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Abstract: Coffee is one of the most widely consumed beverages, which has several effects on the
human body. In particular, current evidence suggests that coffee consumption is associated with
a reduced risk of inflammation, various types of cancers, and certain neurodegenerative diseases.
Among the various constituents of coffee, phenolic phytochemicals, more specifically chlorogenic
acids, are the most abundant, and there have been many attempts to utilize coffee chlorogenic
acid for cancer prevention and therapy. Due to its beneficial biological effect on the human body,
coffee is regarded as a functional food. In this review article, we summarize the recent advances
and knowledge on the association of phytochemicals contained in coffee as nutraceuticals, with a
particular focus on phenolic compounds, their intake, and nutritional biomarkers, with the reduction
of disease risk, including inflammation, cancer, and neurological diseases.

Keywords: polyphenol; chlorogenic acid; inflammation; cancer progression; neurodegenerative
diseases; cell membrane

1. Introduction

Coffee is one of the most widely consumed beverages globally [1]. Early records
suggest that coffee was first discovered and consumed in Ethiopia, North Africa, in the
9th century AD [2]. Coffee plants belong to the genus Coffea, among which Coffea arabica
and Coffea canephora var. Robusta, also known as Arabica and Robusta coffee, respectively,
are the most well-known species [3]. Coffee beans are roasted, ground, and infused in hot
water to produce a cup of coffee. In addition to its pleasantly bitter flavor, coffee has several
effects on the human body and mind [4].

Coffee is popularly consumed as a caffeine-containing beverage (CCO) and has poten-
tial health benefits and risks based on the food-based dietary guidelines of the Food and
Agriculture Organization (FAO) of the United Nations [5]. Epidemiological studies have
demonstrated that coffee consumption reduces the risk of neurological diseases, includ-
ing Alzheimer’s disease and Parkinson’s disease [6–8]. For example, coffee consumption
ameliorated cognitive impairment induced by Alzheimer’s disease [7]. Another report
showed a negative association between moderate consumption of coffee and the risk of
age-related cognitive disorders and Parkinson’s disease [8]. Coffee consumption has been
also linked to potential health benefits as a consequence of their chemopreventive and
anti-inflammatory effects. It has been suggested that the reduction of inflammation under
administration of coffee is attributed to the antioxidative features of certain ingredients
of coffee [9]. Furthermore, current evidence suggests that coffee consumption is associ-
ated with a reduced risk of liver, kidney, and to a lesser extent, premenopausal breast
and colorectal cancers, while it is unrelated to prostate, pancreas, and ovary cancers [10].
Although there are several plausible biologic mechanisms whereby coffee consumption
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might influence the risk of breast cancer, epidemiologic evidence is limited [11]. Meanwhile,
Nkondjock et al. assessed the association between coffee consumption and breast cancer
risk among high-risk women carrying breast cancer susceptibility genes (BRCA) mutations,
and the results suggested that coffee is not only unlikely to be harmful but also high levels
of coffee consumption may be linked to reduced breast cancer risk [12]. Many studies
have demonstrated the relationship between coffee consumption and cancer risk [13–26].
Therefore, in the present review, we summarize the recent advances and knowledge on the
associations of phytochemicals present in coffee as nutraceuticals, particularly focusing on
phenolic compounds in coffee, their intake, and nutritional biomarkers with reduction of
disease risk including inflammation, cancer, and neurological diseases.

