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Abstract: Positron emission tomography (PET) is a molecular imaging technique that makes use
of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for
the labelling of small molecule PET tracers and can be incorporated into organic molecules without
changing their physicochemical properties. While the short half-life of carbon-11 (11C; t 1

2
= 20.4 min)

offers other advantages for imaging including multiple PET scans in the same subject on the same day,
its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are
consequently more restrictive. Many researchers have embraced this challenge by discovering novel
carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This
review presents new carbon-11 building blocks and radiochemical transformations as well as PET
tracers that have advanced to first-in-human studies over the past five years.
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1. Introduction

Positron emission tomography (PET) is a molecular imaging technique that utilizes
radiotracers for in vivo studies. The radionuclides fluorine-18 and carbon-11 are the most
commonly used for labelling PET tracers because of the growing use of organofluorine
drugs and as carbon is ubiquitous in nearly every drug or biomolecule. Additionally, their
suitable decay characteristics and half-lives match the in vivo pharmacokinetics of small
molecules. Consequently, developing new radiochemistry methods for the introduction of
these short-lived radionuclides into organic molecules has emerged as one of the greatest
challenges in PET radiopharmaceutical chemistry. Our ultimate goal is to radiolabel any
molecule for medical imaging—a concept analogous to total synthesis that we introduced
as “total radiosynthesis” [1]. Because the radiochemistry of fluorine-18 has been extensively
reviewed in recent years [for example see: [2–11]], the focus of this review is on recent
radiochemistry methodologies with carbon-11 and translation of 11C-labelled PET tracers
to first-in-human (FIH) PET imaging studies.

Carbon-11 (11C) has a half-life of 20.4 min and is produced in a cyclotron by proton
bombardment of nitrogen gas in presence of trace amounts of oxygen (0.1–2%) or hydrogen
(5–10%) where it is obtained as [11C]CO2 or [11C]CH4, respectively [12,13]. [11C]CO2 and
[11C]CH4 can either be used directly in radiolabelling reactions or further converted to other
11C-building blocks (see Scheme 1) [14]. The most common carbon-11 labelling strategy for
PET tracers is 11C-methylation of hydroxy or amino groups using [11C]methyl iodide or
[11C]methyl triflate, which are routinely obtained from [11C]CO2 and/or [11C]CH4. The
advantages of 11C-methylation are the accessibility of precursors and carbon-11 methylating
agents, as well as the general prevalence of methyl groups in pharmaceutical compounds.
However, amongst molecules targeting the central nervous system (CNS) the prevalence of
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such methyl groups is rather low (<35%). Furthermore, metabolic demethylation can lead
to cleavage of the radiolabel in vivo [15,16].
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Synthetic efforts have been made in recent years to expand the toolbox for 11C-
chemistry beyond 11C-methylation (Scheme 1). Particular interest has been paid to the
development of [11C]CO and [11C]CO2 chemistry, in order to gain access to 11C-labelled
carbonyl-based functional groups. These radiochemistry methods open the door to labelling
>75% of the compounds in CNS drug pipelines [15]. And other promising building blocks
and synthetic strategies have been developed, such as new reactions with [11C]methyl io-
dide and related alklylating reagents, [11C]hydrogen cyanide, [11C]fluoroform, [11C]carbonyl
difluoride, [11C]carbon disulfide, [11C]thiocyanate and [11C]formaldehyde (vide infra),
further broadening the scope of compounds that can be labelled with carbon-11 and paving
the way for our ultimate goal of total radiosynthesis.

It should be noted that all yields are reported as they are stated or defined in their orig-
inal articles (radiochemical yield (RCY), radiochemical conversion (RCC), radiochemical
purity (RCP)) and might not necessarily reflect their definition as reported in the nomencla-
ture guidelines [17,18]. The molar activity (Am) depends on several factors including the
starting amount of radioactivity and is therefore difficult to compare.

