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Abstract: The rational design of morphology and structure for oxygen reduction reaction (ORR) cata-
lysts still remains a critical challenge. Herein, we successfully construct defect-rich and hierarchically
porous Fe-N-C nanosheets (Fe-N-CNSs), by taking advantage of metal-organic complexation and
a mesoporous template. Benefiting from the advantages of high density of active sites, fast mass
transfer channels, and sufficient reaction area, the optimal Fe-N-CNSs demonstrate satisfactory ORR
activity with an excellent half-wave potential of up to 0.87 V, desirable durability, and robust methanol
tolerance. Noteworthy, the Fe-N-CNSs based zinc–air battery shows significant performance with a
peak power density of 128.20 mW cm−2 and open circuit voltage of 1.53 V, which reveals that the
Fe-N-CNSs catalysts present promising practical application prospects. Therefore, we believe that
this research will provide guidance for the optimization of Fe-N-C materials.

Keywords: electrocatalytic; Fe-N-C materials; oxygen reduction reaction; two-dimensional materials

1. Introduction

Increasing demand for energy and the massive consumption of non-renewable energy
sources have prompted us to explore new types of energy storage devices [1–3]. With
excellent theoretical energy density (1086 Wh kg−1), affordability, and environmental
friendliness, zinc–air batteries (ZABs) have been considered as among the most potential
candidates to cope with the energy requirements. The electrochemical performances of
ZABs are primarily dependent on the efficiency of oxygen reduction reaction (ORR) [4–7].
Nevertheless, the sluggish kinetic of ORR suffering from a multiple electron transfer causes
a confined output power and energy storage efficiency of ZABs. It is, therefore, essential
to create an effective ORR catalyst to promote its slow kinetics, reduce the overpotential,
and improve energy storage efficiency the of ZABs. The most effective ORR catalysts
have been traditionally regarded as Pt-based ones due to a low binding energy with
oxygen [8,9]. The prohibitive cost and inferior stability, however, prevent its large-scale
application in air cathodes [10]. Therefore, designing and exploring cost-effective, efficient,
and durable ORR catalysts is highly vital. Metal-nitrogen-carbon (M-N-C, M = Fe, Co,
Ni, Cu, etc.) catalysts were already extensively studied as ORR catalysts [11–14]. The
transition metals with unfilled d orbitals can bind better to oxygen intermediates and
thus exhibit excellent ORR native positive activity [15–18]. In particular, Fe-N-C with
the encouraging ORR activity and excellent catalytic durability has been deemed as the
most prospective replacement for Pt-based electrocatalysts [19–23]. Among all 3d-transition
metal elements, Fe shows the closest-to-optimum OH* binding energy. After O2 is adsorbed
to the centre of the Fe atom, the electrons in its 2π orbital are transferred to the hole
dz

2 orbital of Fe and the partially filled dxy or dxz is back-bonded to the 2π* orbital of
oxygen [24–30]. However, the micromorphology and nanostructure of numerous reported
Fe-N-C materials are inhomogeneous, which leads the catalytic site to be challenging to
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expose to reduction of catalytic activity [31–33]. To address this issue, the reasonable
design of the micromorphology and nanostructure of Fe-N-C materials is fundamental for
constructing highly efficient Fe-N-C catalysts [23,34–37].

Two-dimensional (2D) materials were intensively explored as ORR catalysts because
of large specific surface area, unique physicochemical properties as well as thin thickness,
which can provide rapid mass transfer channels, an abundance of active sites, and sufficient
reaction area [38–41]. Typically, 2D materials are synthesized by top-down or bottom-
up methods, including chemical vapor deposition (CVD), physical/chemical exfoliation,
and wet chemical synthesis [42–45]. The simple and green template strategy has been
widely applied in the fabrication of 2D materials because of its ability to construct specific
morphologies and hierarchical porous structures [46,47]. In addition, the construction of
2D materials with a defect-rich and hierarchical porous structures is highly desirable and
challenging for improving ORR performance [48,49]. For instance, the group of Wang
prepared Fe-N-C nanosheets using layered montmorillonite (MMT) as a template with
a half-wave potential (E1/2) of 0.87 V [50]. The corresponding ZAB, assembled with
the obtained material as a catalyst, exhibited a peak power density of 92.5 mW cm−2.
Nevertheless, MMT cannot provide abundant micro/mesopores or defects to further
enhance ORR performance.