2. Chemical Ingredients of Coffee

Coffee is a major dietary source of purine alkaloid caffeine (1,3,7-trimethylxanthine;
1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione), which exerts various effects via the A1 and
A2 adenosine receptor subtypes, effectively stimulating the sympathetic nervous system.
However, caffeine intake also has negative effects although the amount of caffeine in a cup
of coffee is influenced by the method of coffee preparation such as boiled coffee, filtered
coffee, and espresso, and the half-life of caffeine in the human body is approximately
4–6 h [9]. Besides caffeine, coffee is a rich source of various phytochemicals naturally
present as secondary plant metabolites. Coffee is abundant in several phenolic compounds,
among which are chlorogenic acid and caffeic acid, lactones, diterpenes including cafestol
and kahweol, and the niacin (vitamin B3) precursor trigonelline [27,28]. Particularly, green
coffee contains various kinds of phenolic compounds accounting for 6–10% of its dry
weight [5]. Chlorogenic acid, a type of acyl-quinic acid, i.e., a family of 1L-(−)-quinic acid
esters combined with C6−C3 trans-hydroxycinnamic acid, is the major phenolic compound
in coffee [9], which comprises three groups of chemical compounds, namely caffeoylquinic
acids, feruloylquinic acids, and dicaffeoylquinic acids (Figure 1). The main components
of the coffee polyphenols are caffeoylquinic acids. Coffee caffeoylquinic acids comprise
three chemical compound isomers, and the most common form of chlorogenic acid is
5-O-caffeoylquinic acid, which is often called chlorogenic acid [29,30]; chlorogenic acid
(5-O-caffeoylquinic acid; 5-CQA), neo-chlorogenic acid (3-O-caffeoylquinic acid; 3-CQA),
and crypto-chlorogenic acid (4-O-caffeoylquinic acid; 4-CQA) (Figure 1). The chlorogenic
acids found in green coffee beans contain 3-, 4-, and 5-caffeoylquinic acids and 3,4-, 3,5-
and 4,5-caffeoylquinic acids, collectively referred to as total caffeoylquinic acids, and
the composition depends on the type of coffee. They also contain 3-, 4-, and 5-feruloyl
quinic acids and traces of at least one caffeoyl-feruloyl quinic acid, also known as total
feruloyl quinic acids [31,32]. The chemical structures are shown in Figure 1. Among
these chlorogenic acids, 5-CQA is the most abundant in coffee beans, accounting for
approximately 50% of the total chlorogenic acids [33–35]. There are many attempts to
utilize coffee chlorogenic acid for cancer prevention and therapy [36].
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Figure 1. The chemical structure of chlorogenic acids.

3. The Metabolism of Chlorogenic Acids

The biosynthesis of chlorogenic acids in humans is mainly mediated by three key
enzymes, namely phenylalanine ammonia-lyase, shikimic acid/quinic acid hydroxyl cin-
namyl transferase, and quinic acid cinnamate hydroxyltransferase [37]. The first enzyme,
phenylalanine ammonia-lyase, acts as a rate-limiting enzyme of the chlorogenic acid biosyn-
thetic pathway and catalyzes the dissociation reaction of an ammonia molecule from an
L-phenylalanine to produce a trans-cinnamic acid. The second enzyme, quinic acid hy-
droxyl cinnamyl transferase, catalyzes the formation of p-coumaryl-quinic acid/shikimic
acid, while quinic acid cinnamate hydroxyltransferase catalyzes the transesterification of
cafeyl-CoA and quinic acid to generate chlorogenic acid. Dietary chlorogenic acids are
hydrolyzed into quinic and caffeic or ferulic acid, and then further metabolized in the small
intestine and colon before entering the bloodstream [37] (Figure 2). Caffeic acid, e.g., 3,
4-dihydroxycinnamic acid, is converted by the enzyme catechol-O-methyltransferase to
another phenolic acid, ferulic acid. Both compounds may form an ester bond with quinic
acid, and generate any of the many isomers included in the family of chlorogenic acids.
Nonetheless, the most frequent isomer is the 5-O-caffeoylquinic acid that, because of that,
is commonly called chlorogenic acid.
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4. Anti-Inflammatory Activity of Chlorogenic Acids