2. Carbon-11 Methodologies

2.1. [11C]Carbon Dioxide

Historically, [11C]CO2 has been a challenging building block for radiochemists to use
due to its moderate reactivity and potentially low Am caused by isotopic dilution with at-
mospheric CO2. The introduction of bulky organic “fixation” bases such as 1,8-diazabicyclo
[5.4.0]undec-7-ene (DBU) and 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-
1,3,2-diazaphosphorine (BEMP) for trapping of [11C]CO2 [19–21] was inspired by green
chemistry for capturing atmospheric CO2 and represents a major advance for 11C-chemistry:
the “fixation” bases allow [11C]CO2 to be easily trapped in a reaction vessel at room temper-
ature and enable access to high oxidation state functional groups such as carbon-11 labelled
carboxylic acids, amides, formamides, ureas, carbamates and other functional groups [22].
This methodology has contributed to the accessibility of [11C]CO2 as a building block and,
in consequence, a wide array of new [11C]CO2 chemistry applications and PET tracers have
emerged over the past decade. This review will focus on novel [11C]CO2 fixation reactions
reported within the last five years.
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While [11C]CO2 is directly produced in the cyclotron, the irradiated cyclotron target
gas contains many undesired chemical and radiochemical entities. To purify [11C]CO2 from
carrier gases and other by-products, it is typically trapped using liquid nitrogen or by physi-
cal adsorption on porous polymers, such as carbon molecular sieves or polydivinylbenzene
copolymers. A new method for purifying [11C]CO2, also inspired by green chemistry
literature, has recently been reported by our laboratories which employs chemisorption
by solid polyamine-based adsorbents. This method uses small amounts of silica-grafted
polyethyleneimine to trap [11C]CO2 at room temperature and quantitatively release it
under mild heating (85 ◦C). Trapping efficiencies (TEs) as high as 79 ± 12% were observed
but decreased over multiple cycles, indicating a limited reusability of the capture material.
This technology was applied to synthesize a PET tracer by [11C]CO2 fixation reactions, and
could potentially be applied for solid phase reactions as well as enable the transportation
of carbon isotopes [23].

Traditionally, direct use of [11C]CO2 is achieved by use of Grignard reagents, organo-
lithiums or silanamines to yield 11C-labelled amides or carboxylic acids. However, these
reagents are challenging to implement in automated PET tracer production due to their
hygroscopic nature, tendency to absorb atmospheric CO2, and corrosiveness [22]. As such,
many new methodologies for the preparation of [11C]carboxylic acids have been developed
over the past five years by novel [11C]CO2 fixation reactions that employ the aforemen-
tioned “fixation” bases. Our laboratory reported the use of aryl and heteroaryl stannanes
as precursors which were carboxylated in a copper(I)-mediated reaction with [11C]CO2
(see Scheme 2A) [24]. The method was fully automated and applied for an alternative
synthesis of [11C]bexarotene (previously synthesized by reaction of [11C]CO2 with a boronic
ester precursor mediated by a copper(I) source [25,26]), and was obtained with a RCY of
32 ± 5% (decay-corrected (dc)) and a Am of 38 ± 23 GBq/µmol. The strategy was also
applied by García-Vázquez et al. to the synthesis of 11C-carboxylated tetrazines for the
labelling of trans-cyclooctene-functionalized PeptoBrushes [27]. After optimization of the
original reaction conditions (CuI instead of CuTC, NMP instead of DMF and addition
of TBAT as fluoride ion source), two tetrazines were successfully 11C-carboxylated with
RCYs of 10–15% and “clicked” to the TCO-PeptoBrushes. It is noteworthy that Goudou
et al. reported the copper-catalyzed radiosynthesis of [11C]carboxylic acids by reaction of
[11C]CO2 with terminal alkynes in presence of DBU (see Scheme 2B) [28]. A small library
of [11C]propiolic acids was obtained with RCYs between 7 and 28%. A different approach
using trimethyl and trialkoxy silanes as precursor has been described by Bongarzone et al.
(see Scheme 2C) [29]. In this desilylative carboxylation reaction, aromatic silane precursors
were activated by fluoride, forming a pentavalent silicate which was then reacted in a
copper-catalyzed reaction with [11C]CO2. [11C]Carboxylic acids were obtained with RCYs
of 19–93% and TEs of 21–89%. A more general approach for the synthesis of [11C]carboxylic
acids was introduced by Qu et al. (see Scheme 2D) [30]. Sp-, sp2- and sp3-hybridized
carbon-attached trimethylsilanes were 11C-carboxylated in a fluoride-mediated desilylation
(FMDS) reaction, resulting in a broad substrate scope and high RCYs (up to 98%). The
applicability of the method was demonstrated by synthesizing two carboxylic acid PET
tracers via the FMDS approach.

