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Abstract: In recent years, histone deacetylases (HDACs) have emerged as promising targets in
the treatment of cancer. The approach is to inhibit HDACs with drugs known as HDAC inhibitors
(HDACis). Such HDACis are broadly classified according to their chemical structure, e.g., hydroxamic
acids, benzamides, thiols, short-chain fatty acids, and cyclic peptides. Fluorination plays an important
role in the medicinal–chemical design of new active representatives. As a result of the introduction of
fluorine into the chemical structure, parameters such as potency or selectivity towards isoforms of
HDACs can be increased. However, the impact of fluorination cannot always be clearly deduced.
Nevertheless, a change in lipophilicity and, hence, solubility, as well as permeability, can influence
the potency. The selectivity towards certain HDACs isoforms can be explained by special interactions
of fluorinated compounds with the structure of the slightly different enzymes. Another aspect is
that for a more detailed investigation of newly synthesized fluorine-containing active compounds,
fluorination is often used for the purpose of labeling. Aside from the isotope 19F, which can be
detected by nuclear magnetic resonance spectroscopy, the positron emission tomography of 18F plays
a major role. However, to our best knowledge, a survey of the general effects of fluorination on
HDACis development is lacking in the literature to date. Therefore, the aim of this review is to
highlight the introduction of fluorine in the course of chemical synthesis and the impact on biological
activity, using selected examples of recently developed fluorinated HDACis.

Keywords: fluorination; fluorine; fluorine-18; histone deacetylase (HDAC); histone deacetylase
inhibitors (HDACis); positron emission tomography (PET); potency; selectivity; suberoylanilide
hydroxamic acid (SAHA); vorinostat

1. Introduction

In recent decades, progress has been made towards the faster diagnosis of cancer,
for example, by multimodal imaging [1], focusing on particular biomarkers and subse-
quent analysis using omics technologies [2,3]. Distinct treatment approaches—apart from
classical chemotherapy using anticancer drugs—such as through sophisticated stem cell
transplantation [4,5] are resulting in novel opportunities in cancer treatment. Despite these
achievements, cancer remains one of the leading causes of death worldwide [6].

Intense research into the pathogenesis of cancer generally improves our knowledge
of the disease. However, the current advances in understanding the pathogenesis of
cancer are only a small step forward. Indeed, many aspects are still completely unclear
and a comprehensive understanding is needed for successful prevention and targeted
treatment [7].
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Further challenges include circumventing the development of resistance and achieving
the best possible selectivity against cancer cells. Therefore, it is important to make smart
structural modifications to existing anticancer drugs, or even better, to find auspicious
targets that can be addressed by novel classes of bioactive compounds. In this context,
various cancer-associated enzymes are coming into focus to serve as potential targets
for antitumor therapeutics [8]. One promising representative among them are histone
deacetylases (HDACs) [9].

Histones are the substrates of HDACs. After the deacetylation of acetylated lysine, the
amino acid located at the N-terminal end of the histones is again positively charged. This
is accompanied by an increased affinity for the negatively charged phosphate backbone
of the DNA, ultimately resulting in a downregulation of its transcription. The dysregu-
lation of gene expression, which is actually mediated by HDACs, is known to occur in
a variety of cancers [10]. The abnormal activation of HDACs can be targeted by HDAC
inhibitors (HDACis).

Probably the first HDACi to be discovered is trichostatin A (Figure 1), which is cur-
rently undergoing preclinical studies. However, some HDACis have already been approved
by the United States Food and Drug Administration (FDA) for the treatment of various
types of cancer. Some examples include the cyclic peptide romidepsin, and the hydroxam-
ates vorinostat (also known as SAHA—suberoylanilide hydroxamic acid), belinostat, and
panobinostat (Figure 1) [11]. In addition, some interesting synergistic properties were also
discovered when HDACis were combined with established anticancer drugs [12]. All these
encouraging features ensure that new HDACis are constantly being developed.
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Our previous research on the design of HDACis involved derivatives bearing different
heterocyclic cores, such as compounds based on quinazoline [13–17], indirubin [18], as
well as 1,3-oxazole and 1,3-thiazole [19]. The use of heterocycles plays an important role in
medicinal chemistry [20]. Within the concept of bioisosterism, heterocycles can be used
to optimize drugs, for example, regarding pharmacokinetic and toxicological properties,
efficacy, and selectivity [21].

Fluorination is another very common method of fine-tuning drug molecules [22–24].
This concerns, for instance, the development of glycomimetic drugs [25], metal com-
plexes [26], and nucleosides [27], with all of these exerting also anticancer activity. The
introduction of fluorine substituents in antitumor active compounds is performed for vari-
ous reasons, such as bioanalytical labeling, in order to increase selectivity [28] or regulate
the mechanism of cell death [29]. Fluorination is also a common method in the design of
HDACis. However, to the best of our knowledge, it has no explicit focus in the literature
thus far. Therefore, the aim of this review is to gain insight into the purpose and influence
of fluorination in the recent development of HDACis.

2. Introduction of the Chemical Modification Generating Fluorination in HDACis

In the last decade, many HDACis with different core structures have been discovered,
including short-chain fatty acids (e.g., phenylbutyric acid, valproic acid), hydroxamic
acids (e.g., SAHA or suberoylanilide hydroxamic acid), benzamides, and acyclic peptides
(e.g., depsipeptide). Nevertheless, they are subject to a very similar structural setup. The
established pharmacophore comprises a cap and a zinc-binding group (ZBG), both of
which are connected by a linker that occupies the binding channel (Figure 1) [30]. The
cap interacts with the pockets of zinc-dependent HDAC, while the zinc-binding domain
chelates zinc [31].

Several representatives of HDACis have undergone different phases of clinical trials
for numerous types of cancer [32]. With the efforts to find new anticancer drugs, many
studies have been carried out to search for novel potential HDACis, while fluorination
plays a significant role. The different processes of introducing fluoro groups into these
HDACis vary regarding the synthetic pathways, methods, and reaction conditions. This
comprehensive work aims to summarize the progress that has been made in recent years
on the fluorination of HDACis as anticancer agents.

2.1. Hydroxamic Acids

Hydroxamic acids are the best studied class of HDACis. To date, three of the four
agents approved by the FDA with a confirmed HDAC-mediated mechanism of action for
treatment in the clinic are hydroxamic acids. The representatives of this subclass are also
the most studied group of fluorine-containing HDACis.

Generally, the simplest way to introduce fluorine into the chemical structure of com-
pounds is to use precursors that already contain the fluorine substituent. Derivatives
synthesized by this approach mostly use basic coupling reactions such as alkylation, re-
ductive amination, or an amide-coupling reaction. The advantage of these methods is
that they are straightforward, easy to apply, and can thus also be performed in small
research laboratories.

Aboukhatwa and co-workers [33] designed, synthesized, and evaluated the bioactivity
of a series of novel chemically diverse photoreactive probes (PRPs). The general strategy for
the synthesis of PRPs shows that the process of introducing fluoride-containing subunits
into the designed compounds is by reductive amination. This approach included two steps
(Scheme 1). The first was the reaction between the amine derivative and perfluoroben-
zaldehyde in dichloromethane (DCM). Then, the deprotonation of imines was carried out
with sodium borohydride (NaBH4) in methanol (MeOH) to obtain the product containing
a fluorine group.
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Scheme 1. Fluorination in the synthetic pathway of fluorinated hydroxamic acids via reductive
amination by Aboukhatwa et al. [33].

Furthermore, in this study by Aboukhatwa [33], several novel indol-containing hydrox-
amic acids were synthesized using the N-alkylation of an indole moiety or secondary amine.
The conditions of this step depended on the structure of the starting materials (Scheme 2).
This reaction in the synthesis pathway of the final products bearing an indole ring was
carried out in dimethylformamide (DMF) in the presence of sodium hydride (NaH). The
process of introducing fluorine into a secondary amine, however, was performed under
alkaline conditions (K2CO3), and acetonitrile (MeCN) proved to be an optimal solvent.
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In another study by Wang et al. [34], a series of hydroxamic acids bearing an indole
ring were designed and synthesized. Fluorine-containing derivatives were obtained based
on an amide-coupling reaction. This amide reaction was carried out in 2-(1H-benzotriazole-
1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) and trimethylamine (Me3N) in
DCM (Scheme 3).
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Scheme 3. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Wang et al. [34].

Using the same method, Goehringer, Peng, and co-authors [35] published a scheme
for the synthesis of a novel pentafluorothio-substituted vorinostat-type HDACi (Scheme 4).
This study described how the ethyl ester precursor SF5-SAHEt was obtained via amide-
coupling reaction between ethyl hydrogen suberate and 4-pentafluorothioaniline in a mod-
erate yield (63%). The catalysts used in this reaction were 1-ethyl-3-(3-dimethylaminoprop-
yl)carbodiimide (EDCI), (dimethylamino)pyridine (DMAP), and triethylamine (Et3N).
DCM was reported as a suitable solvent for this reaction.