Reactive oxygen species (ROS) cause oxidative stress that contributes to the patho-
genesis of various diseases, including inflammation, cancer, and neurodegenerative dis-
eases [38,39]. ROS, including radical and non-radical derivatives, such as superoxide anions,
hydroxyl radicals, and hydrogen peroxide, mainly derived from oxidative metabolism
during inflammatory reactions [38], are generated by redox reactions during cellular
metabolism. However, excess production of ROS can cause oxidative damage to essential
molecules such as proteins, lipids, and DNAs [39]. Chlorogenic acids exert their antioxidant
effect via their polyhydroxyl structure that directly scavenges free radicals and regulates
the activity of the endogenous oxidase system and its associated proteins [40,41]. This
natural antioxidant property depends on the chlorogenic acid’s unique molecular structure,
which contains several active hydroxyl groups and one carboxyl group. Of these, the phe-
nolic hydroxyl structure readily reacts with free radicals and forms hydrogen free radicals,
which eliminate hydroxyl radicals and superoxide anions and exhibit a strong antioxidant
effect [37,42]. Thus, under some circumstances, coffee might contribute to the endogenous
systems which prevent oxidative damage to cell components, DNA, proteins, and lipids,
which contribute to the pathogenesis of inflammation, cancer and neurodegenerative dis-
eases [43]. Consequently, the consumption of instant coffee, which contains increased levels
of chlorogenic acids, enables protection against oxidative damage in healthy adults [44].

Chlorogenic acids can eliminate superoxide anions and hydroxyl radicals through
their antioxidant activities, rendering coffee an effective dietary antioxidant source due to
its high chlorogenic acid content [45]. Chlorogenic acids directly act on the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway and control the
expression of both pro- and anti-inflammatory factors [46,47]. Studies have shown that
chlorogenic acids can inhibit interleukin-8 (IL-8) production in human intestinal Caco-2
cells, induced by combined stimulation with tumor necrosis factor-alpha (TNF-α) and
H2O2 [48]. IL-8 is a cytokine similar to platelet factor 4, with a chemoattractive activity.
IL-8 is produced by phagocytes and mesenchymal cells exposed to inflammatory stimuli
and activates neutrophils inducing chemotaxis. These results suggest that dietary chloro-
genic acids might prevent intestinal inflammation [48]. Vascular endothelial cells exhibit
upregulation of adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1)
and vascular cell adhesion molecule 1 (VCAM-1), which enable recruitment of immune
cells, including monocytes, to the inflammation site. ICAM-1 and VCAM-1 are the mem-
bers of the immunoglobulin superfamily of transmembrane adhesion molecules with an
amino-terminus extracellular domain, a single transmembrane domain, and a carboxy-
terminus cytoplasmic domain. VCAM-1 binds to its ligand, very late antigen-4 (VLA-4).
Furthermore, chlorogenic acid attenuates the enhanced expression of ICAM-1 and VCAM-1
induced by interleukin-1β, highlighting its anti-inflammatory activities [49]. The recruit-
ment of neutrophils to the site of inflammation is a typical process during inflammation,
and the interactions of the circulating neutrophils with the vascular endothelial cells is the
initial step of neutrophil recruitment, which is mediated by certain adhesion molecules
expressed on the surface of neutrophils. In this context, an adhesion molecule CD62L,
also called L-selectin, plays a pivotal role in cell–cell interactions. CD62L is a member of
the carbohydrate-binding selectin family of cell adhesion molecules and forms a type-I
transmembrane protein comprising an N-terminal lectin domain, an epidermal growth
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factor (EGF)- like domain, two short consensus repeats, a transmembrane region, and a
short cytoplasmic domain. CD62L is expressed in leukocytes and located at the cell surface,
which plays a pivotal role in multistep cell-cell adhesion interactions. A previous study
reported that chlorogenic acid could attenuate the lipopolysaccharide-induced CD62L pro-
teolytic processing of neutrophils and decrease the adhesion and chemotaxis of neutrophils
to vascular endothelial cells [50]. Platelets are also key mediators of inflammation and
platelet–endothelial cell interactions at the site of lesion trigger inflammatory responses.
Upon platelet activation, the CD62P adhesion molecule, also called P-selectin, translocates
from the Weibel–Palade bodies inside the cell body into the plasma membrane, where
fibrinogen causes platelet aggregation. In addition, chlorogenic acid inhibits the expression
of CD62P in human platelets and impair platelet–leukocyte interactions [51].

