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Abstract: The pharmacological actions of benzylisoquinoline alkaloids are quite substantial, and
have recently attracted much attention. One of the principle benzylisoquinoline alkaloids has
been found in the unripe seed capsules of Papaver somniferum L. Although it lacks analgesic effects
and is unrelated to the compounds in the morphine class, it is a peripheral vasodilator and has a
direct effect on vessels. It is reported to inhibit the cyclic adenosine monophosphate (cAMP) and
cyclic guanosine monophosphate (cGMP) phosphodiesterase in smooth muscles, and it has been
observed to increase intracellular levels of cAMP and cGMP. It induces coronary, cerebral, and
pulmonary artery dilatation and helps to lower cerebral vascular resistance and enhance cerebral
blood flow. Current pharmacological research has revealed that papaverine demonstrates a variety
of biological activities, including activity against erectile dysfunction, postoperative vasospasms,
and pulmonary vasoconstriction, as well as antiviral, cardioprotective, anti-inflammatory, anticancer,
neuroprotective, and gestational actions. It was recently demonstrated that papaverine has the
potential to control SARS-CoV-2 by preventing its cytopathic effect. These experiments were carried
out both in vitro and in vivo and require an extensive understanding of the mechanisms of action.
With its multiple mechanisms, papaverine can be considered as a natural compound that is used to
develop therapeutic drugs. To validate its applications, additional research is required into its precise
therapeutic mechanisms as well as its acute and chronic toxicities. Therefore, the goal of this review is
to discuss the major studies and reported clinical studies looking into the pharmacological effects of
papaverine and the mechanisms of action underneath these effects. Additionally, it is recommended
to conduct further research via significant pharmacodynamic and pharmacokinetic studies.

Keywords: Papaver somniferum; opium; benzylisoquinoline; papaverine; alkaloid; antiviral;
anticancer; SARS-CoV-2

1. Introduction

Since ancient times, medicinal plants have played a key role in traditional medicine
systems. Phytochemicals are being mined more frequently to find novel leads in the drug
discovery process or to find better alternatives to existing ones [1–5]. Around 75% of the
global population, mostly from developing countries, depend primarily on traditional
herbal medicines due to their affordability and environmentally beneficial qualities [6].

According to estimates, 20% of plant species produce 12,000 alkaloids combined,
many of which have been used in both traditional and modern-day medicine for centuries.
Among these, about 2500 of the substances are members of a structurally diverse class of
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metabolites known as benzylisoquinoline alkaloids (BIAs), which also includes the opiate
drugs morphine and codeine. Additionally, the benzylisoquinoline alkaloid family is a
prominent class of plant-derived chemicals that has shown a wide range of pharmacological
activity, including antibacterial, antitussive, antispasmodic, and anticancer properties [7,8].

A prominent benzylisoquinoline alkaloid is papaverine, which can be obtained from
Papaverine somniferum L. (opium poppy). The opium alkaloids include papaverine, mor-
phine, codeine, thebaine, noscapine, and narceine, as well as a small percentage of some
other compounds. Various pieces of traditional research evidence have demonstrated
opium alkaloids in Chinese and Indian herbal medicine to be effective at treating a variety
of ailments, including chronic cough, rectum prolapse, diarrhea, dysentery, and gastroin-
testinal issues. In addition, papaverine has also been incorporated in therapeutic settings to
treat erectile dysfunction, smooth muscle spasms, and spasms associated with gastrointesti-
nal problems. Scientists have also found papaverine as a nonselective phosphodiesterase
(PDE) inhibitor in mammals, boosting the amount of cAMP and cGMP available for cell
signaling [9]. Hence, this secondary metabolite demands further exploration and requires
pharmacological research investigations. Therefore, the current study focuses on the molec-
ular mechanisms of papaverine’s pharmacological potential as they have been investigated
in diverse experimental models.

2. Natural Source of Papaverine

Due to their phytochemical composition, members of the genus Papaver (family:
Papaveraceae) are recognized for their therapeutic benefits. The most significant Papaver
species that contributes phytochemicals for drug development is Papaver somniferum L.
(opium poppy), which is highly produced in countries such as Afghanistan, Myanmar,
Mexico, Laos, Turkey, Czechia, and Spain. Other commonly cultivated Papaver species
include P. bracteatum Lindl. (Persian poppy), P. rhoeas L. (common poppy or corn poppy),
P. dubium L., P. pseudo-orientale Medw., and P. orientale L., which are grown at high altitudes
in north and northwest Iran, Russia, the Caucasia region, Europe, and America [10].
P. somniferum L. produces papaverine naturally in its unripe seed capsules. A total of
40 alkaloids have been found in the plant; however, morphine (10–15%), noscapine (4–5%),
codeine (1–3%), papaverine (1–3%), and thebaine (1–3%) are the five primary alkaloids.
The prevalence of papaverine in Indian species ranges from 0.5% to 3% [11].