[11C]Carboxylic acids can also be synthesized by isotopic exchange reactions. Destro
et al. reported the isotopic exchange reaction of cesium salt precursors with 13C, 14C, and a
few selected examples of 11C (see Scheme 3A) [31]. While good yields were obtained for
[13C]CO2 and [14C]CO2, yields were low for [11C]CO2 (3–50%) due to low TEs. Another
take on this strategy was demonstrated by Kong et al., who employed photoredox catalysis
and obtained similar results (see Scheme 3B) [32]. In both cases, Am was low, as expected
(<0.2 GBq/µmol). A very recent addition to the portfolio of carboxylic acid labelling strate-
gies by isotopic exchange was presented by Bsharat et al. [33]. These authors developed an
aldehyde-catalyzed carboxylate exchange reaction in α-amino acids (see Scheme 3C) with
13C and 11C. For the 11C-reactions, imine carboxylates were pre-formed by condensation of
α-amino acids with aryl aldehydes and subsequently subjected to the carboxylate exchange
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reaction with [11C]CO2. An array of α-amino acids was labelled with RCYs of 4–24%, and
the modest yields were also attributed to low TEs of the [11C]CO2. Phenylalanine was
isolated by this reaction with a Am of 8.4 GBq/mmol.
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Scheme 3. Synthesis of [11C]carboxylic acids via isotopic exchange [31–33].

Scheme 4 gives an overview of the proposed mechanism of [11C]CO2 fixation with
fixation bases such as BEMP and DBU and formation of the [11C]isocyanate, as well as
the 11C-labelled functional groups that can be obtained via this pathway [18]. While early
works focused on the synthesis of carbamates, the scope of 11C-labelled functional groups
has broadened immensely over time.
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The efficient syntheses of carbon-11 labelled amides, ureas, and formamides have been
a longstanding goal in PET radiochemistry and have seen an emergence of interest in recent
years. Bongarzone et al. reported a rapid one-pot synthesis of amides via a Mitsunobu reac-
tion (see Scheme 5A) [34]. [11C]CO2 was trapped with DBU, converted to [11C]isocyanate
(or an [11C]oxyphosphonium intermediate) using Mitsunobu reagents and subsequently
reacted with a Grignard reagent to form the respective amide. RCYs of up to 50% were
obtained. The substrate scope was not investigated for [11C]CO2, but [11C]melatonin was
synthesized to demonstrate the applicability of this method to biologically relevant com-
pounds. Mair et al. used organozinc iodides as alternatives to Grignard reagents in a
rhodium-catalyzed addition to [11C]isocyanates (see Scheme 5B) [35]. The isocyanates were
generated similarly to the previous method and reacted with the organozinc iodides in pres-
ence of a rhodium catalyst with RCYs of 5–99%. One model compound was isolated with a
RCY of 12% and Am of 267 GBq/µmol to demonstrate suitability for PET tracer production.
In order to develop an efficient synthesis strategy for the benzimidazolone PET tracer (S)-
[11C]CGP12177, Horkka et al. reported a BEMP/Mitsunobu-based strategy for the synthesis
of cyclic aromatic ureas: ortho-Phenylenediamines were reacted with [11C]CO2 in presence
of BEMP as fixation base. Mitsunobu reagents (DBAD, nBu3P) were added to form the
[11C]isocyanate intermediates which then reacted intramolecularly to yield the respective
11C-labelled urea (see Scheme 5C) [36]. The strategy was also applied to cyclic carbamates
and thiocarbamates, as well as the tracer (S)-[11C]CGP12177, which was obtained in 23%
RCY (dc) with a Am of 14 GBq/µmol. Luzi et al. reported the synthesis of [11C]formamides
(see Scheme 5D) [37]. [11C]CO2 was trapped with BEMP in diglyme and was reacted with
aromatic and aliphatic primary amines to form the respective [11C]isocyanates, which were
subsequently reduced to the [11C]formamides with sodium borohydride. The method
performed better for aliphatic amines compared to aromatic amines.

In an attempt to make [11C]CO2 fixation with BEMP and DBU more widely accessible
and amenable to automation, two strategies of “in-loop” [11C]CO2 fixation have been
developed. While our laboratory developed this method using a standard stainless-steel
HPLC loop for [11C]CO2 fixation, Downey et al. applied a disposable ethylene tetrafluo-
roethylene loop [38,39]. In both cases, [11C]CO2 was captured in the loop in the presence
of an amine precursor and fixation base, prior to reaction with a model substrate. The
“in-loop” fixation has been applied to synthesize 11C-labelled carbamates, unsymmetrical,
and symmetrical ureas.
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Scheme 5. Synthesis of [11C]amides and [11C]formamides via [11C]isocyanates [34–37].