5. Anti-Cancer Activity of Chlorogenic Acids

Numerous epidemiological studies have indicated that coffee consumption might
lower the risk of certain types of cancer. For instance, coffee consumption has been found
to strongly and consistently reduce the risk of endometrial and hepatocellular cancer [10],
and a modest or borderline negative association with breast and colorectal cancer has
been reported. Contrastingly, no association was found with pancreatic, ovarian, prostate,
or gastric cancer [10]. The epidemiologic evidence of coffee on each type of cancer is
summarized in the literature [52].

One of the eight distinct hallmarks of cancer involves the acquired capability for
sustaining proliferative signaling [53,54]. The first step of cancer progression toward poorly
differentiated carcinomas is dedifferentiation which is not initially associated with increased
proliferation. A study showed that chlorogenic acids could inhibit the proliferation of A549
human lung cancer cells in vitro by inhibiting activator protein-1, NF-κB, and mitogen-
activated protein kinases (MAP kinases) [55]. NF-κB plays critical roles in inflammation,
cell proliferation, differentiation, and survival. MAP kinases have three main families,
extracellular-signal-regulated kinases (ERKs), jun amino-terminal kinases (JNKs), and
p38/stress-activated protein kinases (SAPKs). These respond primarily to growth factors
and mitogens to induce cell growth and differentiation. This suggests that the consumption
of chlorogenic acids through coffee might prevent cancer [56,57].

In addition, matrix metalloproteinases (MMPs) are essential enzymes employed by tu-
mor cells during metastasis that degrade proteins and regulate various cell behaviors [58,59].
These proteolytic enzymes are prevalent in cancer biology due to their capacity to pro-
mote cancer-cell growth, differentiation, apoptosis, migration, and invasion while they
also regulate tumor angiogenesis and immune surveillance [58]. The MMPs belong to a
family of zinc-dependent endopeptidases with more than 20 different members, and play
pivotal roles in the degradation of the extracellular matrix which is composed of collagens,
fibronectins, and laminins, which help maintain homeostasis. Based on their sub-cellular
distribution and specificity for components of the extracellular matrix, the MMPs are di-
vided into collagenases, gelatinases, stromelysins, matrilysins, and membrane-type matrix
metalloproteases: MMPs that belong to collagenases are MMP-1, MMP-8, MMP-13, and
MMP-18, which degrade triple-helical fibrillar collagen; MMPs that belong to gelatinases
are MMP-2 and MMP-9; stromelysins include MMP-3 and MMP-10; MMP-11, and MMP-
7 and MMP-26 are matrilysins. MMPs are inhibited by endogenous protein regulators,
namely, the tissue inhibitors of MMPs (TIMPs). Most MMPs have consistently increased
gene expression across cancers, and MMP1, MMP9, MMP10, MMP11, and MMP13 are
almost universally upregulated across a wide variety types of cancers [59]. Of all MMPs,
MMP-9 is the most essential for cancer-cell invasion and tumor metastasis [60]. Chlorogenic
acids have been shown to inhibit MMP-9 activity in cultured hepatoma cells, indicating
a possible cancer chemoprevention mechanism [61]. Furthermore, MMP-2, also called
gelatinase A, also plays a significant role in ECM degradation because it can degrade colla-
gen type IV during cancer progression, allowing cancer cells to migrate from the primary
tumor to form metastasis [62]. However, chlorogenic acids have been found to inhibit
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cell migration and MMP-2 secretion of human glioma cells, highlighting their anti-cancer
effects [63].