Molecules 2023, 28, 1973 6 of 49 
 

 

 
Scheme 3. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Wang et al. 
[34]. 

Using the same method, Goehringer, Peng, and co-authors [35] published a scheme 
for the synthesis of a novel pentafluorothio-substituted vorinostat-type HDACi (Scheme 
4). This study described how the ethyl ester precursor SF5-SAHEt was obtained via amide-
coupling reaction between ethyl hydrogen suberate and 4-pentafluorothioaniline in a 
moderate yield (63%). The catalysts used in this reaction were 1-ethyl-3-(3-dimethyla-
minopropyl)carbodiimide (EDCI), (dimethylamino)pyridine (DMAP), and triethylamine 
(Et3N). DCM was reported as a suitable solvent for this reaction. 

 
Scheme 4. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Goehringer, 
Peng, et al. [35]. 

Meyners et al. [36] investigated a series of novel perfluorinated hydroxamic acids. 
These final compounds were synthesized by an amide-coupling reaction following a two-
step procedure (Scheme 5). The first was the conversion from fluoro-containing carboxylic 
acids to the respective acyl chlorides using thionyl chloride (SOCl2). Secondly, the reaction 
between the acyl chlorides and the particular aromatic amines (RNH2) or heteroaromatic 
amines produced intermediate amides. The strategy pursued for the synthesis of these 
compounds was to use already fluorinated starting materials. 

Scheme 4. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Goehringer,
Peng, et al. [35].

Meyners et al. [36] investigated a series of novel perfluorinated hydroxamic acids.
These final compounds were synthesized by an amide-coupling reaction following a two-
step procedure (Scheme 5). The first was the conversion from fluoro-containing carboxylic
acids to the respective acyl chlorides using thionyl chloride (SOCl2). Secondly, the reaction
between the acyl chlorides and the particular aromatic amines (RNH2) or heteroaromatic
amines produced intermediate amides. The strategy pursued for the synthesis of these
compounds was to use already fluorinated starting materials.

Toutah et al. [37] reported the synthetic pathways used to prepare hydroxamic acids
containing fluorine substituents (Scheme 6). Fluorine was introduced into these compounds
by amine sulfonylation employing polyhalogenated benzenesulfonyl chloride to yield
sulfonamide precursors. This reaction was conducted smoothly in DCM and Et3N (yield:
61–91%).
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Scheme 6. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Toutah et al. [37].

A chemical reaction regularly used for the synthesis of fluorinated hydroxamic acids
is represented by esterification. Walton et al. [38] reported several series of novel target
compounds incorporating perfluorinated chains linked by a ester group. The ester bond
plays an important role in connecting perfluorinated alkyl chains to a SAHA phenyl head
group. Steglich esterification proceeded with the relevant alcohols in the presence of EDCI
and DMAP, which produced intermediate compounds (Scheme 7).
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Vu et al. [39] reported a synthetic pathway of several novel fluorinated N-hydroxyhep-
tanamides containing quinazolin-4(3H)-ones. The fluorine substituent was introduced into
these compounds by a nucleophilic substitution reaction between the 3-butyl-6-hydroxy-
2-methylquinazolin-4(3H)-one and fluorine-containing aldehydes in acetic acid to afford
intermediates in 61–82% yields (Scheme 8).
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Scheme 8. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Vu et al. [39].

Another strategy for the synthesis of novel fluorinated analogues covers the synthe-
sis of heterocycles from the starting materials, which already contain the fluorine sub-
stituent. New phthalazino[1,2-b]-quinazolinone derivatives, which are multitarget HDAC
inhibitors, were synthesized by Liu and co-authors [40]. The quinazolinone moieties
were obtained from the reaction of 2-amino-5-fluorobenzoic acids and triphosgene (BTC,
bis(trichloromethyl) carbonate). This reaction occurred smoothly in tetrahydrofurane (THF)
(Scheme 9).

Fluorine-containing hydroxamic acids can also be synthesized by direct, catalytic vici-
nal difluorination. In the current research by Erdeljac et al. [41], novel fluorinated analogues
of the HDACi vorinostat were synthesized from commercial sources or prepared from
readily available starting materials (Scheme 10). The authors reported that 4-iodotoluene
and Selectfluor® were employed as an inexpensive organo catalyst and terminal oxidant, re-
spectively. This reaction was carried in a solution mixture of amine:HF (1:5) in the presence
of Et3N·3HF; Olah’s reagent, which served as fluoride source; and a Brønsted acid activator.
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Scheme 10. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Erdeljac
et al. [41].

In more detail, a Teflon® reaction vessel was loaded with the starting material, i.e.,
4-iodotoluene, dichloroethan (DCE), an amine:HF (1:5) solution mixture of Olah’s reagent,
Et3N·3HF, and Selectfluor®. The reaction vessel was sealed with a Teflon® screw cap and
the mixture was stirred at room temperature for 25 h. The yields of the intermediate
products in this reaction were acceptable (39–94%).

A potential strategy for attaching fluorine atoms to the linker chain of difluorinated
SAHA analogues was published by Ariawan et al. [42]. Several methods exist to introduce
two fluorine atoms into hydroxamic acids (Scheme 11). The monofluorinated compounds
were synthesized through a four-step sequence procedure via a cyclic sulfate intermediate.
These four steps included: 1. SOCl2, pyridine, DCM; 2. NaIO4, RuCl3, H2O, DCM, MeCN;
3. TBAF, THF, MeCN; 4. p-TsOH, dioxane. The second hydroxyl group was activated as the
triflate with (CF3SO2)2O, pyridine in DCM, which, when displaced with fluoride produced



Molecules 2023, 28, 1973 9 of 35

the difluorinated product in a moderate yield. This reaction was conducted in TBAF, THF,
and DCM. Nevertheless, a naphthalimide-containing compound was achieved through
chlorination (SOCl2, pyridine, DCM), cyclic sulfate formation (1. NaIO4, RuCl3, H2O, DCM,
MeCN; 2. H2SO4, H2O, THF), followed by ring-opening with TBAF in THF and MeCN, to
obtain the fluorohydrin. After that, the fluorohydrin was treated with DeoxoFluor to yield
the difluorinated products.
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Scheme 11. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Ariawan
et al. [42].

One of the main goals to fluorinate the derivatives of known HDACis is to study
their pharmacokinetic properties (see below). This is often accomplished by labeling with
radioactive isotopes of fluorine such as 18F.

Therefore, Strebl et al. [43] reported the radiochemical synthesis of [18F]Bavarostat.
While previous studies showed that the radiolabeling of hydroxamic acids such as Bavaro-
stat were difficult to achieve because of protracted, inefficient, low-yielding methods, the
authors followed a novel approach by using ruthenium-mediated radiofluorination. This
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pathway has various advantages, including high efficiency, yield, and specific radioactivity.
Bavarostat can be radiolabeled with 18F by deoxyfluorination through the in situ formation
of an air-stable ruthenium π-complex of the intermediate phenol precursor (Scheme 12).
The labeling proceeding had high conversion (more than 70% radiochemical yield, as
estimated by TLC). After HPLC (high-performance liquid chromatography) purification,
the overall non-decay corrected radiochemical yield of [18F]Bavarostat was 8.1% (n = 2).
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Scheme 12. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Strebl et al. [43].

In the study of Hendricks, Keliher, et al. [44] a synthetic strategy towards 18F-suberoy-
lanilide hydroxamic acid (18F-SAHA) was developed. 18F (without carrier) was transferred
to the starting material by the direct fluorination of 1,4-dinitrobenzene under optimized
conditions for radiochemical synthesis and microwave heating at 120 °C, in order to give
18F-labeled 1-fluoro-4-nitrobenzene (Scheme 13).
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diotracers is illustrated in Scheme 14. In the synthetic routes of [18F]MGS1 and [18F]MGS2, 
the nitro group was replaced by 18F by using [18F]CsF, and DMSO was found as a suitable 
solvent. Meanwhile, in the synthetic pathway of [18F]MGS3, this reaction was carried out 
in DMSO with the presence of [18F]KF. 

  

Scheme 13. Fluorination in the synthetic pathway of fluorinated hydroxamic acids by Hendricks,
Keliher, et al. [44].

Recently, Strebl et al. [45] reported three novel fluorine-18 analogues of [11C]Martinostat
([18F]MGS1–3) via fluorination of the aromatic ring. The radiosynthesis of these radiotracers
is illustrated in Scheme 14. In the synthetic routes of [18F]MGS1 and [18F]MGS2, the nitro
group was replaced by 18F by using [18F]CsF, and DMSO was found as a suitable solvent.
Meanwhile, in the synthetic pathway of [18F]MGS3, this reaction was carried out in DMSO
with the presence of [18F]KF.
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inated analogue NKL54 (Scheme 15). The trifluoromethyl group was introduced into the 
designed compounds using fluorinated aniline. The amide product is generally formed 
from the carboxylic acid and the aromatic amine in a 68% yield. 