3. Chemistry of Papaverine

Benzylisoquinoline alkaloids hold a prominent place in alkaloid chemistry as they
serve as in vivo precursors to many other naturally occurring isoquinolines. They are either
1,2,3,4-tetrahydro, as in coclaurine and N-nororientaline, or fully aromatic, as in papaverine,
palaudine, and escholamine. Ring A in the benzylisoquinoline alkaloids may possess two
or three oxygenated substituents, while ring C has only one or two substituents [12].

Papaverine, also known by its IUPAC nomenclature 1-[(3,4-dimethoxy phenyl) methyl]-
6,7-dimethoxyisoquinoline, is one of the principal benzylisoquinoline alkaloids found in
P. somniferum [13,14]. Naturally, it is produced as a byproduct of morphine, codeine, and
narcotine synthesis. Its m/z ratio was determined to be 340.15417 [15]. It is a neutral solid
that only slightly dissolves in water [16]. There are four methoxy groups in papaverine.
Even if the molecule lacks a TV-methyl group, it still functions as a tertiary base. It is con-
sidered a pyridine derivative because it may be reduced to a secondary amine by adding
four hydrogen atoms, with the heterocyclic ring fused to a benzene ring [12] (Figure 1).
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NCH3 route involves (S)-reticuline [13,15,20,21] (Figure 4). 

Figure 1. Structure of papaverine.

Guido Goldschmiedt first illustrated the structure of the papaverine between the years
of 1885 and 1898. By forming methiodide and demonstrating the presence of four methoxy
groups per mole, he established the existence of a tertiary nitrogen atom. Under different
conditions, the base was oxidized with potassium permanganate to produce various related
compounds (Figure 2).
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Figure 2. Similar compounds of papaverine helped to elucidate the structure of papaverine.

The current structure was recognized as papaverine based on the evidence mentioned
above and other relevant data. Following the successful synthesis of papaverine in 1909,
Pictet and Gams validated the molecular structure [14].

4. Biosynthesis of Papaverine

Two units of tyrosine contribute as the precursors for the biosynthesis of papaverine,
and the intermediate products include (S)- norcoclaurine, laudanine, norlaudanine, reticu-
line, norreticuline, tetrahydropapaverine, and dihydropapaverine. Recent investigations
revealed that the primary pathway of papaverine biosynthesis in the opium poppy has
been identified by systematic silencing of benzylisoquinoline alkaloid biosynthetic genes.

There are two suggested metabolic pathways for (S)-norcoclaurine. One involves only
N-demethylated intermediates (the NH pathway), whereas the other involves (S)-reticuline
and involves a number of N-methylated intermediates (the NCH3 pathway) [13,17,18]. The
NH route advances via (S)- norreticuline [13,19,20] (Figure 3), whereas the NCH3 route
involves (S)-reticuline [13,15,20,21] (Figure 4).



Molecules 2023, 28, 3149 4 of 21

Molecules 2023, 28, 3149 7 of 22 
 

 

 

Figure 3. The NH pathway of papaverine synthesis. TYDC = tyrosine decarboxylase, TyrAT = L-tyrosine aminotransferase, 4HPPDC = 4-hydroxyphenylpyruvate 

decarboxylase, 3OHase = tyramine 3-hydroxylase, NCS = norcoclaurine synthase, 6OMT = norcoclaurine-6-O-methyltransferase, 3’OHase = 3’ hydroxylase, 3’OMT 

= 3′-O-methyltransferase, 4’OMT = 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase, 7OMT = norreticuline 7-O-methyltransferase, DBOX = dihydrobenzo-

phenanthridine oxidase. 

Figure 3. The NH pathway of papaverine synthesis. TYDC = tyrosine decarboxylase, TyrAT = L-tyrosine aminotransferase, 4HPPDC = 4-hydroxyphenylpyruvate
decarboxylase, 3OHase = tyramine 3-hydroxylase, NCS = norcoclaurine synthase, 6OMT = norcoclaurine-6-O-methyltransferase, 3’OHase = 3’ hydrox-
ylase, 3’OMT = 3′-O-methyltransferase, 4’OMT = 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase, 7OMT = norreticuline 7-O-methyltransferase,
DBOX = dihydrobenzophenanthridine oxidase.
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Figure 4. The NCH3 pathway of papaverine synthesis. 6OMT = norcoclaurine-6-O-methyltransferase, CNMT = coclaurine-N-methyltransferase, NMCH = (S)-N-
methylcoclaurine 3′-hydroxylase, 4’OMT = 4′-O-methyltransferase, 7OMT = reticuline 7-O-methyltransferase, 3’OMT = 3′-O-methyltransferase, LNdeMT = laudanosine
N-demethylase, DBOX = dihydrobenzophenanthridine oxidase.
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The first step in papaverine biosynthesis is the condensation of two L-tyrosine deriva-
tives, 4-hydroxyphenylacetaldehyde (4HPAA) and dopamine, which is accomplished
through decarboxylation, meta-hydroxylation, and transamination to produce the precur-
sor to all other benzylisoquinoline alkaloids, (S)-norcoclaurine. Tyrosine decarboxylase
(TYDC) and tyramine 3-hydroxylase (3OHase) transform L-tyrosine into tyramine and
dopamine, respectively. L-tyrosine can be transaminated by L-tyrosine aminotransferase
(TyrAT) in the production of 4HPAA, and then decarboxylated by an enzyme identified as
4-hydroxyphenylpyruvate decarboxylase (4HPPDC). Norcoclaurine synthase (NCS) is the
enzyme that catalyzes the condensation of (S)-norcoclaurine from 4HPAA and dopamine.