The signaling pathway comprising phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian
target of rapamycin (mTOR)/phosphatase and tensin homologue deleted on chromosome
ten (PTEN) plays a pivotal role in cancer progression, including cell proliferation and
migratory activities [64]. Particularly, PI3K has been shown to induce the expression of
the multidrug resistance-associated protein, suggesting that high PI3K activity facilitates
drug resistance [64]. Therefore, the PI3K/AKT/mTOR/PTEN axis is an attractive target
for targeted molecular therapy including cancer [65–71]. Moreover, germline mutations in
the breast cancer susceptibility gene 1 (BRCA1) considerably increase the risk of breast and
ovarian cancers and, thus, modulation of PTEN/BRCA1 proteins may prove therapeutically
beneficial for breast, ovarian, and prostate cancer treatment [72]. Chlorogenic acids have a
biological activity to modulate signal transduction through the PI3K/AKT/PTEN pathway,
thereby suppressing cancer progression. Chlorogenic acid potentiated the apoptotic effect
of certain anti-cancer agents via activation of apoptosis-related molecules, namely Bcl-2-
associated X protein (Bax) and Caspase 3/7, and inhibition of anti-apoptotic molecules,
namely B-cell/CLL lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL), by mod-
ulating the PI3K/Akt signaling pathway [73]. Moreover, chlorogenic acid could selectively
suppress the proliferation of human kidney cells by modulating the PI3K/Akt/mTORC
signaling pathway [74].

Wnt signaling is another signaling pathway that plays an important role in cancer-cell
signaling. The Wnt signal is transferred into the cytosol and thereby further transduced to
the cell nucleus via the β-catenin–T-cell factor and lymphoid enhancer factor (TCF/LEF)
complex to enhance the expression of targets, including Myc and leucine-rich repeat-
containing G-protein coupled receptor 5 (LGR5). The Wnt pathway is involved in cell
polarity formation and cell migration, and chlorogenic acid has been found to modulate the
Wnt pathway in cancer cells, including colon cancer cells [75]. More specifically, chlorogenic
acid has been confirmed to decrease the viability and migratory properties of colorectal
cancer cells [76]. As summarized in Table 1, many other reports show that chlorogenic
acid exhibits anti-cancer effects by inhibiting cell viability and migratory abilities [76,77],
invasion with Akt [78], and ERK [79] inhibition. Chlorogenic acid affects apoptosis by
acting on p53, p21, JNK, and nuclear factor erythroid 2-related factor 2 (Nrf2) molecules
and also by regulating microRNA expression [80–84]. Furthermore, the combination of
multiple phytochemicals is recently emerging as a promising cancer treatment therapy [85].
Chlorogenic acid in combination with cinnamaldehyde and arctigenin exhibited synergistic
effects by increasing the number of pathways and systems that can be targeted at once [86].

Table 1. The biological effects of CFGAs and the underlying molecular mechanisms.

Effect Mechanism Cell Reference

Anti-inflammatory effects
Adhesion molecule ICAM-1, VCAM-1 vascular endothelial cells [48]

Chemotaxis CD62L neutrophil [49]
Leukocyte rolling CD62P platelet [50]
Anti-cancer effects

Proliferation hepatoma [56]
Invasion hepatoma [57]

MMP activity MMP-9 hepatoma [61]
MMP activity MMP-2 glioma [63]
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Table 1. Cont.