A different approach to access ureas and carbamates via [11C]isocyanate was presented
by Audisio and co-workers (see Scheme 6). The [11C]isocyanate intermediates were gener-
ated through a Staudinger aza-Wittig reaction from the respective azide, then reacted either
intramolecularly to form cyclic [11C]ureas [40] and [11C]carbamates [41] or intermolecularly
with an amine to form linear ureas [42]. All three strategies were applied for the synthesis
of 13C-, 14C- and 11C-labelled compounds. RCYs of the isolated 11C-compounds generally
ranged between 20 to 50%.
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Scheme 6. 11C-labelled ureas and carbamates via the Staudinger aza-Wittig reaction [40–42].

To avoid the multi-step syntheses and limited substrate scope of previously reported
methods, Liger et al. reported a novel radiolabelling strategy for benzimidazoles and
benzothiazoles (see Scheme 7). In this work, [11C]CO2 was reacted with aromatic diamines
and aminobenzenethiols in presence of 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene
(IPr), zinc chloride, and phenylsilane as reducing reagent to obtain various benzimidazoles
and benzothiazoles [43].

Previously, the synthesis of [11C]carbonates could only be achieved using the esoteric
building block [11C]phosgene, which is technically challenging to prepare and requires
specialized apparatus. To access this functional group directly from [11C]CO2, Dheere et al.
developed a procedure involving an alkyl chloride, an alcohol, TBAI and base in DMF (see
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Scheme 8) [44]. The procedure was used for the synthesis of one model compound, and
resulted in either moderate RCY (31 ± 2%) and higher Am (10–20 GBq/µmol; low amounts
of 11C), or high RCY (up to 82%) and lower Am (2 GBq/µmol), depending on the base.
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A novel method for ring-opening non-activated aziridines with [11C]CO2 using
DBU/DBN halide ionic liquids was developed by our laboratory (see Scheme 9) [45].
[11C]CO2 was introduced to a pre-activated mixture of benzyl aziridine and the ionic liquid
giving 4-benzyl [11C]oxazolidine-2-one with 77% radiochemical conversion (RCC) and 78%
TE. The method was applied to radiolabel an array of [11C]oxazolidinones (RCCs 5–95%)
as well as a MAO-B inhibitor, [11C]toloxatone, as a proof of concept.
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2.2. [11C]Carbon Monoxide

[11C]Carbon monoxide has gained much interest in recent years. Novel 11CO-chemistry
will not be covered within this review but we refer to recent comprehensive reviews of
[11C]CO production methods and 11C-carbonylation chemistry [46–50]. Although many
straightforward routes for [11C]CO production have been established, and a diverse portfo-
lio of [11C]carbonylation reactions has been developed, this branch of carbon-11 chemistry
is still heavily underrepresented in PET tracer synthesis. In fact, of the 100+ labelled
compounds synthesized from [11C]CO, only four are reported for human use to our knowl-
edge [51]. One likely reason for the hampered translation of [11C]CO radiochemistry to the
clinic can be attributed to the historic lack of commercially available automated synthesis
units for [11C]CO. This has now been overcome with systems such as the TracerMakerTM

which is used by our laboratories for the syntheses of N-[11C]acrylamide PET tracers for
imaging Bruton’s tyrosine kinase via a palladium-NiXantphos-mediated carbonylation
using [11C]CO [51,52]. The synthesis of the same class of compounds has also recently been
automated as “in-loop” procedure using the GE TracerLab synthesis modules [53]. Prior
to this recent work, 11C-labelled N-acrylamides were synthesized from [11C]acrylic acid
or [11C]acryloyl chloride (formed by carboxylation of Grignard or organolithium reagents
with [11C]CO2) and were not suitable for human translation.