Inspired by the above analysis, herein, we successfully synthesized Fe-N-C nanosheets
(Fe-N-CNSs), by employing metal-organic complexation and a mesoporous magnesium
carbonate base (MCB) template. The obtained Fe-N-CNSs catalysts featured a defect-rich,
hierarchically porous, and high specific surface area (1303.43 m2 g−1), which can provide
an abundance of active sites, mass transfer channels, as well as sufficient reaction area.
The Fe-N-CNSs catalysts exhibited excellent ORR performance (E1/2 = 0.87 V), surpassing
commercial 20% Pt/C (E1/2 = 0.85 V). In addition, the ZABs were assembled with Fe-
N-CNSs as the catalysts for the air cathode, which demonstrated superior performance
compared to Pt/C, reflecting the promising potential of Fe-N-CNSs in practical applications.
The strategy that was developed in this work provides a universal approach to optimize
Fe-N-C catalysts.

2. Results and Discussion

Scheme 1 depicts the construction path of Fe-N-CNSs. Owing to the cheating ability,
ethylene diamine tetra acetic acid (EDTA) can form complexes with Fe3+. Basic magnesium
carbonate (MCB) is decomposed into MgO, CO2, and H2O in a high temperature pyrolysis
process. The generated MgO is used as a mesoporous template that can induce the poly-
merization of small molecules on its surface, while CO2 and H2O escaping from the carbon
substrate can create abundant micropores and produce exfoliation, which promotes the
construction of sheet-like structures [51,52]. The scanning electron microscopy (SEM) anal-
ysis was performed on the samples that were acquired to examine their micromorphology.
The pyrolysis temperature can significantly affect the structure and micromorphology of
carbon-based products. Hence, we investigate how the pyrolysis temperatures affect the mi-
cromorphology of the materials. When the pyrolysis temperature is 800 ◦C, Fe-N-CNSs-800
is mainly composed of carbon fragments and carbon blocks, showing an irregular curled
sheet morphology, as shown in Figure S1, which might be due to insufficient activation.
As a result, the substance becomes less porous and has fewer mass transfer pathways.
Noteworthy, as shown in Figures 1a and S2AFigure ??a and Figure S2, Fe-N-CNSs-900
shows a cross-linked network consisting of 2D porous nanosheets. The large surface area
of materials provided by the 2D nanosheet structure makes it simpler to reveal active
sites, while the hierarchically porous structure offers a high density of active sites and a
significant number of rapid mass transfer pathways. As a result, we anticipate that the
produced 2D hierarchically porous Fe-N-C nanosheets will function satisfactorily in ORR.
Nevertheless, for Fe-N-CNSs-1000, as shown in Figure S3, the disruption of the sheet-like
structures results in fewer catalytic sites. According to the aforementioned findings, one
of the crucial elements in the production of a hierarchically porous nanosheet structure
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is a proper pyrolysis temperature. With regard to Fe-N-CNSs, a hierarchically porous
nanosheet structure is best when the pyrolysis temperature is 900 ◦C. In addition, we
look at the morphology of a sample of Fe-N-C-900 to reveal how MCB affects material
morphology. It presents a distinctly larger bulk structure, as shown in Figure S4, without
lamellar structures or pores being found. The above results indicate that the introduction
of MCB can generate 2D porous nanosheet structures, which reflects the dual efficacy of
MCB as a template and an activator.
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Subsequently, the microscopic morphology of Fe-N-CNSs was explored by transmis-
sion electron microscopy (TEM). The Fe-N-CNSs shows a thin sheet-like morphology and
the presence of many mesopores on the surface, as shown in Figures 1b and S7, without
Fe-associated nanoparticles or nanoclusters, which provides a high surface area and fast
mass transfer channels. Figure 1c illustrates the existence of lattice distortion defects in
graphitic carbon in the high-resolution transmission electron microscopy (HRTEM) image
of Fe-N-CNS, which proves that the heteroatoms are doped into the carbon substrate [53].
In addition, lattice stripes with a lattice spacing of 0.34 nm, which corresponds to the (002)
crystal plane of graphitic carbon, are found in the HRTEM images. Further analysis of
Fe-N-CNSs was carried out using HADDF-STEM and EDS mapping in conjunction with
TEM. As shown in Figure 1d, the high angle angular dark field-scanning transmission elec-
tron microscopy (HADDF-STEM) picture clearly shows the existence of pores and hollow
structures, which serves as further proof that porous structures were successfully prepared.
The results associated element mapping and confirmed that Fe, N, and C elements are all
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uniformly dispersed in Fe-N-CNSs, proving that Fe and N have been effectively doped into
the carbon skeleton. Additionally, the creation of Fe-Nx sites is supported by the substantial
overlap between the dispersion of the Fe and N elements.