  

Scheme 14. Fluorination in the two synthetic pathways (A,B) of fluorinated hydroxamic acids by
Strebl et al. [45]. Radiochemical procedures for MGS1–2 (A) and MGS3 (B).

2.2. Benzamides

Benzamide-containing HDACis are the second most studied class of derivatives along
with hydroxamic acids. Inhibitors with 2-aminobenzamide as ZBG show potential activity
against HDAC class I, such as HDAC3 and HDAC8 [46]. There are several methods for the
synthesis of fluorinated benzamides. The most common way to introduce fluorine into the
intended compounds is again to use starting materials that are already fluorinated. In this
context, simple reactions such as amide-coupling are used.

Jayathilaka and co-workers [47] investigated the synthetic pathway to give the fluori-
nated analogue NKL54 (Scheme 15). The trifluoromethyl group was introduced into the
designed compounds using fluorinated aniline. The amide product is generally formed
from the carboxylic acid and the aromatic amine in a 68% yield.
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In the research of Bonomi et al. [48], the synthesis of novel histone deacetylase radio-
tracers for positron-emission tomography (PET) imaging, including DFAHA and TFAHA 
precursors, was reported. The amide bonds of DFAHA and TFAHA were formed using 
particular anhydrides in DCM at room temperature (Scheme 16). The TFAHA precursor 
was synthesized in pyridine and acetyl chloride, while the reaction of the amine with bro-
mofluoroacetyl chloride and triethylamine in DCM obtained the DFAHA precursor in a 
modest yield (15%). 

  

Scheme 15. Fluorination in the synthetic pathway of fluorinated benzamides by Jayathilaka et al. [47].
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In the research of Bonomi et al. [48], the synthesis of novel histone deacetylase radio-
tracers for positron-emission tomography (PET) imaging, including DFAHA and TFAHA
precursors, was reported. The amide bonds of DFAHA and TFAHA were formed using
particular anhydrides in DCM at room temperature (Scheme 16). The TFAHA precursor
was synthesized in pyridine and acetyl chloride, while the reaction of the amine with
bromofluoroacetyl chloride and triethylamine in DCM obtained the DFAHA precursor in a
modest yield (15%).

Molecules 2023, 28, 1973 16 of 49 
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In the current research of La and co-authors [49], the synthesis of novel fluorinated 
benzamide compounds as potential HDACis was described. The final products with the 
cap containing a fluorine moiety were obtained via substitution of the hydroxyl functional 
group to a fluorine substituent applying tosylate compounds (Scheme 17). DCM and tert-
amyl alcohol were found as suitable solvents for this reaction. 

Scheme 16. Fluorination in the synthetic pathway of fluorinated benzamides by Bonomi et al. [48].

In the current research of La and co-authors [49], the synthesis of novel fluorinated
benzamide compounds as potential HDACis was described. The final products with the
cap containing a fluorine moiety were obtained via substitution of the hydroxyl functional
group to a fluorine substituent applying tosylate compounds (Scheme 17). DCM and
tert-amyl alcohol were found as suitable solvents for this reaction.

In the study by Ibrahim et al. [50], a series of fluorine-containing compounds was pre-
pared through Suzuki coupling reaction between the Boc-protected 4-bromo-2-nitroaniline
and the corresponding fluorinated boronic acid compounds (Scheme 18). Tetrakis P(Ph)3Pd
served as an efficient catalyst, and 1,2-dimethoxyethane was reported to be the optimal
solvent. Sodium carbonate was added to the reaction mixture, which was needed for the
sequestration of acid generated.
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Scheme 17. Fluorination in the synthetic pathway of fluorinated benzamides by La et al. [49]. 

In the study by Ibrahim et al. [50], a series of fluorine-containing compounds was 
prepared through Suzuki coupling reaction between the Boc-protected 4-bromo-2-ni-
troaniline and the corresponding fluorinated boronic acid compounds (Scheme 18). 
Tetrakis P(Ph)3Pd served as an efficient catalyst, and 1,2-dimethoxyethane was reported 
to be the optimal solvent. Sodium carbonate was added to the reaction mixture, which 
was needed for the sequestration of acid generated. 

Scheme 17. Fluorination in the synthetic pathway of fluorinated benzamides by La et al. [49].

Also in this research [50], the authors reported another method for the synthesis of
fluorinated 2-aminobenzamides using amide coupling. The amide intermediates were pre-
pared by the reactions between the carboxylic acid derivatives and 1,2-phenylenediamines
employing the coupling reagent HATU (hexafluorophosphate azabenzotriazole tetramethyl
uronium) and N,N-diisopropylethylamine (DIPEA) as the base (Scheme 19). DMF was
described to be the optimal solvent for these amide-forming reactions.
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Scheme 18. Fluorination in the synthetic pathway of fluorinated benzamides via Suzuki reaction by
Ibrahim et al. [50].
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Schäker-Hübner and co-workers [51] also synthesized a series of novel benzamides. 
The Boc-protected intermediates containing fluorine were obtained via the Suzuki reac-
tion of tert-butyl-(4-bromo-2-nitrophenyl)carbamate with alkyl boronic acids (Scheme 20). 
Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) was reported as a satisfactory cat-
alyst for these coupling reactions. The mixture of toluene and ethanol was adduced as 
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Scheme 19. Fluorination in the synthetic pathway of fluorinated benzamides via amide-coupling
reactions by Ibrahim et al. [50].

Schäker-Hübner and co-workers [51] also synthesized a series of novel benzamides.
The Boc-protected intermediates containing fluorine were obtained via the Suzuki reac-
tion of tert-butyl-(4-bromo-2-nitrophenyl)carbamate with alkyl boronic acids (Scheme 20).
Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) was reported as a satisfactory cat-
alyst for these coupling reactions. The mixture of toluene and ethanol was adduced
as solvent.
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In the research work of Liu and co-workers [40], as mentioned above among the hy-
droxamic acid derivatives (Scheme 9), the authors used the same strategy as for the syn-
thesis of fluorinated hydroxamic acids to obtain new fluorinated benzamides. The 
quinazolinone ring was synthesized from the reaction between the initial 2-aminobenzoic 
acids with a fluorine substituent and triphosgene (Scheme 21). 

  

Scheme 20. Fluorination in the synthetic pathway of fluorinated benzamides by Schäker-Hübner
et al. [51].

In the research work of Liu and co-workers [40], as mentioned above among the
hydroxamic acid derivatives (Scheme 9), the authors used the same strategy as for the
synthesis of fluorinated hydroxamic acids to obtain new fluorinated benzamides. The
quinazolinone ring was synthesized from the reaction between the initial 2-aminobenzoic
acids with a fluorine substituent and triphosgene (Scheme 21).

Molecules 2023, 28, 1973 21 of 49 
 

 

 

 
Scheme 21. Fluorination in the synthetic pathway of fluorinated benzamides by Liu et al. [40]. 

Similar to hydroxamic acids (see above), some studies have also been performed to 
synthesize fluorinated benzamide derivatives containing the radiolabel 18F. Moreover, in 
the study of Bonomi et al. [48], the authors investigated a series of novel histone deacety-
lase radiotracers for PET imaging, including [18F]DFAHA and [18F]TFAHA (Scheme 22). 
The target benzamides were synthesized in radiochemical yields of 25% and 22%, respec-
tively. The chemical structures of the radioactive products were confirmed by nuclear 
magnetic resonance (NMR) spectroscopy, and the purity was more than 95%, which was 
determined by analytical radio-HPLC. 

  

Scheme 21. Fluorination in the synthetic pathway of fluorinated benzamides by Liu et al. [40].

Similar to hydroxamic acids (see above), some studies have also been performed to
synthesize fluorinated benzamide derivatives containing the radiolabel 18F. Moreover, in
the study of Bonomi et al. [48], the authors investigated a series of novel histone deacetylase
radiotracers for PET imaging, including [18F]DFAHA and [18F]TFAHA (Scheme 22). The
target benzamides were synthesized in radiochemical yields of 25% and 22%, respectively.
The chemical structures of the radioactive products were confirmed by nuclear magnetic
resonance (NMR) spectroscopy, and the purity was more than 95%, which was determined
by analytical radio-HPLC.