2.3. [11C]Methyl Iodide and Other 11C-Alkylation Agents

[11C]Methyl iodide and [11C]methyl triflate have been known for many decades [54–57]
and are by far the most commonly used 11C-labelling agents. Their widespread use is



Molecules 2023, 28, 931 8 of 21

attributed to their routine radiosyntheses and high reactivity. Both [11C]methyl iodide and
[11C]methyl triflate can be easily synthesized from the primary cyclotron products (i.e.,
[11C]CH4 or [11C]CO2) using the classical wet-chemistry approach with lithium aluminium
hydride and HI or the gas-phase method involving I2, and dedicated synthesis devices with
fully automated procedures are commercially available [58]. Mostly, [11C]methyl iodide
and [11C]methyl triflate are employed in 11C-methylation reactions of hydroxyl, amine or
thiol precursors, but also many different 11C-C coupling reactions have been established,
including Suzuki, Stille, and Negishi couplings. For an overview of 11C-C cross-coupling
strategies, we refer the reader to a comprehensive review from H. Doi [59]. Recent progress
in the field has been made by Rokka et al., who systematically studied the reaction of
various organoborane precursors with [11C]methyl iodide in two different reaction media,
DMF(/water) and THF/water, to determine the best precursor and solvent for Suzuki-type
cross coupling reactions in 11C-chemistry [60]. These authors found that for their model
compound (1-[11C]methylnaphthalene), the boronic acid and pinacol ester precursors gave
the highest yields, while the solvent mixture THF/water was equal or superior in any
tested reaction. Recent work focused on broadening the substrate scope to diversify 11C-
methylation chemistry. Pipal et al. reported the 11C-methylation of aromatic and aliphatic
bromides via metallaphotoredox catalysis (see Scheme 10A) [61]. The applicability of this
labelling strategy was demonstrated by synthesizing 11 11C-labelled biologically active
compounds, including the PET tracers [11C]UCB-J and [11C]PHNO, in RCYs of 13–72%
for proof of concept. Qu et al. extended their fluoride-mediated desilylation of organosi-
lanes, initially developed for [11C]CO2 fixation (vide supra), to [11C]methyl iodide and
succeeded in labelling a diverse library of silane substrates with RCYs of up to 93% (see
Scheme 10B) [25].
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As an alternative to [11C]CO or [11C]acetyl chloride chemistry, Dahl and Norde-
man developed a procedure for 11C-acetylation of amines with [11C]methyl iodide (see
Scheme 10C) [62]. Bis(cyclopentadienyldicarbonyliron) was used as the CO source in the
Pd-mediated reaction. The reaction was established for a range of primary amine precur-
sors, including three biologically relevant compounds, and a few examples of secondary
amines. A different approach to the same functional group was presented by Doi et al.,
whereby [11C]acetic acid was synthesized in a palladium-mediated cross-coupling reaction
from [11C]methyl iodide and carboxytriphenylsilane, then converted to the [11C]acetic
acid phthalimidyl ester or succinimidyl ester (see Scheme 10D) [63]. The imidyl esters
were subsequently employed in a 11C-acetylation reaction with small, medium-sized, and
large molecules.

In an effort to develop a stereoselective 11C-alkylation procedure for diastereomerically
enriched dipeptides, Filp et al. investigated the use of various quaternary ammonium
salts as chiral phase-transfer catalysts in the 11C-alkylation of N-terminal glycine Schiff
bases (see Scheme 10E) [64]. Next to [11C]methyl iodide, the procedure was also applied
to [11C]benzyl iodide. RCCs of >80% and high diastereomeric ratios (d.r.) of up to 95:5
were obtained. A similar strategy has been used by Pekošak et al. for the stereoselective
11C-labelling of the tetrapeptide Phe-D-Trp-Lys-Thr with [11C]benzyl iodide [65]. [11C]Phe-
D-Trp-Lys-Thr was synthesized over five steps starting from [11C]CO2 and isolated with
high stereoselectivity (94% de), RCYs of 9–10% (dc), and Am of 15–35 GBq/µmol.

To address the shortcomings of current cross-coupling strategies with [11C]methyl
iodide, Helbert et al. developed a new cross-coupling procedure with [11C]methyllithium.
[11C]Methyllithium was developed as a more reactive alternative for [11C]methyl iodide
and can be synthesized by reaction of [11C]methyl iodide with n-butyllithium [66,67]. In
the procedure of Herbert et al., [11C]methyllithium was added without intermediate purifi-
cation to the aryl bromide precursors and a selection of relevant PET tracers was labelled
by palladium-mediated 11C-C cross-coupling with RCYs of 33–57% (see Scheme 11) [68].
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2.4. [11C]Hydrogen Cyanide

Since its inception in the 1960s [69], [11C]HCN has developed into a versatile building
block for the 11C-labelling of neurotransmitters, amino acids, and other molecules. This
is mainly due to its versatility: It can function as nucleophile as well as electrophile,
and [11C]cyanide incorporation generates many different functionalities, such as nitriles,
hydantoins, (thio)cyanates and, through subsequent reaction, carboxylic acids, aldehydes,
amides and amines. Two extensive reviews on [11C]hydrogen cyanide have been recently
published, therefore this 11C-building block will not be discussed in detail herein [70,71].
Since [11C]hydrogen cyanide is one of the few 11C-building blocks used for FIH PET tracers
in recent years (vide infra), we will provide a brief summary of recent work that has not
been covered by other reviews.

