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Abstract: Silver–NHC (NHC = N-heterocyclic carbene) complexes play a special role in the field of
transition-metal complexes due to (1) their prominent biological activity, and (2) their critical role
as transfer reagents for the synthesis of metal-NHC complexes by transmetalation. However, the
application of silver–NHCs in catalysis is underdeveloped, particularly when compared to their
group 11 counterparts, gold–NHCs (Au–NHC) and copper–NHCs (Cu–NHC). In this Special Issue on
Featured Reviews in Organometallic Chemistry, we present a comprehensive overview of the application
of silver–NHC complexes in the p-activation of alkynes. The functionalization of alkynes is one of the
most important processes in chemistry, and it is at the bedrock of organic synthesis. Recent studies
show the significant promise of silver–NHC complexes as unique and highly selective catalysts in this
class of reactions. The review covers p-activation reactions catalyzed by Ag–NHCs since 2005 (the first
example of p-activation in catalysis by Ag–NHCs) through December 2022. The review focuses on the
structure of NHC ligands and p-functionalization methods, covering the following broadly defined
topics: (1) intramolecular cyclizations; (2) CO2 fixation; and (3) hydrofunctionalization reactions.
By discussing the role of Ag–NHC complexes in the p-functionalization of alkynes, the reader is
provided with an overview of this important area of research and the role of Ag–NHCs to promote
reactions that are beyond other group 11 metal–NHC complexes.

Keywords: silver; Ag; N-heterocyclic carbenes; NHCs; alkynes; p-functionalization; p-activation;
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1. Introduction

After the first synthesis of a silver–NHC complex in 1993 by Arduengo [1], a break-
through was achieved in 1998 by Lin et al., who found that Ag(I)–NHCs serve as efficient
transfer reagents for the synthesis of other NHC–metal complexes [2]. Owing to the ease of
synthesis of Ag–NHCs, their stability, and their avoidance of free carbenes, this reaction
now represents one of the most straightforward approaches to the synthesis of metal–
NHCs, which has significantly contributed to the widespread application of metal–NHC
complexes in catalysis and biology [3–18].

Simultaneously, another major direction in the area of Ag–NHCs was their investi-
gation as potential antimicrobial and anticancer agents, in which Ag–NHC complexes
have been proposed to serve as slow releasing agents [19]. The area of silver–NHCs in
medicinal chemistry is a vibrant area of research, with numerous reviews published in
recent years [19–24].

Electronically, silver is a [Kr] 4d10s1 coinage metal [25–28], with the current market
price [29] significantly lower than that of gold (Ag, USD 24.00, 1 oz, vs. Au, USD 1815, 1 oz),
but higher than copper (Cu, USD 3.73, 1 oz), which is mirrored by the relative abundance
of group 11 metals in the earth’s crust (Ag, 0.07 pm; Cu, 50 ppm; Au, 0.0011 ppm) [30]. The
complexation of strongly s-donating NHC ligands to silver enhances the stability of silver,
which can be exploited in catalysis [9–18,31–34,34–37]. Studies have found that compared
with other group 11 metals, the Ag–NHC bond is longer (e.g., IPr–AgCl, 2.056 Å, Ag–Cl,
2.313 Å; IPr–AuCl, 1.941 Å, Au–Cl, 2.270 Å; IPr–CuCl, 1.881 Å, Cu–Cl, 2.106 Å), owing
to the weaker p-donation of silver [38–42]. Furthermore, studies on the p-activation of
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alkynes [43–51] established that p to s metal donation, as well as metal to p* back-bonding,
is in the order of Au > Cu > Ag [52,53]. Overall, these mechanistic studies highlight that
(1) silver–NHC complexes are well-suited as transmetalating reagents, and (2) silver–NHC
complexes are suitable for the electrophilic activation of alkynes by the p-coordination
of cationic silver(I)–NHC to alkynes with electronic features complementary to other
coinage metals.