Effect Mechanism Cell Reference

Proliferation PI3K/Akt/mTORC hepatocellular carcinoma [73]
Apoptosis PI3K/Akt/mTORC kidney cancer [74]
Signaling Wnt/β-catenin colon cancer [75]

Viability, migration colorectal cancer [76]
Migration DDR1 ovarian cancer [77]
Invasion Akt squamous cell carcinoma [78]
Invasion ERK, MMP-2/9 hepatic cancer [79]

Apoptosis p53 breast cancer [80]
Apoptosis p21 breast cancer [81]
Apoptosis JNK lung cancer [82]
Apoptosis Nrf2 hepatocellular carcinoma [83]

Carcinogenesis mi-21a-5p colon cancer [84]
Neuroprotective effects

Glutamine release c-Src microglia [87]
Glutamine release neuron [88]

Cell viability neuron [89,90]
Neurodegeneration amyloid-β neuron [91]

Brain aging suppression CREB microglia [92]

6. Chlorogenic Acid and Neurological Diseases

Chlorogenic acid increases the levels of cyclic adenosine monophosphate (cAMP)-
responsive element binding protein (CREB) in the hippocampus and suppresses inflamma-
tion in the old brain, facilitating a preventive effect against brain aging [92]. Alzheimer’s
disease is the most common progressive neurodegenerative disorder associated with aging.
The pathology of this disease is characterized by an earlier accumulation of extracellular
amyloid-beta plaques and intracellular neurofibrillary tangles in the hippocampus, even-
tually leading to severe neurodegeneration, and cognitive and synaptic impairment over
time [7]. Additionally, hyperphosphorylation of tau, neuronal inflammation, oxidative
stress, and cellular apoptosis can contribute to the pathogenesis of Alzheimer’s disease [7].
Studies have shown that oxidative stress represents a major risk factor associated with
the pathology of dementia [70]. More specifically, substantial evidence has confirmed that
oxidative stress is associated with neuronal apoptosis and brain dysfunction in Alzheimer’s
disease [70]. Due to the absence of actual treatments, brain dysfunction in Alzheimer’s
disease is a prevalent public health anxiety. Therefore, a number of preventive factors have
been proposed by epidemiological research, including modifiable lifestyle factors, such as
healthy dietary habits. In fact, it has been revealed that dietary choices can play a certain
role in neuroprotection against the Alzheimer’s disease [93]. However, the relationship
between nutrient consumption and neuroprotection is fairly complex. In addition, the
convolution of the human diet makes it difficult to examine its distinct effects. Although
many lifestyle factors affect brain function, food-related involvements might be a promising
strategy in preventing brain dysfunction [93]. Consumption of Arabian coffee containing
moderate caffeine seems to ameliorate Alzheimer’s disease-induced cognitive impairment
by decreasing amyloid-beta levels [7]. It is also believed that antioxidant nutraceuticals such
as coffee phenolic compounds may have beneficial effects in the prevention of Alzheimer’s
disease [94].

Parkinson’s disease is a brain disorder that is characterized by neuropsychiatric symp-
toms such as depression and anxiety preceding the onset of motor symptoms [95]. The
major features of this disease include loss of dopaminergic neurons in the substantia
nigra and Lewy body depositions [95]. It has been suggested that mitochondrial dys-
function, oxidative stress, and oxidative damage underlie the pathogenesis of Parkinson’s
disease [95]. The activity of substantia nigra dopaminergic neurons is critical for striatal
synaptic plasticity and associative learning, and degeneration of dopaminergic neurons
leads to a disinhibition of the subthalamic nucleus, which in turn increases excitatory
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projections to the substantia nigra [95]. Environmental exposures to toxic mediators such
as ROS may lead to the development of neurodegenerative disorders with similar clinical
findings to Parkinson’s disease [95]. Consequently, it is critical to develop strategies to
ensure that healthy neurons remain alive following ROS attack without using intricate
medications [95]. Epidemiological studies have demonstrated that coffee consumption
reduces the risk of Parkinson’s disease, in both case–control and cohort studies, yielding a
33% reduction in risk [96].