[11C]Hydrogen cyanide is typically produced by reacting [11C]CH4 with NH3 gas on a
platinum catalyst at 1000 ◦C. While fully automated production systems are commercially
available, [11C]HCN is not widely used. In an effort to make [11C]hydrogen cyanide more
accessible, Kikuchi et al. developed a novel synthesis strategy from widely available
[11C]methyl iodide (see Scheme 12) [72]. This method involves passing [11C]methyl iodide
over a heated reaction column, in which it is first converted to [11C]formaldehyde and
subsequently to [11C]hydrogen cyanide. The [11C]hydrogen cyanide is obtained fast and
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with RCYs comparable to the traditional method (50–60% at EOB), without the need for
specialized equipment.
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2.5. [11C]Fluoroform

Due to the prevalence of CF3 groups in drugs and other biologically active com-
pounds, there has been much interest in labelling this group with carbon-11 and fluorine-18.
Haskali et al. published a synthesis procedure for carbon-11 labelled fluoroform in 2017,
where cyclotron-produced [11C]methane was fluorinated by passing it over a CoF3 column
at elevated temperatures (270 ◦C) [73]. [11C]Fluoroform was obtained with RCYs of ~60%.
The process was not only fast and reproducible, but the developed system also required
very little maintenance. [11C]Fluoroform was reacted with various model compounds (see
Scheme 13), in addition to three biologically active compounds.
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Whereas flourine-18 labelled fluoroform generally suffers from low molar activities
(≤1 GBq/µmol) and only few examples of higher molar activities are known, high molar
activities of >200 GBq/µmol were easily obtained with carbon-11 labelled fluoroform. In
later works, the substrate scope of reactions with [11C]fluoroform was broadened from aryl
boronates, aryl iodides, ketones, diazonium salts, and diarylsulfanes to aryl amines and
arylvinyl iodonium tosylates (see Scheme 13) [74,75].

2.6. [11C]Carbonyl Difluoride

As an alternative strategy to access carbon-11 labelled ureas, carbamates, and thiocar-
bamates, Jakobsson et al. presented the [11C]carbonyl group transfer agent [11C]carbonyl di-
fluoride [76]. [11C]Carbonyl difluoride was synthesized quantitatively by passing [11C]CO
over a AgF2 column at room temperature. The building block was subsequently reacted
with diamines, aminoalcohols, and aminothiols to form the corresponding cyclic azolidin-2-
ones (see Scheme 14) under mild conditions with very low precursor quantities, and even in
presence of water. The same laboratory expanded their procedure to linear unsymmetrical
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ureas and established reaction conditions for a broad scope of aryl and aliphatic amines [77].
For the aryl amines, [11C]carbonyl fluoride was trapped in a solution with the aryl amine
precursor and subsequently reacted with another amine. For the aliphatic amines, alkylam-
monium tosylate precursors were used in the first step to lower the reactivity of the amine
and prevent symmetrical urea formation. Pyridine was used to improve [11C]carbonyl
fluoride trapping. Suitability for PET tracer synthesis was demonstrated by labelling the
epoxide hydrolase inhibitor [11C]AR-9281, which was obtained after optimization in high
RCYs of 80%.
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2.7. [11C]Carbon Disulfide

[11C]Carbon disulfide, the sulfur analog of [11C]carbon dioxide, is an interesting 11C-
building block for the synthesis of organosulfur compounds. It has first been described
in 1984, and had limited utility until a decade ago when Miller and Bender proposed a
new synthesis strategy, which was further improved by Haywood et al. [78–80]. It can
now be readily obtained through the reaction of [11C]CH3I with elemental sulfur and has
been used to synthesize [11C]thioureas, thiocarbamates and related structures. Cesarec et al.
recently published a procedure for the synthesis of late transition metal complexes with
[11C]dithiocarbamate ligands [81]. To this end, [11C]carbon disulfide was reacted with
diethyl amine or dibenzyl amine to form the respective ammonium [11C]dithiocarbamate
salt and subsequently reacted with Au(I), Au(III), Pd(II) or Pt(II) complexes to form the
respective complexes in RCYs > 70% (see Scheme 15).
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2.8. [11C]Thiocyanate