In this Special Issue on Featured Reviews in Organometallic Chemistry, we present a
comprehensive overview of the application of silver–NHC complexes in p-activation
of alkynes. Several excellent reviews on silver and silver–NHC complexes have been
published [31–34,34–37]. These reviews have addressed general aspects and applications
of silver in organic synthesis [20–24,31–34,34–37]. A review specifically addressing the p-
functionalization of alkynes by silver–NHC complexes has not been published thus far. The
p-functionalization of alkynes [43–51] is one of the most important processes in chemistry,
and it is used for the synthesis of a wide range of compounds in areas ranging from
drug discovery, agrochemistry, biochemistry, and natural product synthesis to materials
science [54–58]. Recent studies show significant promise for silver–NHC complexes as
unique and highly selective catalysts in this class of reactions. The present review covers
p-activation reactions catalyzed by Ag–NHCs since 2005 (the first example of p-activation
in catalysis by Ag–NHCs) through December 2022. The review focuses on the structure of
NHC ligands and p-functionalization methods. The review is divided into the following
sections: (1) intramolecular cyclizations; (2) CO2 fixation; and (3) hydrofunctionalization
reactions, where the relevant p-functionalization of olefins by silver–NHCs is also discussed
for comparison purposes or to introduce the topic from a historical perspective. We hope
that by discussing the role of Ag–NHC complexes in the p-functionalization of alkynes,
the reader will be provided with an overview of this important area of research and
the role of Ag–NHC to promote reactions that are beyond other group 11 metal–NHC
complexes [25–28].

The structures of the most common Ag–NHC complexes used in the p-functionalization
of alkynes are presented in Figure 1. Relevant bond lengths are presented in Table 1. For
studies on the electronic and steric properties of NHC ligands, the reader is encouraged to
consult the following reviews [3–18].

Table 1. Ag–C(carbene) bond lengths of the most common Ag–NHC complexes used in the π-
functionalization of alkynes. Ag–X bond lengths are shown for comparison.

Entry Complex No. [(NHC)Ag(X)] Ag–C Bond
Length (Å) Ag–X Bond Length (Å) Reference

1 1 [(IPr)Ag(Cl)] 2.056 2.313 (X = Cl) [41]
2 2 [(IMes)Ag(Cl)] 2.056 2.314 (X = Cl) [42]
3 3a [(IPent)Ag(OAc)] 2.067 2.111 (X = OAc) [59]
4 3b [(IPent)Ag(OBz)] 2.059 2.100 (X = OBz) [59]
5 3c [(IPent)Ag(4-ClOBz)] 2.064 2.100 (X = 4-ClOBz) [59]
6 4a [(Trz)Ag(CN)] 2.087 2.073 (X = CN) [60]
7 4b [(Trz)Ag(I)] 2.091 2.636 (X = I) [60]
8 7a [(BPDPr)Ag(OAc)] 2.089 2.112 (X = OAc) [61]
9 7b [(BPDPr)Ag(OBz)] 2.089 2.122 (X = OBz) [61]

10 8 [(mentimid)2Ag(AgCl2)] 2.102 2.952 (X = AgCl2) [62]
11 9 [(IMes)Ag(RuCp(CO)2)] 2.111 2.617 (X = RuCp(CO)2) [63]
12 10 [Ag(7IPrS)2]+[ClO4]− 2.081 - [64]
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Figure 1. Structures of the most common Ag–NHC complexes used in π-functionalization of alkynes.

