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Abstract: Under the ever-growing demand for electrochemical energy storage devices, developing
anode materials with low cost and high performance is crucial. This study established a multiscale
design of MoS2/carbon composites with a hollow nanoflower structure (MoS2/C NFs) for use in
sodium-ion batteries as anode materials. The NF structure consists of several MoS2 nanosheets
embedded with carbon layers, considerably increasing the interlayer distance. Compared with
pristine MoS2 crystals, the carbon matrix and hollow-hierarchical structure of MoS2/C exhibit higher
electronic conductivity and optimized thermodynamic/kinetic potential for the migration of sodium
ions. Hence, the synthesized MoS2/C NFs exhibited an excellent capacity of 1300 mA h g−1 after
50 cycles at a current density of 0.1 A g−1 and 630 mA h g−1 at 2 A g−1 and high-capacity retention at
large charge/discharge current density (80% after 600 cycles 2 A g−1). The suggested approach can
be adopted to optimize layered materials by embedding layered carbon matrixes. Such optimized
materials can be used as electrodes in sodium-ion batteries, among other electrochemical applications.

Keywords: MoS2; hollow nanoflower structure; superior conductivity; anode materials; sodium-ion batteries

1. Introduction

Developing efficient and cost-effective materials is necessary to improve manufactur-
ing processes for affordable electrochemical power storage devices. Such materials can be
further used to improve the performance of power storage devices widely used in compact
electronics, electrical motor vehicles, and other applications [1–3]. The most promising
power storage devices developed recently are sodium-ion batteries (SIBs); SIBs have been
successfully commercialized and are used extensively [4]. In a typical SIB, electrical energy
is stored as chemical energy derived from the reversible intercalation and deintercalation of
sodium into and out of anode materials (e.g., graphite) [5–7]. The use of recently developed
effective anode materials has increased the energy concentration of SIBs [8–10].

Owing to its good chemical stability, electronic properties, and high theoretical capacity,
two-dimensional molybdenum disulfide (MoS2) has received comprehensive focus as a
potential substance for use in sodium-ion storage [11–14]. However, the applicability of
MoS2 is limited by its weak intrinsic conductivity and considerable volume effect during
the process of discharge/charge, similar to graphite [15]. The spacing between adjacent
MoS2 layers (0.63 nm) is approximately twice as large as that in graphite (0.34 nm). Thus,
the intercalation of sodium into MoS2 is considerably facile and does not require any
significant volume expansion, indicating its potential for use in SIBs [16]. Hence, it can
be considered an excellent electrode material for SIBs. Nevertheless, the performance
of bulk MoS2 as an anode material in SIBs is unsatisfactory because of quick capacity
fading owing to its weak electrical/ionic conductivity and structural destruction during
sodiation/desodiation [11,15,17].
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Several studies have proposed strategies to improve the electrochemical performance
of MoS2, for example, modifying the structure of pristine MoS2, improving structural
stability and ion diffusion kinetics by developing a three-dimensional porous structure,
enhancing surface defects or interlayer spacing for lowering ion diffusion resistance, and
phase engineering to enhance electrical conductivity [18,19]. Furthermore, various modifi-
cation approaches have been adopted for improving the electrical conductivity of MoS2
by fabricating composites such as hybrid graphene/MoS2 [20] and polyaniline/MoS2
electrode materials [21]. These strategies have been effective in enhancing the process of
charge/discharge. Studies have demonstrated the excellent electrochemical performance of
hybrid nanocomposites [22,23]. For example, Deng et al. investigated the applicability of a
graphene/MoS2 mesoporous foam as the anode material in SIBs; the resultant device had a
high discharge capacity of 488 mA h g−1 at a current density of 100 mA g−1 after 100 cycles
and a power of 200 mA h g−1 at 1000 mA g−1 after 1000 cycles [19]. Zheng et al. developed
an integrated carbon paper/SiO2 template with a mesoporous three-dimensional foam
structure that achieved stable performance (at 2000 mA g−1) over 1000 cycles with a capac-
ity of 225 mA h g−1 [18]. Based on the relationship between structure and function, recent
research has demonstrated that a hollow hierarchical structure can help achieve improved
electrochemical performance.