X-ray diffraction (XRD) was used to evaluate the catalysts in order to better identify
their crystalline structure. As shown in Figure 2a, several catalysts exhibit characteristic
peaks of the (002) and (101) planes of carbon at 23◦ and 44◦, which corresponds to the
classical carbon structure [54]. Meanwhile, the absence of characteristic peaks of Fe and
its compounds further confirms the inexistence of highly crystalline Fe-containing species
in Fe-N-CNSs catalysts. As a result, we can assume that Fe-Nx may make up the majority
of the Fe element in Fe-N-CNSs. By using X-ray photoelectron spectroscopy (XPS), the
chemical makeup of the catalyst surface was examined. As shown in Figure 2b, XPS
surveys show obvious signals of C, N, and O elements; nevertheless, the signal of the Fe
element is undetected, which might be attributed to the low content of elemental Fe, and
the findings are aggregated in Table 1. As shown in Figures S8–S10, the C 1s XPS spectra are
deconvoluted into five peaks, which are indexed to C-C (284.5 eV, sp2 hybridized carbon),
C-C (285.2 eV sp3 disordered carbon), C-N (286.0 eV), C-O (286.5 eV), and C=O (287.1 eV),
accordingly [55]. The presence of the C-N peak demonstrates that the N atom has been
successfully doped into the carbon skeleton. In addition, the ratio of C-C (sp2) and C-C (sp3)
(sp2/sp3) reflects the degree of defects in the carbon-based material. The Fe-N-CNSs shows
a sp2/sp3 of 0.99, lower than the N-CNSs (1.11) and Fe-N-C (1.08), indicating that Fe-N-
CNSs catalyst is rich in defects. The Fe 2p XPS spectrum of Fe-N-CNSs presents two groups
of peaks for Fe2+ (711.3 and 724.5 eV) and Fe3+ (716.0 and 729.1 eV), and no obvious Fe0

appeared, as shown in Figure S11, further proving that no Fe or its compounds are formed.
As shown in Figure 2c, to further determine the existing configuration of the N element, the
N 1s spectra are deconvoluted into five peaks and the findings are aggregated in Table 2.
The N 1s spectra of the catalysts exhibit five peaks at about 398.3, 399.2, 400.3, 401.3 and
402.7 eV that, respectively, correspond to pyridinic N, Fe-N, pyrrolic N, graphitic N, and
oxidized N [56]. As there is a Fe-N peak, Fe-Nx sites have probably been formed, and
Fe-Nx sites are the most dominant sites for Fe-N-C catalysts [57]. Additionally, the pyridine
N content in Fe-N-CNSs reaches up to 41.31%. In addition to the electrons provided to
the conjugated π-bond, pyridine N also contains a pair of lone electrons that facilitate the
adsorption of O2, thereby increasing the onset potential [58,59]. The inductively coupled
plasma optical emission spectrometry (ICP-OES) results show that Fe-N-CNSs presents a
higher Fe content of 0.24% compared to Fe-N-C (0.07%).

Table 1. Elemental composition of the catalysts measured by XPS.

Sample C Content
(at %)

N Content
(at %)

O Content
(at %)

Fe Content
(at %)

N-CNSs 87.53 3.21 9.26 0
Fe-N-CNSs 88.8 3.79 7.2 0.21

Fe-N-C 90.15 2.29 7.51 0.05

Table 2. The relative contents of various N existing forms were measured by XPS.

Sample Pyridinic N
(at %)

Fe-N
(at %)

Pyrrolic N
(at %)

Graphitic N
(at %)

Oxidized N
(at %)

N-CNSs 46.01 0 34.65 12.44 6.90
Fe-N-CNSs 41.34 9.17 28.12 11.87 9.50

Fe-N-C 27.36 6.06 11.64 35.36 11.58
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Subsequently, the extent of defects in the carbon structure of the catalyst was investi-
gated by Raman spectroscopy. As shown in Figure 2d and Figure S12, the D and G bands at
1341 cm−1 and 1590 cm−1, which stand for lattice defects and carbon atom graphitization,
accordingly, are clearly visible in the Raman spectra. For the Raman spectrum, the ratio
of the D peak and G peak intensity (ID/IG) can reflect some extent the level of disorder or
defects in the structure of carbon-based materials [60]. The Fe-N-CNSs exhibits an ID/IG of
1.04, higher than the N-CNSs (0.96) and Fe-N-C (0.98), indicating that the introduction of
a templating agent increases the defect degree of the material, and these abundant defect
sites may create more catalytic sites, thereby enhancing the catalytic efficiency.