It should be noted that the Ag–C(carbene) distances for the complexes shown in Figure 1
range between 2.056–2.091 Å for monomeric complexes and between 2.102–2.111 Å for
bimetallic complexes. As expected, there is a much greater variation in the Ag–X bond
lengths, with values ranging from 2.073–2.636 Å, for monomeric complexes and 2.617–2.952
Å for bimetallic complexes. These distances for the most common NHC–Ag complexes
used in p-activation of alkynes are consistent with the major role of the counterion on
their reactivity. Likewise, it should be noted that the three orbital contributions to the Ag–
NHC bond involve s-donors d→p* (Ag to NHC p*-backdonation) and p→d (NHC to Ag
p-donation). All three contributions should be considered in understanding the properties
of Ag–NHC complexes in catalysis, which depend on the nature of the NHC scaffolds. The
most effective Ag–NHC complexes discovered to date in the p-activation of alkynes are
sterically hindered IPent, half-umbrella shaped thiazol-2-ylidene 7IPrS, and heteroatom-
substituted 1,2,4-triazolylidene Tri NHC ligands. Future studies should carefully address
the role of orbital contributions in elucidating the reactivity of Ag–NHCs in catalysis.

2. Intramolecular Cyclizations

The first application of silver–NHC complexes in catalysis was reported by Fernandez
and Peris in 2005 in the catalytic diboration of alkenes (Scheme 1) [62]. The authors
developed a menthol-based bis-metallic Ag(I)–NHC complex, [(mentimid)2Ag]AgCl2,
which provided relatively high reactivity in the diboration of terminal and activated
internal alkenes using B2Pin2. Although no asymmetric induction was observed, the
authors demonstrated the beneficial effect of Ag(I)–NHC in that the analogous Ag(I)-
phosphine and cationic Ag+ salts were completely unreactive. The high reactivity was
ascribed to the combination of the strong s-donation to break the B–B bond and the low
propensity of Ag(I)–NHC in the b-hydride elimination of the alkyl–boryl intermediate
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due to low p-backbonding from Ag(I)–NHC. The proposed catalytic cycle is presented in
Scheme 2. The key step involves the insertion of the Ag–NHC complexes into the B–B bond
to yield diboryl species, which undergo alkene diborylation. An improved Ag(I)–NHC
catalyst system was subsequently reported by the same authors (Scheme 3) [65]. This
2005 study set the stage for the exploration of Ag(I)–NHCs as efficient catalysts for the
electrophilic activation of alkynes.
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Scheme 3. Metal−NHC-catalyzed diboration of internal alkenes using B2Pin2, as reported by Fer-
nandez and Peris [65].

In 2016, Hii, Nolan et al. reported an impressive study on the effect of Ag(I)–NHC
carboxylates, [(NHC)Ag(O2CR)], in the intramolecular cyclization of propargylic amides to
yield oxazolidines (Scheme 4) [59]. The authors synthesized a series of [(NHC)Ag(O2CR)]
complexes with the goal of tuning electronic and steric properties of Ag(I)–NHC complexes
by the NHC ligand, and achieving their stability by the carboxylate ligand. The balance
between the stability and activity of Ag(I)–NHCs is a major consideration in catalysis. The
authors identified [(IPent)Ag(4-ClOBz)], bearing a bulky IPent ligand and an electron-
deficient 4-Cl-OBz throw-away ligand, as the most effective combination for catalysis. A
range of propargylic amides was cyclized to oxazolidines under very mild room temper-
ature conditions at 5 mol% catalyst loading. The substrate scope of this intramolecular
cyclization was found to be complementary to Au–NHC catalysis [66–68], showcasing the
synthetic utility of Ag(I)–NHC complexes in catalysis. An important finding of this study
is the capacity to independently tune the sterics of the NHC ligand along with stability of
the Ag(I)–NHC complex by the carboxylate ancillary ligand.
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In 2022, we reported Ag(I)–thiazol-2-ylidene complexes and their application in the
intramolecular cyclization to yield oxazolidines (Scheme 5) [64]. The non-classical frame-
work of thiazol-2-ylidene offers new opportunities in catalysis due to its differentiated
half-umbrella-shaped ligand structure and enhanced p-electrophilicity [69]. We found that
these Ag(I)–thiazol-2-ylidene complexes are highly active in the electrophilic cyclization
of propargylic amides. These reactions proceeded with excellent yields at room temper-
ature in the presence of 1 mol% of the bis-NHC–Ag(I) complex. The most reactive was
[Ag(7IPrS)2](ClO4), bearing a cycloheptyl thiazol-2-ylidene and perchlorate anion. The
reaction was applied to the late-stage functionalization of pharmaceuticals, showcasing the
mild reaction conditions and potential applications in medicinal chemistry.