Li and co-authors [52] investigated the synthesis of [18F] Fluoroethyl-INER1577 (i.e.,
INER1577-3, 92, Scheme 23). The first step was the fluorination of ethane-1,2-diyl bis(4-
methylbenzenesulfonate) (TsOCH2CH2OTs) with K[18F] and kryptofix 2.2.2 (K2.2.2). This
reaction was conducted smoothly in MeCN at 90 ◦C for 10 min. The radiochemical yield of
TsOCH2CH2O18F was approximately 70%. Then, the intermediate reacted with INER1577
(91) in DMSO at 100 ◦C to produce [18F]Fluoroethyl-INER1577 (92). After 60 min, the
radiochemical yield of [18F]Fluoroethyl-INER1577 was approximately 5–10%, and both
chemical and radiochemical purities were more than 99%.
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Scheme 22. Fluorination in the radiosynthetic pathway of fluorinated benzamides by Bonomi
et al. [48].
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Scheme 23. Fluorination in the radiosynthetic pathway of [18F] Fluoroethyl-INER1577 by Li et al. 
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In another work by Li et al. [53], [18F] INER1577-3 was synthesized by the one-step 
method (Scheme 24). This reaction was carried out with [18F]fluoride without carrier ad-
dition in the presence of K2CO3 and K2.2.2 in 85% MeCN/water. The optimum tempera-
ture of this step was approximately 100 °C. The radiochemical purity of the final product 
was more than 95% (determined by the analytical RP-HPLC method). 

  

Scheme 23. Fluorination in the radiosynthetic pathway of [18F] Fluoroethyl-INER1577 by Li et al. [52].

In another work by Li et al. [53], [18F] INER1577-3 was synthesized by the one-step
method (Scheme 24). This reaction was carried out with [18F]fluoride without carrier addi-
tion in the presence of K2CO3 and K2.2.2 in 85% MeCN/water. The optimum temperature
of this step was approximately 100 ◦C. The radiochemical purity of the final product was
more than 95% (determined by the analytical RP-HPLC method).
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In recent years, besides the research on HDACis based on hydroxamic acids or ben-
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to the ability of thiols to chelate zinc well [54]. Several research studies on fluorinated thiol 
derivatives have also been published. 

For example, Chuman et al. [55] described methods for the synthesis of fluoroalkene-
containing HDACis. As outlined in Scheme 25, the designed thiols were obtained through 
the reactions between the intermediate aldehyde and triethyl 2-fluoro-2-phosphonoace-
tate (EtO)2P(O)CHFCOOEt to obtain fluoroalkene in the presence of n-butyllithium (n-
BuLi) in THF. Interestingly, the advantage of this method is that the fluoroalkene was 
formed with E-selectivity. 

  

Scheme 24. Fluorination in the radiosynthetic pathway of [18F] Fluoroethyl-INER1577 by Li et al. [53].

2.3. Thiols

In recent years, besides the research on HDACis based on hydroxamic acids or benza-
mides, thiol derivatives have also been attracting much attention. This may be related to
the ability of thiols to chelate zinc well [54]. Several research studies on fluorinated thiol
derivatives have also been published.

For example, Chuman et al. [55] described methods for the synthesis of fluoroalkene-
containing HDACis. As outlined in Scheme 25, the designed thiols were obtained through
the reactions between the intermediate aldehyde and triethyl 2-fluoro-2-phosphonoacetate
(EtO)2P(O)CHFCOOEt to obtain fluoroalkene in the presence of n-butyllithium (n-BuLi)
in THF. Interestingly, the advantage of this method is that the fluoroalkene was formed
with E-selectivity.
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In another study of Wen et al. [56], a series of novel thiol-based HDACis was synthe-
sized. Fluorine was introduced into the designed compounds by condensation reactions. 
These reactions occurred between 4-fluoroacetophenone or 4-fluoropropiophenone and 
dimethyl oxalate (Scheme 26). The intermediates were transferred to phenylpyrazole es-
ters via the treatment of these compounds with hydrazine hydrate in acetic acid, followed 
by hydrolysis in the presence of sodium hydroxide (NaOH) in MeOH, to produce carbox-
ylic acids. 

  

Scheme 25. Fluorination in the synthetic pathway of fluorinated thiols by Chuman et al. [55].

In another study of Wen et al. [56], a series of novel thiol-based HDACis was synthe-
sized. Fluorine was introduced into the designed compounds by condensation reactions.
These reactions occurred between 4-fluoroacetophenone or 4-fluoropropiophenone and
dimethyl oxalate (Scheme 26). The intermediates were transferred to phenylpyrazole
esters via the treatment of these compounds with hydrazine hydrate in acetic acid, fol-
lowed by hydrolysis in the presence of sodium hydroxide (NaOH) in MeOH, to produce
carboxylic acids.
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Scheme 26. Fluorination in the synthetic pathway of fluorinated thiols by Wen et al. [56]. 
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Several natural short-chain fatty acids have shown promise to serve as potential 
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A series of fluorinated amino acid esters were reported in the research study of Lübke 
et al. [59]. These potent and selective HDACis were synthesized from several unnatural 
amino acids bearing monofluoroalkyl side chains (Scheme 27). The process of introducing 
fluorine-containing moieties into the designed compounds is accomplished through al-
kylation. 

  

Scheme 26. Fluorination in the synthetic pathway of fluorinated thiols by Wen et al. [56].

2.4. Short-Chain Fatty Acids

Several natural short-chain fatty acids have shown promise to serve as potential
HDACis [57,58]. There were also studies on fluorine-containing fatty acids comparing the
HDAC inhibitory activities of natural amino acids and fluorinated amino acid derivatives.

A series of fluorinated amino acid esters were reported in the research study of
Lübke et al. [59]. These potent and selective HDACis were synthesized from several
unnatural amino acids bearing monofluoroalkyl side chains (Scheme 27). The process of
introducing fluorine-containing moieties into the designed compounds is accomplished
through alkylation.
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tion by Lübke et al. [59]. 

A second method described by Lübke et al. [59] to introduce fluorine into the chem-
ical structure of amino acid esters was to use an addition reaction (Scheme 28). The fluor-
inated intermediates were achieved by bromofluorination with 1,3-dibromohydantoine 
(DBH) and Olah’s reagent (Py9HF) or N-bromosuccinimide (NBS), Et3N3HF. After this 
step, a mixture of bromofluoro ester and dibromides was obtained. Following separation 
gave the desired products. 

  

Scheme 27. Fluorination in the synthetic pathway of fluorinated short-chain fatty acids via alkylation
by Lübke et al. [59].

A second method described by Lübke et al. [59] to introduce fluorine into the chemical
structure of amino acid esters was to use an addition reaction (Scheme 28). The fluorinated
intermediates were achieved by bromofluorination with 1,3-dibromohydantoine (DBH)
and Olah’s reagent (Py·9HF) or N-bromosuccinimide (NBS), Et3N·3HF. After this step, a
mixture of bromofluoro ester and dibromides was obtained. Following separation gave the
desired products.
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The authors reported that fluorine substituents played an important role in the inter-
action of HDACis with the active site of the enzymes. This research study also showed 
that a fluoro vinyl moiety had a similar role to an apolar amide group in terms of physical 
or chemical properties, which can lead to similar biological properties [59]. 

2.5. Cyclic Peptides 
There are also fluorinated cyclic peptides with potential activity as HDACis. Such 

derivatives were recently designed and synthesized by Zhang, Liu, Gao, and co-workers 
[60,61]. All compounds reported in these studies were analogues of largazole (Figure 2). 
This is a cyclic depsipeptide derived from a cyanobacterium of the genus Symploca. It ef-
fectively inhibits the HDACs of class I [62]. 

 
Figure 2. Chemical structure of largazole. 

The fluorine-containing side chain fragments were provided via several types of re-
actions, which are all described in Scheme 29 below. The first step to introduce the fluorine 
for the design of cyclic peptides was the alkylation with ethyl 2-bromo-2,2-difluoroacetate 
in the presence of triphenylphosphine and diethylzinc in THF. An alternative method for 
fluorination was through a Reformatsky reaction with ethyl 2-bromo-2,2-difluoroacetate, 
zinc in THF. Another pathway involved a two-step process. The first step was the prepa-
ration of 1-alkynyl(phenyl)iodonium tetrafluoroborate from alkyne. Then, the intermedi-
ate was fluorinated by the reaction with 20% HF aqueous solution in CHCl3. Moreover, 
the use of starting materials that already contain the fluorine substituent is also feasible. 

Scheme 28. Fluorination in the synthetic pathway of fluorinated short-chain fatty acids via bromoflu-
orination by Lübke et al. [59].

The authors reported that fluorine substituents played an important role in the inter-
action of HDACis with the active site of the enzymes. This research study also showed that
a fluoro vinyl moiety had a similar role to an apolar amide group in terms of physical or
chemical properties, which can lead to similar biological properties [59].

2.5. Cyclic Peptides

There are also fluorinated cyclic peptides with potential activity as HDACis. Such deriva-
tives were recently designed and synthesized by Zhang, Liu, Gao, and co-workers [60,61].
All compounds reported in these studies were analogues of largazole (Figure 2). This is a
cyclic depsipeptide derived from a cyanobacterium of the genus Symploca. It effectively
inhibits the HDACs of class I [62].