Via a series of SEM and TEM characterizations, the macro- and mesoporous structure
of materials can be directly viewed; nonetheless, the smaller pore size micro-pores cannot
be seen. Therefore, the pore structure of the obtained materials was further characterized
by N2 adsorption and desorption measurements with the outcomes noted in Table 3.
All catalysts present an IV isotherm with a distinct hysteresis loop, which confirm the
existence of abundant mesopores, as shown in Figure 2e and Figure S13. The Fe-N-CNSs-
900 presents the highest surface area (1303.43 m2 g−1) among all the constructed materials,
and this value significantly outperforms Fe-N-C (421.15 m2 g−1). The Fe-N-CNSs displays
such a large surface area due to its rich porosity and distinctive 2D nanosheet structure.
As shown in Figure 2f and Figure S14, from the pore size distribution curve, the Fe-N-
CNSs demonstrates more abundant mesopores and micropores than Fe-N-C. These results
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indicate that MCB as a template agent and activation agent can produce a unique 2D
nanosheet morphology, abundance of micro/mesopores, and ultrahigh specific surface
area. The numerous micropores deliver more abundant active sites, while mesopores
facilitate the transport of reaction intermediates. The high specific surface area provides
sufficient reaction area and exposes more active surface sites.

Table 3. BET surface area and BJH pore volume for Fe-N-CNSs-x (x = 800, 900 and 1000), N-CNSs
and Fe-N-C.

Sample BET
Surface Area (m2 g−1)

BJH
Pore Volume (cm3 g−1)

Fe-N-CNSs-800 801.78 0.69
Fe-N-CNSs-900 1303.43 1.76
Fe-N-CNSs-1000 1178.32 1.69

N-CNSs 985.16 1.34
Fe-N-C 421.15 0.57

The synthesized Fe-N-CNSs materials are expected to be excellent ORR catalysts due
to a defect-rich, hierarchical porous, and ultrahigh surface area. Using cyclic voltammetry
(CV), the Fe-N-CNSs is first investigated. As shown in Figure 3a, an obvious oxygen
reduction peak is observed at approximately 0.8 V (vs. RHE) in the O2 saturated electrolyte,
while it is not observed in the saturated N2 electrolyte, demonstrating that Fe-N-CNSs
exhibits positive activity toward ORR in O2 saturated electrolytes. The ORR activity of these
materials was further characterized by linear scanning voltammetry (LSV). As shown in
Figure 3b,c, the target catalyst, Fe-N-CNSs, exhibits the highest ORR activity, including an
excellent E1/2 (0.87 V) and kinetic current density at 0.8 V (jk@0.8 V = 27.66 mA cm−2). The
ORR activity of Fe-N-CNSs is not only better than that of the Fe-N-C catalyst but better than
that of the Pt/C catalyst (E1/2 = 0.85 V, jk@0.8 V = 20.61 mA cm−2) and many reported Fe-N-
C catalysts (Table S1). The carbonation temperature can affect the catalytic performance of
carbon-based materials to some extent, so we perform a comparative analysis for the ORR
performance of the samples at different temperatures. The E1/2 of the three catalysts reach
0.83, 0.87 and 0.84 V, respectively, and the Fe-N-CNSs-900 catalysts present the highest E1/2,
as shown in Figure S15. Additionally, the amount of Fe (NO3)3·9H2O added is investigated
to obtain better experimental conditions, as shown in Figure S16, and the highest ORR
performance is observed for Fe-N-CNSs-30. The LSV curves are recorded at different
rotational speeds, as shown in Figure 3d. The Koutecky–Levich (K–L) plots present several
fitted lines with almost identical slopes. The half-wave potential steadily declines while
the limiting current density gradually rises as the speed grows, representing the kinetics
of vortex diffusion during ORR. Depending on the slope, in the range of 0.3, 0.4, 0.5 and
0.6 V, the average number of electrons transferred (n) for Fe-N-CNSs are calculated to be
about 3.94, which reveals that Fe-N-CNSs obeys the first-order kinetics and approximately
a 4e- pathway. Electrochemical impedance spectroscopy (EIS) was performed to further
analyze the kinetics of the ORR process in the material. As shown in Figure S17, Fe-N-CNSs
exhibits smaller semicircle diameters than Pt/C in the low frequency range, which indicates
that Fe-N-CNSs has faster transfer kinetics at the electrode/electrolyte interface due to its
high density of active sites. Furthermore, in the high frequency range, the Fe-N-CNSs has
steeper tilt lines, demonstrating that Fe-N-CNSs has a better diffusion rate at the reaction
interface due to its hierarchically porous nanosheet structure.
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Figure 3. (a) CV curves of Fe-N-CNSs in O2/N2 saturated electrolyte. (b) LSV curves of the synthe-
sized materials and Pt/C. (c) E1/2 together with jk@0.8 V towards these materials. (d) LSV curves of
Fe-N-CNSs at different rotational speeds and the K-L plots. (e) Methanol tolerance and (f) i-t curves
of Fe-N-CNSs and Pt/C.