Another intramolecular cyclization involving Ag(I)–NHCs was reported by Wu et al.
in 2010 (Scheme 6) [70]. In this work, the authors found that the combination of AgOTf
and IPrHCl, in the presence of Cs2CO3 as a base, enabled a tandem tricomponent cy-
clization of N’-(2-alkynylbenzylidene)-hydrazides with a,b-unsaturated aldehydes and
methanol to produce functionalized 1,2-dihydroisoquinolines. The reaction proceeds via
the intramolecular cyclization of hydrazide onto the p-activated alkyne, followed by the
nucleophilic addition of homoenolate and methanol. The scope of the synthesis of the
2-amino-1,2-dihydroisoquinoline products is significant, permitting for the synthesis of
medicinally-relevant heterocycles.

In 2019, Hashmi et al. reported a related approach based on Ag(I)–NHC-catalyzed
intramolecular 6-endo-dig cyclization to form 6-membered benzo-fused spirocycles
(Scheme 7) [71].
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Mechanistically, the key step involves the intramolecular cyclization of the carbonyl
group onto p-activated alkyne, followed by the intermolecular Michael addition and
spirocyclization. The role of Ag–NHC is two-fold, acting as both an alkyne and enol
p-activator to facilitate intramolecular cyclizations. The authors screened various group
11 metal catalysts for this intriguing spriocyclization and found that [(IPr)AgCl]/NaBArF

is the most effective catalyst. This system outperformed simple Ag salts, such as AgNTf2,
AgBF4, or AgOTf, as well as various Au and Cu catalysts, such as AuBr3, [(IPr)AuCl3], or
[(IPr)CuCl]/NaBArF. The methodology is particularly notable for its broad substrate scope
and rapid, convergent approach to biologically privileged 6,6-spiroketals, highlighting the
utility of Ag(I)–NHCs catalysis in the synthesis of O-heterocycles.

In 2013, Bera et al. reported an interesting synthetic approach to quinolines by Ag(I)–
NHC catalysis (Scheme 8) [72]. In contrast to the approaches described in Schemes 3–6, this
reaction involves Ag(I)–NHC-catalyzed alkyne hydroamination, followed by condensation
with 2-aminobenzaldehyde. The catalyst used in this case is a bimetallic Ag(I)–NHC
bridged by two anionic N-Mes/N-ferrocenoyl amide ligands. Although no information
was provided on the comparative activity of other complexes, the scope of the method
appears to be quite broad. The reaction delivers important 2-funtionalized quinoline
heterocycles in high yields via a three-component coupling.

In light of the reactions described above, it is important to mention the Ag(I)–NHC-
catalyzed synthesis of oxazolines from benzaldehydes and isocyanates, as reported by
Albrecht in 2015 (Scheme 9) [60]. This reaction features non-classical silver triazolylidene
complexes readily prepared by the Lin method from Ag2O and the corresponding tria-
zolium salts. In the complex synthesis, the use of CH3CN as a solvent resulted in C–C bond
activation and the formation of [(trz)Ag(CN)] complexes, while [(trz)Ag(X)] complexes
were formed in CH2Cl2. These Ag(I)–trz complexes showed slightly higher reactivity than
the analogous imidazol-2-ylidene Ag(I) complexes in the synthesis of oxazolines. The
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reaction was highly effective, even at 0.10 mol% catalyst loading, showcasing the powerful
role of Ag(I)–NHC in promoting intramolecular cyclizations.
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3. CO2 Fixation