[11C]Thiocyanate is an interesting 11C-building block because of its reactivity and
potential to give access to a wide range of organosulfur derivatives. Up until recently,
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its production relied on the use of [11C]HCN [82]. Haywood et al. presented a new
way to synthesize this 11C-building block by reacting [11C]carbon disulfide with ammo-
nia at 90 ◦C to form ammonium [11C]thiocyanate in near quantitative RCC [83]. The
ammonium [11C]thiocyanate was subsequently reacted with benzyl bromide, a range of
α-ketobromides, and mannose triflate in high RCYs of ≥75% (see Scheme 16). The α-
[11C]thiocyanatophenones could also be cyclized in the presence of sulfuric and acetic acid
to 11C-thiazolones.
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2.9. [11C]Formaldehyde

[11C]Formaldehyde is an established and versatile building block for carbon-11 chem-
istry (see [84] and references therein). Many different synthetic strategies have been pro-
posed, traditionally involving reduction in cyclotron-produced [11C]CO2 to [11C]CH3OH
and subsequent oxidation to [11C]formaldehyde. Nader et al. recently proposed the use
of XeF2 as an oxidizing agent (see Scheme 17) [85]. [11C]Formaldehyde was obtained in
non-decay corrected RCYs of 54 ± 5% starting from [11C]CO2 and was used in a proof-
of principle synthesis to form α-(N-[11C]methylamino)isobutyric acid via reductive 11C-
methylation.
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3. First-in-Human Translation

Despite the short physical half-life and the need for an on-site cyclotron, 11C continues
to be a favoured radionuclide for small molecule PET tracers. As discussed in this review,
innovations continue in 11C-radiolabelling strategies for applications in 11C-tracer develop-
ment. Within the past five years, to our knowledge at least 27 novel 11C-labelled PET tracers
have been translated for FIH PET studies (see Figure 1) [86–109]. Unsurprisingly, the vast
majority of these PET tracers were designed to image targets within the CNS (see Table 1).
Carbon-11 is ideal for CNS PET because the substitution of naturally occurring 12C with
11C does not change the physicochemical properties of the compound, thereby enabling
imaging with isotopologues of the molecules of interest for accurate determination of brain
penetrance, target affinity, pharmacokinetics, or pharmacodynamics of the molecule, and
multiple scans can be performed in the same subject in the same day. Interestingly, many
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of the 11C-labelled PET tracers for FIH use focused on imaging markers of neuroinflam-
mation, a critical component in the etiology and pathology of several neurodegenerative
diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic
lateral sclerosis (ALS) [110–114]. The remaining PET tracers translated for FIH studies that
were reported in the past five years strived to image non-CNS targets, including bacterial
infection and lung inflammation.
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Figure 1. Chemical structures of the majority of first-in-human PET tracers labelled with 11C since
2017. Targets, publication years and references of the tracers are listed in Table 1.

When sorting the tracers according to the labelling method, it becomes immediately
apparent that the predominant synthetic strategy remains 11C-methylation of hydroxy or
amino precursors: more than 3

4 of all tracers were synthesized via this strategy, either using
[11C]methyl iodide or [11C]methyl triflate as the 11C-buidling block (see Figure 2). This
can be attributed to the accessibility of these building blocks from cyclotron-produced
[11C]CO2 or [11C]CH4 and the availability of commercial synthesis devices (vide supra) [58].
Other tracers have been synthesized by alternate 11C-labelling strategies, using [11C]HCN
or Grignard reactions with [11C]CO2. The latest developments in 11C-chemistry are not
represented among the FIH tracers, which is not surprising since it usually takes time for a
new method to be implemented by the broader community. However, many of the existing
11C-building blocks have not been introduced in the past few years but have been around
for decades and should, therefore, be available for clinical application. As indicated in some
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cases (e.g., [11C]CO chemistry), it may be the historic lack of specialized or commercially
available radiosynthesis equipment that hampers FIH translation of new PET tracers. Other
reasons could be that new 11C-methodologies are often only developed up to the point
of proof-of-principle and not optimized for automated tracer production. Rather than
further broadening the scope of 11C-chemistry, future efforts should focus on closing the
gap between new method development and clinical translation.

Table 1. First-in-human 11C PET tracers and their targets reported since 2017.

Tracer Target 11C-Building Block Year Ref.