The fluorine-containing side chain fragments were provided via several types of reac-
tions, which are all described in Scheme 29 below. The first step to introduce the fluorine
for the design of cyclic peptides was the alkylation with ethyl 2-bromo-2,2-difluoroacetate
in the presence of triphenylphosphine and diethylzinc in THF. An alternative method for
fluorination was through a Reformatsky reaction with ethyl 2-bromo-2,2-difluoroacetate,
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zinc in THF. Another pathway involved a two-step process. The first step was the prepara-
tion of 1-alkynyl(phenyl)iodonium tetrafluoroborate from alkyne. Then, the intermediate
was fluorinated by the reaction with 20% HF aqueous solution in CHCl3. Moreover, the
use of starting materials that already contain the fluorine substituent is also feasible.

Molecules 2023, 28, 1973 28 of 49 
 

 

 

 
Scheme 28. Fluorination in the synthetic pathway of fluorinated short-chain fatty acids via bromo-
fluorination by Lübke et al. [59]. 

The authors reported that fluorine substituents played an important role in the inter-
action of HDACis with the active site of the enzymes. This research study also showed 
that a fluoro vinyl moiety had a similar role to an apolar amide group in terms of physical 
or chemical properties, which can lead to similar biological properties [59]. 

2.5. Cyclic Peptides 
There are also fluorinated cyclic peptides with potential activity as HDACis. Such 

derivatives were recently designed and synthesized by Zhang, Liu, Gao, and co-workers 
[60,61]. All compounds reported in these studies were analogues of largazole (Figure 2). 
This is a cyclic depsipeptide derived from a cyanobacterium of the genus Symploca. It ef-
fectively inhibits the HDACs of class I [62]. 

 
Figure 2. Chemical structure of largazole. 

The fluorine-containing side chain fragments were provided via several types of re-
actions, which are all described in Scheme 29 below. The first step to introduce the fluorine 
for the design of cyclic peptides was the alkylation with ethyl 2-bromo-2,2-difluoroacetate 
in the presence of triphenylphosphine and diethylzinc in THF. An alternative method for 
fluorination was through a Reformatsky reaction with ethyl 2-bromo-2,2-difluoroacetate, 
zinc in THF. Another pathway involved a two-step process. The first step was the prepa-
ration of 1-alkynyl(phenyl)iodonium tetrafluoroborate from alkyne. Then, the intermedi-
ate was fluorinated by the reaction with 20% HF aqueous solution in CHCl3. Moreover, 
the use of starting materials that already contain the fluorine substituent is also feasible. 

Figure 2. Chemical structure of largazole.
Molecules 2023, 28, 1973 29 of 49 
 

 

 
Scheme 29. Fluorination in the synthetic pathway of fluorinated cyclic peptides by Zhang, Liu, Gao, 
et al. [60,61]. 

3. Biological Significance and Purpose of Fluorination in HDACis 
3.1. Potency 

The potency of a drug is often a very important parameter in the medicinal chemistry 
design of novel compounds [63]. Potency generally refers to the effectivity of an active 
ingredient. This is expressed by the concentration required to achieve a certain pharma-
cological effect, e.g., enzyme inhibition or cytotoxicity [64]. Increasing the potency can 
ensure both engagement with the target and the avoidance of off-target activity. If it is 
possible to use a drug at a lower dose due to its high potency, this may be associated with 
less toxicity. The particular target plays a role in each case, in order to prove which trans-
formations of the chemical structure ultimately also lead to an increase in potency. Nev-
ertheless, some modifications occur with high frequency in different drug classes and con-
tribute to an improvement in potency [65]. These structural alterations include, among 
others, fluorination. Recent examples where fluorination has had an impact on the efficacy 
of HDACis are described below. 

Scheme 29. Fluorination in the synthetic pathway of fluorinated cyclic peptides by Zhang, Liu, Gao,
et al. [60,61].



Molecules 2023, 28, 1973 20 of 35

3. Biological Significance and Purpose of Fluorination in HDACis
3.1. Potency

The potency of a drug is often a very important parameter in the medicinal chemistry
design of novel compounds [63]. Potency generally refers to the effectivity of an active
ingredient. This is expressed by the concentration required to achieve a certain pharma-
cological effect, e.g., enzyme inhibition or cytotoxicity [64]. Increasing the potency can
ensure both engagement with the target and the avoidance of off-target activity. If it is
possible to use a drug at a lower dose due to its high potency, this may be associated
with less toxicity. The particular target plays a role in each case, in order to prove which
transformations of the chemical structure ultimately also lead to an increase in potency.
Nevertheless, some modifications occur with high frequency in different drug classes and
contribute to an improvement in potency [65]. These structural alterations include, among
others, fluorination. Recent examples where fluorination has had an impact on the efficacy
of HDACis are described below.

Erdeljac and co-workers [41] investigated the influence of the introduction of the chiral
1,2-difluoroethylene unit as a hybrid bioisostere of the trifluoromethyl and ethyl (BITE)
group in a series of eight vorinostat derivatives (Scheme 10). Compared to pure vorinostat,
the latter additionally possess an ester moiety with different alkyl lengths of the alcohol
component. The potency of the fluorine-containing BITE compounds with respect to the
in vitro inhibition of HDAC1 and HDAC6 was compared with that of the non-fluorinated
ethyl congeners.

Against HDAC1, all eight fluorinated homologs were more potent than the corre-
sponding ethyl derivatives. Four of the fluorinated compounds (n = 1–4) even exceeded
the potency of the clinically approved vorinostat. Targeting the isoenzyme HDAC6, six of
the 1,2-difluoroethylene-bearing compounds were more active than the respective ethyl
derivatives and vorinostat. However, the potency against HDAC1 and HDAC6 generally
decreased with the elongation of the methylene spacer in both series.

In a related investigation of the trifluoromethyl group as a bioisostere to the ethyl
substituent, the authors recognized a low lipophilicity in this particular compound as a
result of fluorination. Furthermore, a relationship between lipophilicity and passive perme-
ability was deduced. The introduction of fluorine also had an effect on the solubility of the
compounds. However, no consistent correlation with an increasing degree of fluorination
could be established, but a heterogeneous order [66].

Based on these results, the authors judged the BITE group to be a promising bioisostere
for the development of potent HDACis. Moreover, they suggested that the concept of
1,2-difluoroethylene derivatives can be successfully applied to other small molecules in the
future [41].

A similar approach was already taken by Walton et al. [38] in designing a series of six
hydroxamic acids derived from vorinostat with perfluorinated alkyl side chains of different
lengths (Scheme 7). The antiproliferative effect of the compounds was investigated against
ovarian cancer cells A2780. Five of the six perfluorinated compounds showed cytotoxicity
in the single-digit micromolar range, two of which were minimally better and another two
of which were significantly more potent than vorinostat. This proves a positive effect of the
introduction of perfluorinated alkyl side chains. In this context, the authors suggested that
compounds with a longer perfluorinated chain have lower uptake in cancer cells due to
their decreased solubility. This in turn leads to less toxicity.

Also in the work of Goehringer, Peng, and colleagues [35], the structure of the clinically
approved drug vorinostat was altered. In particular, the modification is based on the
introduction of a 4-pentafluorosulfanyl substituent leading to a vorinostat derivative with a
para-SF5 aryl cap (Scheme 4). The authors justified their decision for the SF5-group with the
fact that it is a stable imitator of negatively charged biomolecules, due to its lipophilicity
and electron-withdrawing properties [67]. The growth inhibitory activity of SF5-vorinostat
against six human cell lines was compared with that of vorinostat and revealed a beneficial
effect on increasing potency.
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While SF5-vorinostat exhibited approximately the same cytotoxicity as the parent
compound against the human prostate cell line DU145, it had approximately two-fold
higher potency in the other cell lines tested (hepatocellular carcinoma Hep-G2, and T-cell
leukemia/lymphoma cell lines Jurkat, Hut78, SupT11, and SMZ1) due to an IC50 value
half as high. In all six cell lines, the IC50 value of SF5-vorinostat was in the low single-digit
micromolar range.

Similar effects were detected for the respective trifluoromethyl analogue (Figure 3) in
the study by Salmi-Smail et al. [68]. This showed approximately equal antiproliferative
activity as vorinostat in the breast carcinoma SKBR3, chronic myelogenous leukemia
K562, and acute myelogenous leukemia HL60 cell lines. More importantly, CF3-vorinostat
was superior by a factor of approximately 1.4–1.8 in colon carcinoma HT29, histiocytic
lymphoma U937, and Jurkat JA16 cell lines. The 4F-vorinostat derivative (Figure 3) was
only tested in the cell lines SKBR3, HT29, and U937. Its IC50 value was not better than that
of vorinostat; however, it was still in the low single-digit micromolar range. In contrast,
3F-vorinostat (Figure 3) was equivalent or slightly superior to vorinostat in these three
cell lines.
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Zhang, Liu, Gao et al. [60,61] adduced the HDACi largazole (Figure 2) and performed
a fluoroscan to extend the structural diversity. This resulted in largazole thiol derivatives
with different fluorination in the thiolate side chain (Scheme 29). Derivatives of 116 ex-
hibiting single fluorination at positions 18 and 19, respectively, or the compound which
was double fluorinated at position 20, were investigated. The efficacy of the compounds
to inhibit human HDACs 1–3, 6, 8 was investigated. In comparison with largazole, these
three fluorinated derivatives were more potent. It should be mentioned that largazole
thiol exerted stronger effects than largazole (Figure 2) itself. However, the derivative
fluorosubstituted in the C19 position even exceeded its activity.