The ability to incorporate CO2 in carbon–carbon bond-forming reactions as a renew-
able C1 synthon is of great interest in organic synthesis [73,74]. In 2013, Jiang et al. reported
polystyrene supported Ag(I)–NHC complexes, [PS–NHC–Ag(I)], for CO2 fixation into
propargylic alcohols (Scheme 10) [75]. The [PS–NHC–Ag(I)] complexes were readily pre-
pared using appropriately substituted N-alkyl-imidazoles with polystyrene-supported
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benzyl chloride. The most active was the N-Me substituted complex. Interestingly, the
analogous Cu–NHC complex, [PS–NHC–Cu(I)], showed no activity under the reaction
conditions. These [PS–NHC–Ag(I)] complexes promoted the carboxylative cyclization of a
range of propargylic alcohols to terminal alkylidene cyclic carbonates in generally excellent
yields under 5 MPa pressure of CO2 at 40 ◦C. This approach by Jiang et al. has several ben-
efits, including high catalytic activity, ease of catalyst separation, and catalyst recyclability.
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The proposed catalytic cycle is presented in Scheme 11. The reaction involves the
p-activation of the alkyne by the cationic Ag–NHC species, followed by the nucleophilic
attack of the carbamate anion. Protonolysis regenerates the active Ag–NHC species. This
represents a general mechanism for cyclization reactions mediated by Ag–NHC complexes.
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In 2015, Ikariya et al. reported the Ag(I)–NHC-catalyzed fixation of CO2 into al-
lenylmethylamines (Scheme 12A) [76]. The authors identified [(IPr)Ag(OAc)] as the most
effective catalyst to afford alkenyl-1,3-oxazolidin-2-ones. The choice of metal, ancillary
ligand, and counterion was critical for this process. The analogous Au and Cu com-
plexes, [(IPr)Au(OAc)] and [(IPr)Cu(OAc)], were completely ineffective, while [(IPr)Ag(Cl)]
showed minimal activity (<10%). The reaction showed a good scope of allenylmethylamines
at an atmospheric pressure of CO2 at 30 ◦C. Mechanistically, two competing pathways
were proposed, carboxylative cyclization leading to alkenyl-1,3-oxazolidin-2-ones and in-
tramolecular hydroamination resulting in 2,-5-dihydropyrroles, initiated by p-coordination
to the internal or external allene double bond. Interestingly, the same group reported
intramolecular carboxylative cyclization of propargylamines to alkylidene-1,3-oxazolidin-
2-ones, mediated by [(IPr)AgCl], in modest yields (Scheme 12B).
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In 2021, an important breakthrough was reported by Cervantes-Reyes, Hashmi et al.
in identifying ring-expanded Ag(I)–NHC complexes as efficient catalysts for the carboxyla-
tive cyclization of propargylic alcohols and amines (Scheme 13) [61]. The most active
complexes were [(BPDPr)(Ag(OAc)] and [(BPDPr)(Ag(OBz)], featuring a nine-membered,
bulky NHC ligand (BPDPr = 1,3-bis(2,6-diisopropylphenyl)-1,3-diazonine-2-ylidene) and
carboxylate counterions. These complexes are characterized by some of the largest buried
volumes reported for [(NHC)AgX] complexes to date, ([(BPDPr)(Ag(OAc)]: %Vbur = 52.9%;
[(BPDPr)(Ag(OBz)]: %Vbur = 54.5%). The scope of the carboxylative cyclization mediated
by these ring-expanded NHCs is particularly broad, which has been ascribed to the steric
distribution of the ligand on the metal center. The highlight is the ability to promote
the carboxylative cyclization of unsubstituted propargylic alcohols and amines to afford
terminal and internal unsubstituted oxazolidinones and cyclic a-methylene carbonates in
excellent yields.
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4. Hydrofunctionalization Reactions