[11C]ER176 TSPO [11C]CH3I 2017 [92]
[11C]K-2 AMPA receptors [11C]CH3I 2020 [96]

[11C]rifampin Tuberculosis meningitis [11C]CH3I 2018 [105]
[11C]MC1 COX-2 [11C]CH3I 2020 [98]

(R)-[11C]IPMICF16 TrkB/C receptors [11C]CH3I 2017 [87]
[11C]RO6924963 Tau [11C]CH3I 2018 [109]
[11C]RO6931643 Tau [11C]CH3I 2018 [109]
(R)-[11C]Me-NB1 GluN2B-containing NMDA receptors [11C]CH3I 2022 [86]
[11C]Preladenant Adenosine A2A receptors [11C]CH3I 2017 [103]

[11C]TMP Bacterial infection [11C]CH3I 2021 [107]
[11C]PS13 COX-1 [11C]CH3I 2020 [104]
[11C]TTFD Drug pharmacokinetics [11C]CH3I 2021 [108]

[11C]LSN3172176 M1 muscarinic acetylcholine receptors [11C]CH3I 2020 [97]
[11C]MeDAS Myelin [11C]MeOTf 2022 [100]

[11C]AS2471907 11ß-hydroxysteroid dehydrogenase type 1 [11C]MeOTf 2019 [88]
[11C]CPPC CSF1 receptor [11C]MeOTf 2022 [91]
[11C]CS1P1 Sphingosine-1-phoshate receptor 1 [11C]MeOTf 2022 [93]

[11C]CHDI-00485180-R mHTT [11C]MeOTf 2022 [89]
[11C]GW457427 Neutrophil elastase [11C]MeOTf 2022 [94]

[11C]MDTC CB2 receptor [11C]MeOTf 2022 [99]
[11C]Cimbi-36 5-HT2A receptor [11C]MeOTf 2019 [90]

[11C]CHDI-00485626 mHTT [11C]MeOTf 2022 [89]
[11C]JNJ54173717 P2X7 receptor [11C]MeOTf 2019 [95]

[11C]FPEB mGluR5 [11C]HCN 2017 [106]
[11C]SP203 mGluR5 [11C]HCN 2017 [106]

[11C]MTP38 PDE7 [11C]HCN 2021 [101]
[11C]PABA Renal imaging [11C]CO2 2020 [102]
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Abbreviations

4CzBnBN (2,3,4,6)-3-Benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile
5-HT2A receptor 5-Hydroxy-tryptamine 2A receptor
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
Am Molar activity
AMPA receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
BEMP 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine
CB2 receptor Cannabinoid receptor type 2
CNS Central nervous system
COX-1, -2 Cyclooxygenase-1, -2
CSF1 colony stimulating factor 1
CuTC Copper(I) thiophene-2-carboxylate
DBAD Di-tert-butyl azodicarboxylate
DBN 1,5-Diazabicyclo [4.3.0]non-5-ene
DBU 1,8-diazabicyclo [5.4.0]undec-7-ene
dc Decay-corrected
DCC N,N′-Dicyclohexylcarbodiimide
de Diastereomeric excess
DMA Dimethylacetamide
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
DPSO Diphenyl sulfoxide
d.r. Diastereomeric ratio
dtbbpy 4,4’-Di-tert-butyl-2,2’-bipyridine
FIH First-in-human
FMDS Fluoride-mediated desilylation
HOSA Hydroxylamine-O-sulfonic acid
HPLC High-performance liquid chromatography
IPr 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)
K222 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo [8.8.8]hexacosane
MAO-B Monoamine oxidase B
mGluR5 Metabotropic glutamate receptor 5
mHTT Mutant huntingtin protein
NMDA N-methyl-D-aspartate
NMP N-Methyl-2-pyrrolidone
PD Parkinson’s disease
PDE7 Phosphodiesterase 7
PET Positron emission tomography
ppy 2-Phenylpyridine
prec precursor
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quant. quantitative
RCC Radiochemical conversion
RCP Radiochemical purity
RCY Radiochemical yield
Ref. Reference
rt Room temperature
t1/2 Half-life
TBAT Tetrabutylammonium difluorotriphenylsilicate
TBAI Tetra-n-butylammonium iodide
TE Trapping efficiency
THF Tetrahydrofuran
TMEDA Tetramethylethylenediamine
TMS Trimetylsilyl
TrkB/C Tropomyosin receptor kinase B/C
TSPO Translocator protein
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