Motivated by the aforementioned research, this study established an easy-to-use
solvothermal technique for the fabrication of hollow MoS2/carbon nanoflowers (NFs)
utilizing polyvinylpyrrolidone (PVP) as a carbon precursor and disodium molybdate and
thiourea (CH4N2S) as sources of Mo and S, respectively. By annealing the MoS2/PVP NFs
in an Ar atmosphere at 600 ◦C, hollow hierarchical MoS2/C NFs with good reversible
capability (1300 mA h g−1 at 0.1 A g−1), strong cycling stability (516 mA h g−1 after
600 cycles at 2 A g−1), and potent capability (630 mA h g−1 at 2 A g−1) were generated. In
the resulting hollow hierarchical MoS2/C NFs, the hollow architecture facilitated a large
electrode–electrolyte interfacial area. For rapid sodium-ion diffusion and the expansion
of volume during the process of charge/discharge, the hierarchical structures provided
sufficiently large voids. Moreover, the conductivity and structural stability of the electrode
material were increased by carbon layer doping.

2. Results and Discussion

Scheme 1 illustrates the method adopted to fabricate the hollow hierarchical MoS2/C
NFs. PVP and thiourea were first dispersed in an organic solvent containing dimethylfor-
mamide (DMF) and hydrazine hydrate (N2H4·H2O) to obtain a homogeneous solution
through ultrasonication. During the chemical reaction at 200 ◦C, the disodium molybdate
and thiourea were employed as sources of Mo and S, respectively. Next, nanosheets consist-
ing of several layers of MoS2 nanosheets and PVP were assembled into hollow hierarchical
NFs during the hydrothermal process. As reported in the literature, the van der Waals
interface between the ultrathin MoS2 nanosheets primarily enables the development of
hollow hierarchical structures. Subsequently, the hollow MoS2/PVP-precursor NFs were
annealed in an Ar atmosphere for 2 h at 500 ◦C, resulting in a carbon layer in or on the
MoS2 layer and, thus, excellent electrochemical performance.

The images of the hollow MoS2/C NFs and MoS2 obtained through transmission
electron microscopy (TEM; Figure 1a) and standard scanning electron microscopy (SEM;
Figure 1b) are depicted in Figure 1. The MoS2 layer exhibited a uniform hollow frame-
work. The interlayer distance was estimated to be 0.63 nm (see Figure 1c); this value was
consistent with the X-ray diffraction (XRD) results along the (002) plane of the MoS2 layer
(Figure 2a) [24]. High-angle annular dark field and TEM-STEM images indicated that the
MoS2/C NFs retained their hollow NF structure despite being doped with carbon. The
TEM images in Figure 1d,e indicated that the MoS2 NFs had a large interlayer spacing
(0.85 nm) and a large number of active sites, which could serve as sites for sodium-ion
sodiation/desodiation. Energy-dispersive X-ray spectroscopy (Figures 1f and S1) analysis
revealed that the carbon layers on the hollow MoS2 NFs were uniformly doped. Further-
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more, the XRD patterns indicated the presence of thin carbon layers outside the hollow
MoS2/C NFs, with no visible C (002) peaks except for the diffraction peaks corresponding to
MoS2 after carbon layer doping (see Figure 2a). In the Raman spectra of the hollow MoS2/C
NFs, an additional characteristic G peak (1582 cm−1) indicated the presence of graphite in
addition to the A1g (408 cm−1) and E12g (383 cm−1) forms of MoS2 (see Figure 2b) [25]. The
D band (1370 cm−1) in the Raman spectra indicated defects in the carbon layers, consistent
with the TEM results (Figure 1e). In addition, a large interlayer spacing was revealed by
local Raman amplification (Figure 2c) [26]. Thermogravimetric analysis (TGA) revealed
that the hollow MoS2/C NFs had a carbon content of 44 wt% (Figure 2d), which increased
the specific surface area. The hollow NF structures and the ultrasmall dimensions of
the nanosheets endow both of them with a relatively large surface area of 22.7 m2 g−1

and 43.1 m2 g−1, respectively (Figure 2e), as revealed by Brunauer–Emmett–Teller (BET)
analysis. Moreover, the BET surface area curve for the hollow MoS2/C NFs was a Type
IV isotherm (Figure 2e) with a clear H3 hysteresis loop, demonstrating the presence of
adequate mesopores with diameters of approximately 6.9 nm inside the complex material
(Figure 2f).

