
2H), 4.69–4.63 (m, 4H), 4.27–4.19 (m, 4H), 3.69–3.64 (m, 18H), 3.58–3.52 (m, 4H), 3.39–3.37
(m, 6H), 2.20–2.09 (m, 4H), 1.79–1.71 (m, 4H), 1.23–1.11 (m, 10H), 0.88–0.77 (m, 4H).

3.2.9. CuAAC Procedure for PF-oNB-TEG (P2)

A glass vial was charged with PF-N3 (30 mg, 70 µmol) in 7 mL THF and 2.1 equivalents
of oNB-TEG-alkyne (50 mg, 150 µmol). To the reaction mixture, 4 mg of Cu(OAc) and
10 equivalents of Hünig’s base with respect to Cu(OAc) (40 mg, 0.36 mmol) were added.
The reaction mixture was stirred at RT, and the reaction progress was monitored by IR
spectroscopy for the disappearance of the azide stretch at ~2090 cm−1. The solution was
filtered through an alumina plug, concentrated in vacuo and redissolved in a minimum
of THF. The polymer was precipitated in ~50 mL of cold MeOH to give a yellow solid
(67 mg, 90%). 1H–NMR (600 MHz, CDCl3): δ 8.11 (m, 2H), 7.83 (m, 2H), 7.68 (m, 4H), 7.48
(m, 2H), 7.32 (m, 2H), 4.95 (m, 4H),4.74 (m, 4H), 4.22(m, 6H), 3.92 (m, 4H), 3.73–3.65 (m, 12H),
3.52 (m, 4), 3.36 (m, 6H), 2.12 (m, 4H), 1.76 (m, 4H), 1.22 (m, 8H), 0.84 (m, 8H).
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4. Conclusions

Polyfluorene-SWNTs complexes were functionalized with either photocleavable or
non-cleavable TEG side-chains. The photocleavage of the side-chains was first studied on
the polymer using UV-Vis absorption spectroscopy. As the irradiation time increased, a
decrease in the absorbance was observed at 300 nm, while a new peak at 350 nm arose for
the cleavable sample. This corresponds to the photoisomerization of the oNB linker into
the corresponding o-nitrosobenzaldehyde. Functionalized polyfluorene-wrapped SWNTs
were then prepared, and the photocleavage was studied using UV-Vis-NIR absorption
spectroscopy. After overnight irradiation, the cleavage of the side-chains led to the precip-
itation of the dispersion, resulting in broad absorption peaks. Finally, thin-film samples
of the polymer-wrapped SWNTs were prepared and irradiated overnight. Unfortunately,
due to the limited ability of the light to penetrate through the thin films, no conductiv-
ity could be detected pre-and post-irradiation. However, these results demonstrate the
ability to efficiently cleave the side-chains using light without damaging the structure of
the nanotubes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031471/s1, Schemes S1–S7: synthesis schemes; Figure
S1:1H-NMR spectra of PF-Br and PF-N3; Figure S2: FT-IR overlay of the click reaction; Figure S3:
1H-NMR overlay of PF-N3, PF-TEG and PF-oNB-TEG; Figure S4: photoisomerization mechanism;
Figure S5: 1H-NMR overlay of PF-TEG before and after irradiation; Figure S6: FT-IR overlay of
the click reaction between PF-N3-SWNTs and the side-chains; Figure S7: Full Raman spectra at
λex = 633 nm and λex = 785 nm; Figure S8: photograph of a PF-SWNTs thin film; Figure S9: Full
Raman spectra pre- and post-irradiation at λex = 785 nm; Figure S10: GPC trace of PF-Br; Figures
S11–S15: 1H-NMR, 13C-NMR, and deptq NMR spectra of the different synthesized compounds.
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