An excellent ORR catalyst requires not only excellent ORR activity but robust methanol
tolerance and remarkable stability. The durability and methanol resistance of Fe-N-CNSs
catalysts are examined by chronoamperometric i-t measurements. As a comparison, we
also test commercial 20% Pt/C using the same method. As shown in Figure 3e, after 400 s of
3 mL methanol addition to the electrolyte, the relative current of the commercial 20% Pt/C
catalysts show a significant drop, while the Fe-N-CNSs catalysts remain almost unchanged.
The result indicates the Fe-N-CNSs exhibits a strong methanol tolerance. Moreover, the
Fe-N-CNSs catalysts still show 90% current retention after 12,000 s of cycling, as shown
in Figure 3f, indicating that the Fe-N-CNSs catalysts are highly stable. The catalysts
display exceptional ORR performance, owing to the advantages of abundant catalytic sites,
sufficient reaction area and fast mass transfer channels. To investigate the catalytic sites
of the Fe-N-CNSs, KSCN is added to poison the Fe-Nx sites during ORR as SCN- has a
strong affinity for Fe3+. As shown in Figure S18, the ORR performance drops obviously
after adding of KSCN, indicating that Fe-Nx is the most critical catalytic site for Fe-N-CNSs.
Notably, the half-wave potential still remains at a high level after the addition of KSCN,
indicating that the C-N sites also contribute to increased catalytic activity. Combined with
the analysis of the XPS data, the following conclusions are drawn: Fe-Nx and pyridinic N
contribute more to ORR, and the higher their content, the better the ORR activity.

Considering the splendid ORR performance, we assemble a Fe-N-CNSs-based zinc–air
battery (ZAB), as shown in Figure 4a, to further explore its practical application prospects.
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As shown in Figure 4b, the open circuit voltage (OCV) of the assembled ZAB is tested
separately by the open circuit potential time measurement (OCPT) and an electronic
multimeter. The Fe-N-CNSs-based ZAB can sustain a high OCV of 1.53 V, which out-
performs commercial 20% Pt/C-based ZABs (1.44 V). Using the assembled Fe-N-CNSs-
based ZAB as a power source, an LED bulb (1.2 V) with the word “XJU” can be lit, as
shown in Figure 4c, which further confirms that the Fe-N-CNSs materials present an excel-
lent prospect of practical application. The Fe-N-CNSs-based ZAB exhibits a peak power
density of 128.20 mW cm−2, as shown in Figure 4d, which exceeds the Pt/C-based ZAB
(101.80 mW cm−2) and outperforms most of the reported ZABs assembled from Fe-N-C
materials (Table S2). The discharge voltage of Fe-N-CNSs-based ZAB remains stable at
all current densities (5–50 mA cm−2) and still maintains 1.10 V, as shown in Figure 4e,
which outperforms the Pt/C-based ZAB. The above results reveal that Fe-N-CNSs-based
ZAB exhibits a better capacity and multiplicative performance. Furthermore, the specific
capacity of the Fe-N-CNSs-based ZAB reaches a high energy density of 746.37 mA h gZn

−1,
which compares favorably with the Pt/C-based ZAB (713.35 mA h gZn

−1), as shown in
Figure 4f.
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Figure 4. (a) Schematic diagram of ZAB. (b) OCV of two ZABs. (c) The photograph of the LED panel
powered by the Fe-N-CNSs-based ZAB. (d) Discharging LSV and power density curves, (e) discharge
curves of two materials from 5 to 50 mA cm−2, and (f) the specific capacity of two ZABs.
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3. Materials and Methods
3.1. Materials