7. Membrane-Modulating Activity of Chlorogenic Acids

Recently, phenolic compounds have been found to exert modulatory effects in cells
through selective action on multiple cell-signaling pathways involved in pathogenesis of
degenerative diseases, indicating that the health effects go beyond simple antioxidant activ-
ity [43]. The cell membrane of human cells is a mixture of proteins and lipids and forms the
boundary between the intracellular compartment and cellular space. With regards to the
biological action of chlorogenic acid, current literature demonstrates that chlorogenic acid
can alter the biological characteristics of basophil granulocytes by affecting the fluidity of
the cell membrane and triggering pseudoallergic reactions [97]. In that study, the authors
proposed a mechanism where chlorogenic acid may lead to the aggregation of membrane
rafts on the cell membrane surface by altering the fluidity of the cell membrane, thus trig-
gering Syk-related signal transduction and inducing a truncated type I such as an allergic
reaction [97]. Another study showed that chlorogenic acid becomes localized mainly in the
outer part of the cell membrane, does not induce hemolysis or change the osmotic resistance
of erythrocytes, and induces the formation of echinocytes [98]. The values of generalized po-
larization and fluorescence anisotropy indicate that chlorogenic acid alters the hydrophilic
region of the membrane, practically without changing fluidity in the hydrophobic region.
The assay of electric parameters showed that chlorogenic acid reduces both the capacity
and resistivity of black lipid membranes (BLMs). The overall result is that chlorogenic acid
takes position mainly in the hydrophilic region of the membrane, modifying its properties.
Such localization allows acids to reduce the concentration of free radicals in the immediate
vicinity of the cell and hinder their diffusion into the membrane interior [98]. In addition,
caffeic acid displays superficial interactions with cell membrane lipids that can be highly
relevant to their biological action [99]. Frias and colleagues reported that chlorogenic acid
is a strong phenolic antioxidant with antibacterial properties composed of a caffeoyl ester
of quinic acid; however, details on its membrane action and the exact manner with which
the composition and membrane state may affect this action, are yet to be fully explored [99].
In their recent study, the interaction of chlorogenic acid with lipid monolayers and bilayers
composed by 1,2-di-istoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-di-O-tetradecyl-sn-
glycero-3-phosphocholine (14:0 diether PC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC), and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (16:0 diether PC) were inves-
tigated at different surface pressures using Fourier transform infrared spectroscopy (FT-IR)
measurements [99]. The authors found that the kinetics of interaction was more rapid in
DMPC than in the absence of carbonyl groups.

The newly emerging field of membrane lipid therapy involves the pharmacological
regulation of membrane lipid composition and structure for the treatment of diseases [100].
Membrane lipid therapy proposes the use of new molecules specifically designed to modify
membrane lipid structures and microdomains as pharmaceutical disease-modifying agents
by reversing the malfunction or altering the expression of disease-specific protein or lipid
signal cascades [100]. As summarized in a semantic review article, the influence of lipids
on protein function is reflected in the possibility to use these molecular species as targets
for therapies against many diseases and disorders, including inflammation, cancer, and
neurodegenerative disorders.
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8. Conclusions and Future Perspective

As described above, coffee exhibits a variety of positive effects on the immune system
by regulating inflammation exhibiting anti-cancer effects and inhibiting the progression of
several pathologies of neurodegenerative diseases. In particular, phenolic compounds rich
in coffee are considered the main substances that exhibit these effects. Particularly, daily
dietary consumption of chlorogenic acids through drinking a cup of coffee has already
demonstrated its great potential. Consequently, now that we have harnessed the fragmental
evidence of coffee’s beneficial effects in the present review, it is extremely important to
establish the deeper knowledge that accounts for the molecular mechanism underlying
the beneficial effects of coffee. As a source of anti-inflammatory, anti-cancer and anti-
neurodegenerative agents, a cup of coffee holds great promise as a kind of nutraceutical
in the pursuit of a healthy human life. Functional foods and their bioactive ingredients
are at the interface between nutrition and pharma, and will open the door to seeking new
therapeutic intervention for the prevention of diseases [101,102].
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