The research of Luckhurst and co-workers [69] was focused on the development of
tetrasubstituted cyclopropane hydroxamic acids as HDACis (Figure 4). Formally starting
with the trisubstituted compounds, they took the approach of introducing a fluorine
substituent leading to the tetrasubstituted congeners. This was based on the assumption
that the fluorine at the Cα adjacent to the hydroxamic acid would lead to enhanced
acidity, and thus, increase activity. The authors reported on six pairs of compounds,
each with and without the fluorine substituent. The potency of these compounds to
inhibit the HDAC1 enzyme was investigated. The working hypothesis was confirmed,
as all fluorinated derivatives were two to nine times more active than the unfluorinated
analogues. In the series of compounds, the pyrimidine capping group was also modified.
In this context, fluorination in the form of the introduction of a single fluorine substituent,
a difluoromethoxy or a trifluoromethyl group, was considered. However, only minimal
effects on activity were observed in this regard.
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The study by Yao, Li, and coworkers [70] reported on HDACis, in which structural
modifications were made to the surface recognition cap, including the introduction of a
4,4-difluoropiperidin-1-yl residue (Figure 5). However, the fluorinated compounds only
showed moderate antiproliferative activity against MDA-MB-231 cells.
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Gawel, Shouksmith, Raouf, Nawar, and co-workers [71] described some HDACis
belonging to hydroxamic acids with different fluorination patterns in the phenyl cap group.
The cap moiety serves to anchor the inhibitor to the outside of the active center of the
HDAC. In their work, the authors also introduced derivatives with a pentafluorophenyl
group (Figure 6). The cytotoxicity was investigated using the leukemia cell line MV4-11.
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The p-fluorinated compound showed cytotoxicity with an IC50 value of 3.64 µM. Inter-
estingly, the compound with a trifluoromethyl substituent in the para-position was even
more potent (0.88 µM). The compound with a five-fold fluorination of the aromatic residue
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(pentafluorobenzene derivative, 1.51 µM) was also stronger than the monofluorinated
derivative. This trend could indicate a positive effect on potency upon increasing fluorina-
tion. A comparison of the other pentafluoro compounds in their study (i.e., compounds
60 and 84 in the original work: 1.85 µM and 7.37 µM, respectively) with the correspond-
ing p-tert-butyl-substituted compounds (i.e., compounds 68 and 83 in the original work:
0.57 µM and 8.57 µM, respectively) only partially confirms this. Here, the different spacers
between the cap group and the hydroxamic acid moiety seem to have an influence. This
can also be seen in the pentafluoro compounds (i.e., compounds 100 and 101 in the original
work: 0.32 µM and 0.76 µM, respectively), which induced even stronger cytotoxicity against
MV4-11 cells than citarinostat (1.24 µM).

A HDACi also fluorinated in the cap group was described in the work of Kim, La
and co-workers [72]—in particular, a fluorinated aminophenyl-benzamide-based drug
(Figure 7). In addition, in the chemical structure of the HDACi, the zinc-binding group was
substituted by a “foot pocket” unit, that is, a thiophen-2-yl substituent. The compound
was designed to specifically inhibit HDAC1. It exhibited promising cytotoxicity against
the colorectal cancer cell lines HCT116 (IC50 = 5.59 µM) and DLD-1 (IC50 = 4.05 µM). Re-
markably, the activity against normal intestinal epithelial cells (ICEs, IC50 = 18.38 µM) was
approximately four times less pronounced, demonstrating some kind of selectivity towards
colon cancer cells. Based on these results, the authors concluded that the biarylbenzamide
structure, as well as fluorination within the cap moiety, represent a promising strategy for
the development of potent HDAC inhibitors.
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Schäker-Hübner et al. [51] also studied the effect of fluorination of the “foot pocket”
unit attached to the zinc-binding domain (Scheme 20). They observed ambivalent re-
sults due to fluorination when the inhibitory potential of the newly synthesized fluorine-
containing compounds 85 was investigated. The introduction of a 4-fluorophenyl sub-
stituent resulted in a slightly more potent inhibition of the isoenzymes HDAC1-3 compared
to the phenyl parent compound. However, when a fluorine substituent was additionally
introduced at positions 2 or 6 starting from the pyridin-3-yl substituted compound, the
inhibition of HDAC1-3 was lower. The authors investigated that fluorination on the aro-
matic system increases lipophilicity, and thus, decreases solubility, which could in turn
explain a poorer inhibitory effect. For the 2-fluoropyridin-4-yl derivative, compared with
the non-fluorinated pyridin-4-yl compound, inhibition was reduced towards HDAC1-2 and
enhanced towards HDAC3. Depending on the position where the fluorine substituent is
introduced, not only the potency can be increased, but also the selectivity can be fine-tuned.

3.2. Selectivity

In addition to potency, another parameter that plays an important role in any drug
design is selectivity [73]. Selectivity generally describes the extent to which a drug binds to
targets that are different than the desired target (e.g., enzymes, receptors, ion channels) or
acts on different tissues (e.g., cancerous vs. non-cancerous). High selectivity means that
few additional targets are bound. Ideally, binding occurs only to the target through which
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the pharmacological effect is exerted and not to other targets that may be associated with
undesirable side effects.

In the development of HDACis as antitumor compounds, it is important that the
compounds induce their effects on cancer cells and not on healthy cells. On the other hand,
there are also efforts to create selectivity towards the different HDAC isoenzymes [74].
This is based on the fact that not all HDAC isoforms are overexpressed in all types of
cancers [75].

For the vorinostat derivative 26 bearing perfluorinated alkyl side chains (Scheme 7), as
reported in the study of Walton et al. [38], approximately five-fold selectivity over ovarian
carcinoma cells A2780 can be seen for the compound with the polyfluorinated C10 chain
compared to non-cancerous HEK cells. Since for the unfluorinated analogue the selectivity
was approximately two and a half times, fluorination could lead to the doubling of the
selectivity. With the parent compound vorinostat, there was almost no selectivity for the
observed tumor cells. For the sake of completeness, however, it must be mentioned that
for the other derivatives with C8 and C12 chains, the selectivity with respect to tumor
cells could not be increased by fluorination. Ultimately, selectivity towards tumor cells
can be achieved if there is selectivity with respect to tumor-specific targets [76]. In the
development of HDACis, it takes an important role to specifically address certain isoforms
of HDAC with the newly developed compounds.

Gryder, Wu, and co-workers [77] used the example of the benzamide-based compound
“Merck60” (Figure 8) in their study. They demonstrated that an exchange of the thieno
ring in the para-position of the benzamide core against a fluorine substituent in the meta-
position can positively influence the selectivity for the isoenzyme HDAC3 compared to
HDAC1/2. The reason for this can be explained in terms of the different sizes of the
side pockets. It is smaller for HDAC3 than for HDAC1/2 and can be well targeted by
the fluorine-substituted derivative, whereas the bulkier thieno ring does not favor this.
Addressing smaller and hydrophobic binding pockets as a result of fluorine substitution
is a common tool in medicinal chemistry [78]. The strategy has also been successfully
applied, for example, in the design of fluorinated ligands, which exert their antitumor effect
primarily through a more selective inhibition of the cyclooxygenase-2 (COX-2) enzyme, but
not through influence on COX-1, unlike the corresponding methylated analogues [28,79].
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In the series of triazolylphenyl-based hydroxamic acid derivatives (Figure 9) described
as HDACis in the work of Chen et al. [80,81], fluorination of the phenyl ring in the para-
position resulted in a doubling or tripling of the selectivity for the isoenzyme HDAC6 over
HDAC1. Moreover, the introduction of a pentafluorophenyl cap in the study by Gawel,
Shouksmith, Raouf, Nawar, and co-workers [71] was found to increase selectivity over
HDAC6.