The chemical composition and surface electronic states of the hollow MoS2/C NFs
were determined by employing X-ray photoelectron spectroscopy (XPS). Figure 3a depicts
the Mo 3d, S 2p, O 1s, and C 1s spectra of the structures. The peaks at 284.3 and 286.5 eV
in the C 1s spectra (Figure 3b) can be attributed to C–O and C–C/C=C bonds [27]. In the
high-resolution Mo 3d spectra (Figure 3c), the peaks at 226.3, 228.8, 232.1, and 235.2 eV
correspond to S 2s, Mo 3d5/2, Mo 3d3/2, and Mo6+, respectively. The peak at 235.2 eV can
be attributed to Mo6+ 3d3/2, which is generated by the surface oxidation of Mo4+ in an air
atmosphere [28]. The two peaks at 161.7 and 162.8 eV in the S 2p spectra can be attributed
to S 2p3/2 and S 2p1/2, respectively (Figure 3d) [29].
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MoS2/C and MoS2. (d) TG patterns of MoS2/C and MoS2. (e) N2 adsorption–desorption isotherms
and (f) pore-size distribution curves of the MoS2/C and MoS2, respectively.

In a voltage range of 0.05–3.0 V vs. Na/Na+, the electrochemical storage capability
of the hollow composite MoS2/C anode was measured and subjected to a comparison
with that of a pure MoS2 anode. First, cyclic voltammograms (CV) were recorded for the
initial three cycles of the hollow MoS2/C NFs at a scan rate of 0.1 mV s−1 (Figure 4a).
A reduction peak was found at 0.42 V during the first discharge cycle, associated with
the intercalation of the sodium ion into MoS2 and the generation of a solid–electrolyte
interface (SEI) film. A prominent oxidation peak was observed within the range of 1.5–2.0 V,
corresponding to the deintercalation of NaxMoS2 to MoS2 and sodium metal produced
during the first charge cycle [30]. The oxidation and reduction peaks were roughly constant
from the third cycle onwards, indicating the excellent reversibility and cycling stability of
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the hollow MoS2/C NF electrode throughout the sodiation/desodiation processes. The
electrochemical performance of hollow MoS2/C NFs was further examined by analyzing
the rate performance and cycling stability. As illustrated in Figure 4b,c, the hollow MoS2/C
NFs exhibited the highest rate capacities of 1321, 1171, 1036, 819, and 632 mA h g−1

at current densities of 0.1, 0.2, 0.5, 1.0, and 2.0 A g−1, respectively. Furthermore, the
discharge capacity recovered to 1300 mA h g−1 when the current density reduced from
2.0 to 0.1 A g−1. These results indicated the outstanding reaction kinetics of the hollow
MoS2/C NFs, attributable to the rapid electron transport and sodium-ion diffusion induced
by the carbon and MoS2 layer, thereby resulting in the high utilization of MoS2 NFs and a
high specific capacity. Additionally, long-term cycling performance at high current density
was achieved. As depicted in Figure 4d, the hollow MoS2/C NFs retained a high reversible
capacity of 438 mA h g−1 even after 600 cycles at 2.0 A g−1, with a slow decay rate of
0.034% per cycle. Without the carbon layer structure, the MoS2 NFs exhibited the lowest
specific capacity and rate stability.
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Figure 3. Structural characterization. (a) XPS survey scan of hollow MoS2/C nanoflowers. High-
resolution (b) C 1s, (c) Mo 3d and (d) S 2p spectra of MoS2/C, respectively.

