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Table S1: Volumes and areas calculated from the idealized framework model. Data obtained from [1], calculated 
by [2]. 

 FAU LTA 

Framework density 13.3 T/1000 Å3 14.2 T/1000 Å3 
Occupiable volume 28.6% 23.1% 
Accessible volume 27.4% 21.4% 
Occupiable area 1398  m2/g 1427 m2/g 
Accessible area 1211 m2/g 1205 m2/g 
Specific occupiable area 1856 m2/cm3 2018 m2/cm3 
Specific accessible area 1608 m2/cm3 1704 m2/cm3 

The  definition of the quantities in the Table can be found on the IZA website  [1]. 

 

 

Figure S1: XRD pattern of F1-beads. 

 

 

Figure S2: XRD pattern of F2-beads. Peaks indicated with an A correspond to framework type [LTA]. 
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Figure S3: XRD pattern of F3-beads. Peaks indicated with an A correspond to framework type [LTA]. 

 

Estimation of the degree of crystallinity of the Faujasite beads 

An estimation of the degree of crystallinity is obtained by deconvolution of the XRD diffractograms 

using the Fit Peaks function in OriginPro. Lorentzian functions were selected as peak type for the peaks 

corresponding to crystalline phases since this provides a better estimate of peak broadening. Gaussian 

functions were selected as peak type for the peaks corresponding to amorphous phases. The 

parameters were optimized to obtain a good fit (R2 ≥ 0.98). The degree of crystallinity was calculated 

by dividing the areas of all the peaks corresponding to crystalline phases by the total area of all peaks 

(see for example Figure S4). The calculated degree of crystallinity of the beads was normalized to that 

obtained from the highly crystalline commercial NaY powder (Figure S5) to account for background 

noise from the sample holder.   

 

Figure S4: Deconvolution of XRD pattern of F2-beads. 
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Figure 5: Deconvolution of XRD pattern of commercial NaY powder. 

 

 

Figure S6: SEM images of  beads with less common features: (A) an empty shell, (B) a bead with a clear distinction 
between the shell and the interior, (C) and (D) spherical aggregates of crystals that are embedded in an 
amorphous matrix. 
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Figure S7: XRD pattern of commercial zeolite NaY. 
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Figure S8: Pore size distribution of the beads and powder samples, determined by means of the BJH desorption 
branch from 5 to 100 nm. 
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Figure S9: N2 physisorption isotherm of F1-powder side product. 

 

 

Figure S10: Pore size distribution from the BJH desorption branch from 0-100 nm for F1-powder side product. 

 

 

Figure S11: XRD pattern of F1 powder side product. 
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Figure S12: XRD pattern of F2 powder side product. 

 

 

Figure S13: XRD pattern of F3 powder side product. 

 

Figure S14: SEM image of F1 powder side product. The powder consists of large grains consisting of aggregated 
nano-sized crystals. 
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Figure S15: SEM image of F1 powder side product. Zoomed in on one large grain.  

 

 

Figure S16: SEM images of individual crystals of: (A) commercial NaY powder, (B) F3-beads. 
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Calculation of the enthalpy of adsorption  

The enthalpy of adsorption (ΔHads) was calculated using the Clausius-Clapeyron approach (detailed 

explanation of this method is given in ref. [3]).  

First, the isotherms were fitted with the Freundlich-Langmuir eqn. (1): 

𝑛 =  
𝑎∙𝑏∙𝑝𝑐

1+𝑏∙𝑝𝑐      (1) 

In which n = adsorption capacity (mmol g-1) p = pressure (kPa), a = maximal loading (mmol g-1), 

b = affinity constant (1/kPac), c = heterogeneity exponent. Fitting the Freundlich-Langmuir equation in 

MATLAB using the experimental adsorption isotherms yielded the fitting coefficients a, b and c. 

The Freundlich-Langmuir equation can be rearranged to: 

𝑝(𝑛) =  √
𝑛

𝑎∙𝑏−𝑛∙𝑏

𝑐
            (2) 

Using the Freundlich-Langmuir fit, pressure (p) – adsorption capacity (n) data pairs were generated 

with the same adsorption capacity n at each temperature. Subsequently, the data pairs are filled in the 

Clausius-Clapeyron equation to obtain the isosteric enthalpy of adsorption: 

∆𝐻𝑎𝑑𝑠(𝑛) =  −𝑅 ∙ 𝑙𝑛 (
𝑝2

𝑝1
)

𝑇1∙𝑇2

(𝑇2−𝑇1)
      (3) 

   

 

   

Figure S17: Freundlich-Langmuir fit for CO2 adsorption isotherms of commercial NaY powder at 15°C, 25°C, and 
35°C. Fitting parameters and R2 values are shown in figure.   
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Figure S18: Freundlich-Langmuir fit for CO2 adsorption isotherms of F2-beads at 15°C, 25°C, and 35°C. Fitting 
parameters and R2 values are shown in figure. 

 

 

Figure S19: Isosteric enthalpy of adsorption of CO2 on commercial NaY powder, derived from the CO2 adsorption 
isotherms at 15°C, 25°C, and 35°C with standard deviation.  
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Figure S20: Isosteric enthalpy of adsorption of CO2 on F2-beads, derived from the CO2 adsorption isotherms at 15°C, 
25°C, and 35°C with standard deviation. 
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