The catalytic hydrofunctionalization of alkynes is among the most useful transforma-
tions in organic synthesis [77–79]. In 2009, Kambe et al. reported the carbomagnesiation of
alkynes catalyzed by Ag(I)–NHC complexes (Scheme 14) [80]. This reaction proceeds in
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the presence of [(IMes)AgCl] as a catalyst, alkyl Grignard reagent as a nucleophile, and
BrCH2Br as a stoichiometric additive. Ag–NHCs are the preferred catalysts over simple
silver salts, such as AgOTs, and Ag–phosphine systems, such as AgOTs/PPh3, affording
higher yields and Z:E selectivity up to 99:1. Mechanistically, the reaction involves the forma-
tion of an alkyl silver complex, followed by anti-alkyne insertion and transmetalation. The
scope of this process is broad with respect to aryl alkynes using t-BuMgCl as a nucleophile.
However, lower selectivity was observed with less sterically hindered Grignard reagents.
The authors extended the utility of this process to the carbofunctionalization of enynes and
trapping with carbonyl electrophiles.
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In 2014, a significant method for the hydroboration of alkynes catalyzed by Ag(I)–NHC
complexes was reported by Yoshida et al. (Scheme 15) [81]. [(IMes)AgCl], in the presence of
catalytic KOtBu and B2Pin2 (1 equiv) in MeOH at 50 ◦C, was identified as the optimal system
for this transformation. Interestingly, the imidazolin-2-ylidene analogue, [(SIMes)AgCl],
showed almost identical reactivity, while the imidazol-2-ylidene counterpart, [(IPr)AgCl],
was completely unreactive under the tested conditions. The scope of the reaction is very
broad and involves terminal aliphatic alkynes and internal aromatic alkynes. The yields
and selectivity for the formation of b-hydroboration products are generally high to excellent.
Mechanistically, the key step is the formation of [(IMes)Ag–BPin] species by σ-metathesis
between [(IMes)Ag–OtBu] and B2Pin2. This [(IMes)Ag–BPin] species increases across the
alkyne bond to generate β-boryl–organosilver, which undergoes protonolysis.
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demonstrates the potential of Ag–NHCs as an effective class of ligands in the emerging 
area of bimetallic catalysis [82]. 

In 2019, the Lalic group reported the hydroalkylation of alkynes catalyzed by Ag(I)–
NHC complexes (Scheme 17) [83]. The most intriguing feature of this report is the use of 
1,2,4-triazolylidene NHC, [(Tri)AgCl] (Tri = 1-phenyl-2,4-Dipp-1,2,4-triazolylidene) as a 
more effective ligand than the classical imidazol-2-ylidene, [(IPr)AgCl]. Furthermore, the 
analogous Cu complex, [(IPr)CuCl], was completely unreactive. 1,2,4-Triazol-5-ylidenes 
are significantly less basic than imidazol-2-ylidenes (pKa = 16.1 vs. 21.5, calculated values, 
DMSO) [84], which may contribute to the higher reactivity of [(Tri)AgCl] vs. [(IPr)AgCl]. 
The reaction yields Z-alkenes with full stereoselectivity and excellent functional group 
tolerance. 

Scheme 15. Ag(I)−NHC-catalyzed hydroboration of alkynes, as reported by Yoshida et al. [81].

In 2014, Mankad et al. reported an intriguing E-selective hydrogenation of alkynes
by [Ag–Ru] bimetallic catalysis (Scheme 16) [63]. The most effective catalyst system is
[(IMes)Ag–RuCp(CO)2] under atmospheric pressure of H2 in xylenes at 150 ◦C. The bimetal-
lic cooperation is critical to this process, as no reaction is observed for any of the catalyst
systems alone. IPr and Cu, as well as FeCp(CO)2, can be used; however, the yields and selec-
tivity are lower than with the [(IMes)Ag–RuCp(CO)2] complex. Mechanistically, bimetallic
H2 activation is followed by syn-alkyne insertion into [(IMes)–Ag–H] to afford a-alkenyl–
Ag(NHC) intermediate and protonolysis by [RuCp(CO2)–H]. The authors demonstrated
that Z/E alkene isomerization takes place under the reaction conditions. The functional
group tolerance of this method is broad, as demonstrated by the Glorius robustness test,
where only aldehydes were found to inhibit the reaction rate. This study demonstrates the
potential of Ag–NHCs as an effective class of ligands in the emerging area of bimetallic
catalysis [82].