At an electrolyte/electrode interface, EIS technology is an efficient technique to de-
termine the kinetics of charge transfer [31–33]. In the Nyquist plots shown in Figure 4e, a
single depressed semicircle in the high-frequency region indicated the charge transfer resis-
tance (Rct), and the sodium-ions diffusion ability, also known as the Warburg impedance
(Zw), was indicated by the inclined line in the low-frequency region [34–36]. The inset of
Figure 4f displays the equivalent circuit that corresponds to the Nyquist impedance plots,
along with definitions for each parameter. In accordance with the equivalent circuit model,
the hollow MoS2/C NFs exhibited a lower Rct value (60 Ω) than that of MoS2 (93 Ω), indi-
cating that the hollow MoS2/C NFs can remarkably enhance interfacial charge separation
and transfer between adjacent layers when sodium-ions are repeatedly inserted/extracted.
The present study also investigated the sodium-ion storage kinetics of hollow MoS2/C
NFs through CV measurements, as illustrated in Figure 5a. data on the scan rates between
0.1 and 2.0 mV s−1 were employed to obtain CV curves. As illustrated in Figure 5b, the b
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values calculated using the linear relationship between log (current) and log (scan rate)
during anodic and cathodic scans were 0.99 and 0.99, respectively, indicating that the
process was capacitance-controlled [37]. As shown in Figures 5c and S4, the contribution of
capacitive charge was 79% at a scan rate of 2.0 mV s−1. Therefore, compared with MoS2
(Figure S3), hollow MoS2/C NFs exhibited larger capacitive components at all scan rates,
thus indicating greater efficient sodium-ion adsorption and quicker reaction kinetics [38].
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Figure 4. Sodium-ion storage performance. (a) CV curves of MoS2/C at scan rate of 0.1 mV s−1.
(b) Rate performances at various current densities. (c) The GCD curves of MoS2/C at various
current densities. (d) Long-term cycling stability at 2.0 A g−1. (e) EIS curves of MoS2/C and MoS2.
(f) Equivalent circuit model corresponding to the Nyquist plots of the MoS2/C.
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tributing to the high performance of hollow MoS2/C NFs. TEM and XPS were used to an-
alyze the morphology and nanostructure of the regenerated hollow MoS2/C NFs. The re-
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presence of long-term cycling, indicating the electrode’s high durability owing to the car-
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Figure 5. Electrochemical kinetic behaviors. (a) CV curves of hollow MoS2/C nanoflowers at
various current densities. (b) Log(i)-log(v) plots at different cathodic/anodic peaks. (c) Normalized
contribution ratios of capacitive capacities of MoS2/C at a scan rate of 2.0 mV s−1. (d) Normalized
contribution ratios of capacitive capacities MoS2/C and MoS2 at different scan rates.
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The electrode was recycled after 600 cycles at 2.0 A g−1 to determine the factors
contributing to the high performance of hollow MoS2/C NFs. TEM and XPS were used
to analyze the morphology and nanostructure of the regenerated hollow MoS2/C NFs.
The results indicated that the morphology and structure of the NFs remained unchanged
in the presence of long-term cycling, indicating the electrode’s high durability owing
to the carbon layers. Although the macroporous nanostructure of the hollow MoS2/C
NFs partially collapsed, the porosity of the structure was still evident in the TEM images
displayed in Figures S5 and S6. The HRTEM image of MoS2 shown in Figure S6b indicated
the presence of the layered structure even after cyclic use. However, the interlayer spacing
of the hollow MoS2/C NFs exhibited a substantial increase (up to 1.03 nm in contrast
with a layer spacing of 0.83 nm in the new electrode), likely because of long-term use in
sodiation/desodiation, which helps minimize mass transfer resistance and favors long-term
cyclic stability. As indicated by the XPS results shown in Figure S7, the hollow MoS2/C NF
electrodes retained their good electrical structure even after prolonged cyclic use.

3. Materials and Methods
3.1. Chemicals

From Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China), PVP, DMF, hydrazine
hydrate, sodium molybdate dehydrate (Na2MoO4), and thiourea were procured. None of
the chemicals used were further purified since they were all analytical-grade chemicals.

3.2. Synthesis of Hollow MoS2/Carbon NFs

A solution comprising 35 mL of DMF and 0.1 mL of hydrazine hydrate was used
to thoroughly dissolve 0.01 g PVP and 0.06 g thiourea in a typical synthesis. Then, the
addition of 0.02 g of sodium molybdate dehydrate was carried out. Following 30 min of
stirring, the solution was heated under static circumstances in a Teflon-lined autoclave for
24 h at 200 ◦C. The recovery of a solid product was achieved through centrifugation in
water and ethanol thrice, and the product was vacuum-dried overnight at 60 ◦C. Precursor
samples were prepared by pyrolyzing the solid in an Ar atmosphere in a tube furnace at a
heating rate of 2 ◦C min−1 up to 250 ◦C, dwelling for 2 h, reheating at a rate of 5 ◦C min−1

up to 500 ◦C, and dwelling again for 2 h.