Magnesium carbonate basic (MCB), ethanol, Fe (NO3)3·9H2O, ethylene diamine tetra
acetic acid (EDTA), commercial 20% Pt/C, concentrated hydrochloric acid (HCl), 0.5 wt%
Nafion, concentrated hydrochloric acid (HCl) and methanol were all purchased from Alfa
Aesar and Aladdin chemical reagent company. All of the compounds were utilized directly
after delivery without additional purification and are of analytical grade.

3.2. Catalyst Preparation

First, 0.5 g of MCB was added to 40 mL of absolute ethanol and ultrasonically dispersed
for 0.5 h. Then, 0.8 g EDTA and 30 mg Fe (NO3)3·9H2O were added and stirring was
continued for 5 h. Subsequently, the above mixture was dried in an oven at 60 ◦C to remove
ethanol, and the resulting pale–yellow solid was ground into a homogeneous powder.
Finally, the precursor was pyrolyzed in a tube furnace under N2 atmosphere at 900 ◦C
for 2 h at a heating rate of 5 ◦C min−1. The resulting black solid was added to 60 mL of
2 M HCl solution and stirred for 12 h. The prepared material was washed three times by
centrifugation with deionized water and absolute ethanol, respectively, and then dried in a
vacuum oven overnight. The prepared samples were labeled as Fe-N-CNSs (also called
Fe-N-CNSs-900 and Fe-N-CNSs-30). For comparison, the precursors were also pyrolyzed
at 800 ◦C and 1000 ◦C, and the prepared carbon materials were labeled as Fe-N-CNSs-x
(x = 800 and 1000). The addition of the Fe source was adjusted, and the resulting materials
were labelled Fe-N-CNSs-m (m = 15, 30, 60). In addition, the precursors without Fe
(NO3)3·9H2O or MCB were pyrolyzed at 900 ◦C, and the prepared materials were labeled
as N-CNSs or Fe-N-C.

3.3. Physical Characterizations

The micromorphology of the materials was observed by SEM (SU-4800, Hitachi, Japan)
and TEM (JEM-2100F, JEOL, Japan). The crystal structure of the materials was analyzed by
XRD (Bruker D8, using filtered Cu Kα radiation). The degree of defects in the materials was
analyzed by a Raman spectrometer (Vertrex 70, Bruker, Germany) with a laser excitation
wavelength of 532 nm. The exact content of elemental Fe in the material was obtained
by ICP-OES (Optima 8000, PerkinElmer, USA). N2 adsorption/desorption tests were con-
ducted at 77 K by a gas adsorption analyzer (ASAP 2020, Micromeritics, USA). The specific
surface area and pore size of the samples were calculated by Brunauere–Emmette–Teller
(BET) and Barrett–Joyner–Halenda (BJH) models, respectively. The chemical composition
of the catalyst was analyzed by XPS (ESCALAB 250, Thermo Scientific, USA).

3.4. Electrochemical Measurements

In a standard three-electrode setup, electrochemical experiments were carried out at
room temperature. The electrochemical workstation is CHI 760E. The 0.1 M KOH solution
saturated with O2/N2 serves as the electrolyte. The working electrode, counter electrode,
and reference electrode that we employed were a spinning disk ring electrode, a platinum
wire electrode, and a saturated calomel electrode, respectively. The working electrode was
polished with Al2O3 polishing powders with diameters of 1 µm and 50 nm, respectively. To
create a well-dispersed ink, 2.5 mg of catalyst and 20 µL of 0.5 wt% Nafion were dispersed
in 480 µL of ethanol. Sonication was then applied for 30 min. A loading of 254.78 µg cm−2

was achieved by adding 10 µL of catalyst ink dropwise to the working electrode and drying
it at room temperature. Comparatively, the working electrode was loaded with commercial
20% Pt/C, which was applied dropwise. The potentials mentioned in this work are relative
to the reversible hydrogen electrode (RHE). Using a scan rate of 50 mV s−1, the CV curves
of catalysts were examined in N2 or O2 saturated 0.1 M KOH solution. In an O2 saturated
0.1 M KOH solution, the LSV curves of the catalysts were examined at different rotational
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speeds of 400, 625, 900, 1225, 1600 and 2025 rpm with a scan rate of 10 mV s−1. The number
of transferred electrons (n) can be calculated by the Koutecky–Levich (K–L) formula:

1
j
=

1
jk
+

1
jl
=

1
jk
+

1
Bω1/2

B = 0.2nFC0D2/3
0 υ−1/6

In the formula, j is the measured current density, jl is the limiting current density,
jk is the kinetic current density, and the calculation formula is jk = (jl × j)/(jl − j). ω
is the rotation rate of the rotating disk electrode (RDE). B is determined by the slope
of the K–L equation, n is the number of transferred electrons, F is the Faraday constant
(96,485 C mol−1), C0 is the volume concentration of O2 (1.2 × 10−6 mol cm−3), D0 is the O2
at 0.1 M of the diffusion coefficient in KOH (1.9 × 10−5 cm2 s−1), υ is the dynamic viscosity
(0.01 cm2 s−1). A constant of 0.2 is adopted when the rotation rate is expressed in rpm.

Electrochemical impedance spectroscopy (EIS) was performed in 0.1 M KOH by
applying an AC voltage with 5 mV amplitude in frequencies ranging from 0.01 Hz to
100 kHz. The specific data can be fitted by Zview software.

3.5. Zn-Air Battery Test

The performance characterization of all ZABs were performed on an electrochemical
workstation (CHI 760E). The zinc–air batteries used 6 M KOH as the electrolyte, zinc foil as
the negative electrode and carbon fiber paper (3 mg cm−2) coated with catalyst ink as the
positive electrode. Following this, 3 mg of Fe-N-CNSs and 0.3 mg of acetylene black were
dispersed in 480 µL of ethanol and 20 µL of 5% Nafion solution, followed by sonication
for 30 min to obtain a well-dispersed ink. For comparison, a Pt/C-based air cathode was
prepared using the same method.

4. Conclusions

In summary, we successfully fabricated Fe-N-C nanosheets (Fe-N-CNSs) by a simple,
versatile, and green template synthesis strategy. The optimal Fe-N-CNSs catalysts present
the large surface area, hierarchical porous and defect-rich structure, which provides suffi-
cient reaction area, mass transfer channels, as well as abundance of active sites, accelerating
kinetic ORR activity on Fe-N-CNSs, along with a significant E1/2 of up to 0.87 V and strong
stability (superior to Pt/C). Meanwhile, the Fe-N-CNSs-based ZAB also exhibits superior
performance with a peak power density of 128.20 mW cm−2 and open circuit voltage of
1.53 V, indicating the Fe-N-CNSs catalysts present a prospective application in practice. In
addition, our work provides a novel strategy for further optimizing and improving the
catalytic performance of Fe-N-C materials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28072879/s1. Figure S1: SEM images of Fe-
N-CNSs-800; Figure S2. SEM image of Fe-N-CNSs-900; Figure S3. SEM images of Fe-N-CNSs-1000;
Figure S4. SEM images of Fe-N-C-900; Figure S5. SEM images of Fe-N-CNSs-15; Figure S6. SEM
images of Fe-N-CNSs-60; Figure S7. TEM images of Fe-N-CNSs; Figure S8. High-resolution C 1s
spectrum of N-CNSs; Figure S9. High-resolution C 1s spectrum of Fe-N-CNSs; Figure S10. High-
resolution C 1s spectrum of Fe-N-C; Figure S11. High-resolution Fe 2p spectrum of Fe-N-CNSs; Figure
S12. Raman spectra of the synthesized materials; Figure S13. N2 adsorption-desorption isotherms
of Fe-N-CNSs-800, Fe-N-CNSs-900 and Fe-N-CNSs-1000; Figure S14. The pore size distribution of
Fe-N-CNSs-800, Fe-N-CNSs-900 and Fe-N-CNSs-1000; Figure S15. LSV curves of Fe-N-CNSs-800,
Fe-N-CNSs-900, Fe-N-CNSs-1000; Figure S16. LSV curves of Fe-N-CNSs-15, Fe-N-CNSs-30, Fe-N-
CNSs-60; Figure S17. Nyquist plots of electrochemical impedance spectroscopy (EIS) for Fe-N-CNSs
and Pt/C; Figure S18. Poison experiment by KSCN; Table S1. Comparison of ORR activity of various
Fe-N-C catalysts; Table S2. Comparison of the performance of the primary zinc-air batteries with the
present work.
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