The HDAC6 isoenzyme is of particular interest because its structure is somewhat differ-
ent from the other isoenzymes [82]. Furthermore, the research work of Sandrone et al. [83]
investigated the influence of fluorination on the selectivity towards the isoenzyme HDAC6.
In a series of benzohydroxamate-based compounds (Figure 10), the linker in the form of
the phenyl ring was single- or double-fluorinated. The effect on HDAC6 was not much
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improved, but the activity towards HDAC1 was decreased. This is ultimately accompanied
by an increase in selectivity for HDAC6. Compared to the unfluorinated linkers, there is
approximately a six-fold increase in selectivity for HDAC6 over HDAC1 after the intro-
duction of two fluorine substituents. Specific interactions between the fluorine-containing
linker and residues responsible in the binding pocket (i.e., Gly582, Ser531, and His614) of
HDAC6 (HDAC class IIb) are suggested as the reason for this. In contrast, this is hindered
in class I HDAC (e.g., HDAC1) because the Ser531 is exchanged by an Arg. These results of
Sandrone et al. [83] were similarly confirmed in the study of Reßing, Schliehe-Diecks et al.,
where an increased inhibition of HDAC4 (HDAC class IIa) was detected due to compounds
with a fluorinated linker [84].
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Figure 9. Chemical structures of fluorinated hydroxamic acids by Chen et al. [80,81]. 
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Apparently opposed results were obtained from the fluorine scan undertaken by 
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which serves as the zinc-binding site, was exchanged for a fluoroalkene containing a sul-
fanylmethyl group (Scheme 25). Additionally, the effects of the E- and Z-configurations 
on selectivity towards HDAC isozymes were investigated. In relation to the parent com-
pound SAHA, there was no real change in the HDAC1/HDAC6 selectivity ratio. Never-
theless, the affinity of the Z-isomer towards the enzymes HDAC1, HDAC8, HDAC4, and 
HDAC6 was two to three times greater than with SAHA. The E-isomer had lower affinity, 
particularly for the HDAC1 and HDAC4 enzymes. However, these results do not neces-
sarily indicate a shift in selectivity based on replacement by fluorine-containing substitu-
ents. The effects are more likely due to the E/Z-configuration. The authors considered this 
as a potential novel approach to designing isoform-selective HDACis. 

The work of Keuler, König, Bückreiß, and colleagues [85] reports the development of 
compounds with a difluoromethyl-1,3,4-oxadiazole scaffold that serves to bind zinc in-
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Apparently opposed results were obtained from the fluorine scan undertaken by
Zhang, Liu, Gao et al. [60,61] (Scheme 29). Fluorination on the thiolate residue of largazole
derivatives revealed that the fluorinated compounds shifted in selectivity in favor of the
isoenzyme HDAC1 relative to HDAC6.
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The situation is again different for the 4-pentafluorosulfanyl-substituted vorinostat
derivative. Compared to the parent compound, the activity towards HDAC6 is minimally
increased. The introduction of the fluorine-containing substituent (Scheme 4) did not affect
the inhibition profile of HDAC1 and HDAC2 [35]. This trend was also apparent with the
trifluoromethylated congener [68].

Chuman et al. developed derivatives of vorinostat [55]. The hydroxamic acid residue,
which serves as the zinc-binding site, was exchanged for a fluoroalkene containing a sul-
fanylmethyl group (Scheme 25). Additionally, the effects of the E- and Z-configurations on
selectivity towards HDAC isozymes were investigated. In relation to the parent compound
SAHA, there was no real change in the HDAC1/HDAC6 selectivity ratio. Nevertheless, the
affinity of the Z-isomer towards the enzymes HDAC1, HDAC8, HDAC4, and HDAC6 was
two to three times greater than with SAHA. The E-isomer had lower affinity, particularly
for the HDAC1 and HDAC4 enzymes. However, these results do not necessarily indicate a
shift in selectivity based on replacement by fluorine-containing substituents. The effects
are more likely due to the E/Z-configuration. The authors considered this as a potential
novel approach to designing isoform-selective HDACis.

The work of Keuler, König, Bückreiß, and colleagues [85] reports the development
of compounds with a difluoromethyl-1,3,4-oxadiazole scaffold that serves to bind zinc
instead of a hydroxamate (Figure 11). These non-hydroxamate compounds were found
to function as proteolysis-targeting chimeras (PROTACs) for the intended degradation
of a specific protein, e.g., HDAC. The compounds bearing the aminomethyl linker in the
meta-position instead of the para-position, and with a spacer with oxyethylene subunits
instead of pure alkyl groups, were found to be selective HDAC6 degraders compared to
HDAC1 and HDAC4. Although the agents carry terminal conspicuous difluoromethyl
groups, the influence of selectivity due to fluorination cannot be clearly deduced from
this study.
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In the paper by Ariawan et al. [42], the effect of vicinal difluorination in the chemical
structure of the hydroxamate-based HDACis vorinostat and scriptaid was investigated
(Scheme 11). The authors found that the introduction of fluorine substituents does not
have a positive effect on the potency to inhibit HDAC. Among the vorinostat derivatives,
there was little change in overall selectivity towards the eleven HDAC isoenzymes, as
a result of fluorination. However, subtle effects on the selectivity of the class I HDACs
could be detected. Finally, the authors concluded that it is rather challenging to engineer
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selective HDACis, especially when the binding pockets of the substrates (i.e., HDAC1,
HDAC2, HDAC3) are narrow. This shows that fluorination alone is not necessarily crucial
for bringing the substrate into the appropriate binding pocket of any isoenzyme. However,
once it has reached the binding pocket, hydrophobic interactions formed by fluorine
substituents can, of course, contribute to selectivity.

3.3. Labeling

The focus in medicinal chemistry is on designing new therapeutic agents through
chemical synthesis. This development also includes the optimization of properties such
as potency and selectivity. Furthermore, a major goal is understanding the influence of
modifications in the chemical structure. Aside from the impact on the effect, there is
interest in biodistribution, metabolism, or interaction with a target. In order to analyze the
effectivity, it must be possible to sensitively detect the active agent in complex biological
matrices. Fluorination is a good tracer for this purpose because fluorinated compounds
rarely occur in nature. In addition, based on the isotopes 19F and 18F, it is possible to
perform detection by spectroscopy and positron emission tomography (PET), respectively.

3.3.1. Labeling Using 19F

Sankaranarayanapillai and co-workers [86,87] developed a method based on NMR
of 19F to monitor the inhibition of HDAC, since the fluorinated lysine derivative Boc-Lys-
(Tfa)-OH (BLT) is a substrate for cleavage mediated by HDAC. Of note, treatment with BLT
had no effect on the viability of PC3 cancer cells or on the activity of HDAC. Therefore, the
amount of the 19F-labeled imaging agent BLT (Figure 12) detected by NMR spectroscopy
allows conclusions to be drawn about the activity of HDAC. This method is non-invasive
but does not rely on the fluorination of HDACis. Nevertheless, it has a distinct advantage.
Since the treatment of a tumor with HDACis often leads to tumor stasis and not necessarily
to its shrinkage, standard imaging methods would not necessarily be suitable to monitor
this behavior. However, one drawback is that the different trifluoroacetyl-lysine-based
substrates have different specificity with respect to HDAC isoenzymes; therefore, such
substrates have limited applications [44].
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In the study by Jayathilaka et al. [47], the introduction of a 19F tracer in the form of a
trifluoromethyl group (Scheme 15) was used to gain insight into the mechanism of action of
the known HDACi N-(2-aminophenyl)-N’-phenyloctanol diamine (BML-210). The activity
of class IIa HDACs such as HDAC4 depends on the interaction with the Myocyte Enhancer
Factor-2 (MEF2). Therefore, interference in this context represents a promising strategy to
indirectly inhibit class IIa HDACs. The 19F-containing derivatives of BML-210 were used to
study the interaction of the compound to bind MEF2 using NMR analysis. By comparing
the 19F NMR spectrum of the free fluorinated compound with an approach in which the
MEF2 protein was present in excess, it was possible to conclude that the drug interacts
with MEF2.
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Although these two examples represent the sophisticated use of 19F to characterize
HDACis, NMR spectroscopy is inferior to PET in its prevalence and application.

3.3.2. Labeling Using 18F

Labeling drugs with the radioisotope 18F is the most common modality of radiolabel-
ing in both preclinical and clinical drug development [88]. There are a variety of chemical
reactions, e.g., electrophilic or nucleophilic substitutions, to yield in radiofluorine-labeled
drugs. Its importance is related to its accessibility by PET, as the isotope 18F undergoes
β+ decay with a half-life of 109.7 min. By employing PET, it is possible to allow molecu-
lar imaging.

Probably the first HDAC imaging agent based on 18F-PET was developed by Hen-
dricks, Keliher, and colleagues [44]. Compound 50 is a derivative of the clinically important
HDACi vorinostat. The novel compound was obtained by introducing a radiofluorine sub-
stituent at position 4 of the aromatic ring of vorinostat (Scheme 13). With its low nanomolar
potency, the compound showed a very similar biological profile to its parent compound.
Using an ovarian cancer model in mice, the binding affinity to HDAC was investigated
by 18F-PET. The authors found that quantification of the binding was possible up to 24 h
after application. This paved the way for real-time in vivo imaging of HDACs, which the
authors suggested will make a useful contribution to the characterization of HDACis.