3.3. Synthesis of MoS2 NFs

To facilitate the comparison, the aforementioned process was also applied to prepare
the MoS2 sample, but PVP was not added.

3.4. Materials Characterization

An FEI Quanta 200F was employed for conducting SEM. High-resolution transmission
microscopy (HRTEM) was performed using an FEI TECNAI G2 F30. PE Diamond TG/DTA
was employed for high-resolution TGA. KANGTA Quadrasorb evo was used for BET. XRD
was performed using a Rigaku D/Max 2500/PC. LabRAM HR 800 Raman spectrometer
was employed for Raman spectroscopy. KRATOS Axis Ultra DLD was employed for XPS.

3.5. Electrochemical Measurements

CR2032 coin cells were employed for electrochemical experiments. The working
electrodes of the cells comprised an active material, carbon black, and a polymer binder
(polyvinylidene fluoride) mixed at a weight ratio of 7:2:1. The electrodes were constructed
by coating this mixture onto Cu foil and drying it under vacuum for 24 h at 60 ◦C. The
electroactive materials had a mass loading of 0.6–0.8 mg cm−2. As counter electrodes
and reference electrodes, metallic Na pieces were utilized. As a separator, a glass fiber
membrane (Whatman/F) was employed. The electrolyte was constituted by a 1 M solution
of NaClO4 in a 1:1 vol% mixture of ethylene carbonate/diethyl carbonate with 5 wt% fluo-
roethylene carbonate. A NEWARE battery testing system was employed for galvanostatic
discharge/charge measurements within a voltage range of 0.05–3.0 V (vs. Na/Na+). The
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electrolyte and separator were identical to those used in the half cell, and the voltage range
was between 0.05 and 3.0 V. An electrochemical workstation (CHI 760E) was employed for
CV and electrochemical impedance spectroscopy (EIS) tests. By applying a 5 mV amplitude
signal within the frequency range 50–100 kHz, electrodes’ EIS spectra were obtained.

4. Conclusions

We designed and synthesized a unique hollow MoS2/C NFs with large interlayer
spacing for SIB applications. The large interlayer spacing and the carbon layer in the
as-prepared composite material provide ion adsorption sites and diffusion channels for the
transportation of ions. Furthermore, the conductivity of MoS2 was improved because of
favorable interactions between the carbon and the MoS2 layers in the prepared material.
Therefore, the designed MoS2/carbon NF composites can exhibit outstanding long-term cy-
cling performance with a capacity of 438 mA h g−1 after 600 cycles at 2.0 A g−1. The current
study offers novel perspectives into the structural design of 2D materials as energy storage
materials by highlighting the importance of enhancing the sodium storage performance of
MoS2 electrodes by increasing interlayer spacing and incorporating carbon layers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28072948/s1, Figure S1: EDS analysis of MoS2/C; Figure S2: XPS
survey scan of MoS2. High-resolution (b) Mo 3d and (c) S 2p spectra of MoS2, respectively;
Figure S3: (a) CV curves at various scan rates of MoS2. (b–f) Capacitive-controlled and diffusion-
controlled contributions at different scan rates of MoS2; Figure S4: (a–d) Capacitive-controlled and
diffusion-controlled contributions at different scan rates of MoS2/C; Figure S5: Morphology and
nanostructure characterizations of MoS2 electrode after 600 long-term cycles under the current den-
sity of 2.0 A g−1; Figure S6: Morphology and nanostructure characterizations of MoS2/C electrode
after 600 long-term cycles under the current density of 2.0 A g−1; Figure S7: (a) XPS full spectra
and high-resolution (b) C 1s, (c) Mo 3d, and (d) M S 2p spectra of MoS2/C after long-term cycles;
Table S1: Comparison of the rate and cycle performance between MoS2/C NFs with the recently re-
ported MoS2-based anode materials. Ref [18,23,25,30,39,40] are cited in the supplementary materials.
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