In 2019, the Lalic group reported the hydroalkylation of alkynes catalyzed by Ag(I)–
NHC complexes (Scheme 17) [83]. The most intriguing feature of this report is the use
of 1,2,4-triazolylidene NHC, [(Tri)AgCl] (Tri = 1-phenyl-2,4-Dipp-1,2,4-triazolylidene) as a
more effective ligand than the classical imidazol-2-ylidene, [(IPr)AgCl]. Furthermore, the
analogous Cu complex, [(IPr)CuCl], was completely unreactive. 1,2,4-Triazol-5-ylidenes
are significantly less basic than imidazol-2-ylidenes (pKa = 16.1 vs. 21.5, calculated values,
DMSO) [84], which may contribute to the higher reactivity of [(Tri)AgCl] vs. [(IPr)AgCl]. The
reaction yields Z-alkenes with full stereoselectivity and excellent functional group tolerance.
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Mechanistically, the reaction involves the combination of the s- and p-activation of
alkynes, which may further explain the superior reactivity of Ag–NHCs vs. Cu–NHCs.
The authors proposed that silver acetylide reacts with alkyl borane, followed by a 1,2-
metalate shift after p-activation. The catalytic cycle is completed by protodemetalation and
protodeboronation (Scheme 18). This report provides a clear example of the advantages
of using Ag(I)–NHCs in catalysis by combining two activation modes inherently favored
by silver.
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5. Conclusions and Outlook

In summary, over the past 15 years, significant advances have been made regarding
the use of Ag–NHC complexes for the synthetically important functionalization of alkynes.
Among the major advantages of Ag–NHCs is the enhanced stability of silver rendered
possible by the strongly s-donating NHC ligands, ligand amplified reactivity in several
general classes of reactions, and the improved reactivity over other group 11 metals. In
particular, the progress has been considerable in the following generic classes of reactions:
intramolecular cyclizations, CO2 fixation, and hydrofunctionalization reactions. These
reactions provide heterocyclic products important for medicinal chemistry research and
functionalized building blocks for organic synthesis. Among the reported reactions, the
most noteworthy are processes that specifically demonstrate the beneficial role of Ag–NHCs,
such as the electrophilic cyclization of propargylic amides, CO2 fixation, the bimetallic
Ag–Ru hydrogenation of alkynes, and the hydroalkylation of alkynes.

An interesting consideration is the fact that Ag–NHC complexes appear to be particu-
larly well-suited for the synthesis of heterocycles, which play a role in potential therapeutic
agents (Figure 2) [85–90]. This reactivity of Ag–NHCs in the p-activation of alkynes
bodes well for the broad practical application of this class of M–NHCs in medicinal
chemistry research.
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Despite significant progress, there are several areas that should be addressed in the
future to render this Ag–NHC manifold of even more general utility in organic synthesis:
(1) mechanistic studies are urgently needed to elucidate the role of Ag–NHCs in comparison
with other group 11 metal–NHC complexes; (2) the role of NHC ligands has rarely been
explored in Ag–NHC catalysis, with majority of reactions limited to testing only IPr and
IMes ligands; (3) although the mechanistic basis for several alkyne functionalization mani-
folds using Ag–NHCs has been established, few reactions have been explored using this
catalysis manifold; (4) the role of the counterion has not been fully elucidated, with simple
carboxylate anions typically preferred for the activation of alkynes; and (5) the development
of asymmetric processes using chiral Ag–NHCs has not yet been accomplished.

In the group of coinage metals, silver has several major advantages over Au and
Cu, including low price and wide availability (vs. Au), the capacity to promote various
activation modes, ease of transmetalation, and complementary electronic properties, such
as the p to s metal donation and the metal to p* backbonding. The reported studies
clearly demonstrate that researchers using group 11 metal–NHC complexes should always
consider Ag(I)–NHCs in the development of catalytic processes.
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