Further studies include, for example, the development of radiofluorinated bioisosteres
of the HDACi santacruzamate A as potential PET tracers [89]. Li and colleagues [52]
introduced a [18F]fluoroethyl tracer into a biphenyl-based benzamide HDAC (i.e., INER-
1577) to enable imaging (Scheme 23). They studied the distribution in the body and brain
of rats using a micro-PET scanner. The compound was also able to inhibit the growth
of breast cancer cell lines 4T1 and MCF-55. The authors continued synthesizing further
benzamide-based HDACis with 18F tracers as imaging agents for mice [90]. The review by
Dasko et al. [91] summarized further examples in which HDACis were fluorinated by the
introduction of the 18F radiotracer, in order to study, among other things, the biodistribution
and target binding of the compounds.

In their first study, Strebl et al. [45] used 18F labeling to assess the penetrance of
the hydroxamic acid-based and non-fluorinated HDACi martinostat and the fluorinated
derivative [18F]martinostat, respectively (Scheme 14). The radiofluorinated compounds
showed promising properties as a radiotracer, as brain accumulation and distribution were
similar to those of the 11C-labeled but non-fluorinated martinostat. However, the use of the
19F radioisotope instead of an 11C-labeled derivative (half-life 11C: 20.3 min) was associated
with a longer half-life. In their following study [43], the authors prepared a radiofluorine
version of the drug, i.e., [18F]bavarostat 47 (Scheme 12). Bavarostat belongs to the class of
hydroxamic acid derivatives as HDAC inhibitors. The chemical structure of bavarostat also
contains a fluorine substituent. However, it is assumed that the fluorine substituent does
not affect the binding to HDAC [45]. Bavarostat itself is characterized by high selectivity to
HDAC6. Since HDAC6 appears to play a role not only in cancer, but also in central nervous
system diseases (e.g., Alzheimer’s disease), penetration into the brain is important, albeit
difficult to reach with HDACis. The authors used the radiolabeled compound to determine
the uptake into the brains of rodents and non-human primates. Bavarostat showed high
penetration. Therefore, it was suggested that bavarostat is suitable for future investigations
to target HDAC6 in living human brains.

The study by Chen et al. [92] also picked up four fluorinated HDACis designed for
PET imaging due to their corresponding labeling with 18F (coded as INER-1577 #1 to INER-
1577 #4, Figure 13). In particular, the compounds were again designed for Alzheimer’s
disease detection, as HDACis are considered to play an important role in this context.
The radiofluorinated HDACis serving as PET imaging compounds were investigated for
their metabolism in biological systems, including a mass spectrometric approach. The
authors concluded from their work that imaging studies should be performed promptly
after application.
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4. Issues of Fluorination

Even if fluorination can be beneficial for biological effects in terms of potency and
selectivity or can be used in the context of labeling for bioanalytical studies, there are also
some disadvantages.

The introduction of fluorine substituents into molecules is not always as trivial as it
might seem and presents challenges to the medicinal chemist [93]. This may relate, for
example, to the high toxicity or poor practical handling of fluorination reagents, as well as
to low yields.

Among the HDACis mentioned by Luckhurst et al. [69], fluorine was also introduced
in the form of difluoromethoxylation. The synthesis of difluoromethoxy derivatives is
very commonly performed using chlorodifluoromethane and a base, following the elimi-
nation of HCl from chlorodifluoromethane. Chlorodifluoromethane is gaseous, and this
synthetic procedure requires an ozone depleting reagent; these are major drawbacks of this
approach [94]. On the other hand, the direct trifluoromethoxylation of aromatic compounds
can be carried out under radical reactions, as described, for example, by Venturini et al. [95].
The gas trifluoromethyl hypofluorite is used. This particular reagent suffers from high
toxicity [96]. Moreover, gases are generally more difficult to handle compared to solids.
Even though liquids are easier to handle than gases, it can be considered a disadvantage
to work with liquid reagents compared to solids as an alternative. The DexoFluor used
for the synthesis of HDACis in the work of Ariawan et al. [42] is subject to this limitation
to a certain extent. Fortunately, crystalline solids have now also been described as an
improvement on DeoxoFluor for deoxyfluorination [97]. A different aspect is that if a C–F
bond is to be introduced stereoselectively in the course of the synthesis, chiral auxiliaries
can be used. This has the disadvantage that the auxiliary reagent must first be attached
and then removed [98]. However, this is a general restriction and not limited to fluorine.

Examination of the series of HDACis by Meyners et al. [36] and Walton et al. [38]
seems to reveal another issue. These are compounds that have a perfluorinated alkyl
core. For compounds in which carbon atoms are completely substituted with halogens,
photodissociation can occur under the release of the halogen into the stratosphere and the
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depletion of the ozone layer [97]. However, this effect seems to mainly apply to chlorine
and bromine atoms rather than fluorine [99], but it would come into play when mixed
halogenated alkanes are present. The formation of greenhouse gases is also mentioned
in the review by Caron [97] as a disadvantage of the synthesis of fluorinated compounds.
This environmental aspect is extended by the poor profile of fluorinating reagents with
respect to green chemistry. In addition, the costs of the fluorinated reagents are very high
in some cases, and there are safety concerns [97].

However, such concerns are not limited to the reagents used in the synthesis, but
also affect the safety of drug use. Chemical instability and enzymes that metabolize active
agents could lead to a loss of fluorination and the formation of metabolites that could
probably affect the safety of therapy [100].

One of the main reasons why fluorination is used in medicinal chemistry drug design
is its influence on metabolism. Since the dissociation energy of a C–F bond is very high, it
seems that the generation of active metabolites can be avoided and the metabolic clearance
can be decreased [100]. Nevertheless, a resealing of fluoride can occur. This can be seen
by metabolizing enzymes or mediation by a nucleophile. If an agent undergoes a high
cleavage of the C–F bond with the subsequent occurrence of relevant amounts of fluoride,
skeletal fluorosis such as exostoses or periostitis may develop as adverse drug effects [101].

As comprehensively described by Pan [100], defluorination from monofluorinated
alkyls bearing an intramolecular nucleophile can occur by an SN2 reaction. The nucleophile
does not necessarily have to be present intramolecularly, but also in the form of biologically
relevant compounds, such as glutathione. Furthermore, in the course of such an SN2
reaction, not only can fluoride be released, but also, biological targets can be alkylated,
which could result in toxicity. Apart from the SN2 reaction, the heterolytic cleavage of a C–F
bond yielding to the release of fluoride may also be due to a lone pair of electrons at the β-
position of the fluorine [100]. The cleavage of fluoride can also be mediated by cytochrome
P450 enzymes that catalyze the hydroxylation of fluorinated alkanes [100]. However, it
is not only fluoride that leads to toxicological concerns, but also fluoroacetate [102]. This
can be formed, for example, during the metabolism of molecules containing 1,3-difluoro-2-
propyl or O-/N-2-fluoroethyl substituents [100].

5. Conclusions

Currently, HDACs increasingly prove to play an important role in cancer via chromatin-
modifying complexes and modulating gene expression [10]. Therefore, these enzymes
become potential and attractive targets in the research and development of new anticancer
drugs [9]. As a result, many HDACis have been discovered and studied in recent years.
One of the strategies for the design of novel pharmaceuticals is to introduce fluorine into
the chemical structures [103]. This approach has also been performed with HDACis such
as hydroxamic acids, benzamides, thiols, or cyclic peptides. However, no overview is
available on this aspect so far in the literature to the best of our knowledge.

Fluorination has been shown to have many advantages, as described above in this
review. These include partly higher potency, increased binding affinity, and expanded se-
lectivity towards the different HDAC isoenzymes [44]. Moreover, altered physicochemical
properties and improved metabolic stability can also be attributed to the introduction of
fluorine 92. Yet, it should also be noted that chemical instability and enzymes that metab-
olize active agents could lead to a loss of fluorination and the formation of metabolites
that could probably affect the safety of drug use [104]. Nevertheless, chemical instability
and metabolizing enzymes (e.g., CYP enzymes) could cause a loss of fluorination and the
generation of likely toxic metabolites that compromise drug safety [100].

In the field of radiation oncology, fluorine-18 (18F) represents a radioisotope which
is one of the most common isotopes used for PET imaging [105]. It has a half-life of
approximately 110 min, more than five times longer compared to the half-life of carbon-11
(approximately 20 min) [44].
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This review summarized several HDACis-related studies focusing on the synthesis, as
well as the purposes and influences, of fluorination developed in recent years. The develop-
ment of synthetic methods for the formation of fluorinated derivatives and the advantages
of incorporating fluorine into the chemical scaffold of new HDACis will certainly open
new opportunities in the research and development of anticancer agents in the future.
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