Norcoclaurine-6-O-methyltransferase (6OMT) first transforms (S)-norcoclaurine into
(S)-coclaurine. In the NH pathway, S-coclaurine first undergoes 3′ hydroxylation by 3′

hydroxylase (3′OHase) and then is converted to (S)-norreticuline by 3′-O-methyltransferase
(3′OMT). On the other hand, in the NCH3 pathway, (S)-coclaurine is taken up by coclaurine
N-methyltransferase (CNMT) to yield (S)-N-methylcoclaurine. (S)-N-methylcoclaurine is
hydroxylated to 3′-hydroxy-N-methylcoclaurine by (S)-N-methylcoclaurine 3′-hydroxylase
(NMCH), which is then transformed into S-reticuline by 3′-hydroxy-N-Methylcoclaurine
4′-O-methyltransferase (4′OMT). It is interesting to note that only NMCH has been reported
to exhibit strict stereoisomer and substrate specificity, accepting only S-N-methylcoclaurine
and rejecting either the corresponding (R)-N-methylcoclaurine or N-desmethyl compounds.
As a distinction, the O- and N-methyltransferases often accept a wide range of (R)- and
(S)-tetrahydroisoquinolines [19]. The enzyme reticuline 7-O-methyltransferase (7OMT) can
further methylate reticuline to produce laudanine, which can then be fully O-methylated to
laudanosine by 3′-O-methyltransferase.

The final steps in papaverine biosynthesis comprise the oxidation of the fully O-
methylated and N-desmethyl molecule tetrahydropapaverine by dihydrobenzophenanthri-
dine oxidase (DBOX).

Advanced quantum chemical density functional theory (DFT) calculations, as well as
diffuse reflectance (Ds), experimental electronic absorption (EAs), matrix-associated laser
desorption ionization (MALDI) coupled with Orbitrap imaging mass spectrometry (MS),
fluorescence spectroscopy (Fs), and circular dichroic (CD) have been used for theoretical
and experimental elucidation of the papaverine biosynthetic pathway via S-reticuline (the
NCH3 pathway) [19,20,22].

5. Mechanism of Action of Papaverine

Papaverine is recognized as the most effective smooth muscle relaxant, as it acts di-
rectly on smooth muscle by exerting a strong vasodilating effect. It has been observed to
boost intracellular levels of cAMP and cGMP by blocking the cAMP and cGMP phosphodi-
esterase in smooth muscles (Figure 5) [23–27]. Inhibiting the release of calcium from the
intracellular space and obstructing calcium ion channels in the cell membrane are two other
ways that papaverine may work [28].
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Figure 5. Mechanism of action of papaverine in smooth muscle relaxation. Smooth muscle contraction
requires five steps: After the increase in intracellular Ca2+ concentration from the extracellular fluid,
these ions bind to a protein called calmodulin (CaM). This complex activates a protein called myosin
light-chain kinase (MLCK) (papaverine inhibits this step), which subsequently phosphorylates light
chains of myosin heads, increasing the myosin ATPase activity. Finally, active myosin cross-bridges
slide along actin and create muscle tension to contract the cell.

6. Pharmacological Properties of Papaverine

Papaverine has been demonstrated to be a particular PDE10A phosphodiesterase
inhibitor, which is mostly found in the striatum of the brain. The chronic injection of it into
mice resulted in motor and cognitive deficits as well as elevated anxiety. Other studies
have suggested that it may also have an antipsychotic effect. However, not all research
has supported this theory [29,30]. Nevertheless, papaverine has been approved for the
treatment of GIT, bile duct, and ureter spasmolytic disorders [31].

6.1. Activity against Erectile Dysfunction (ED)

PDE5 inhibitors are used as the first-line therapy for ED [32]. As a popular va-
sodilator, their usage has been observed to improve penile impotence [33]. Its ability
to treat ED and impotence has been known for a long time. By far, the largest number
of studies have been published demonstrating the effectiveness of papaverine in treating
erectile dysfunction (ED) and impotence [34]. Three simultaneous and synergistic pro-
cesses work together to maintain normal erectile function: (1) relaxation of the cavernosal
smooth muscle, (2) an increase in penile arterial inflow caused by neurological activity, and
(3) a restriction of venous outflow from the penis. These processes occur due to the follow-
ing: (1) the activation of cGMP-dependent protein kinase G (PKG); (2) the activation of
cGMP-dependent ion channels that reduce intracellular Ca2+ by Ca2+ sequestration and/or
extrusion; (3) the opening of K+ channels, causing the hyperpolarization of corpus caver-
nosum smooth muscle cells; and (4) the activation of myosin light-chain phosphatases. The
objective of ED pharmacotherapy is to develop novel pharmacological targets that inhibit
the contractile systems (α-adrenoceptor antagonists) and activate (e.g., prostaglandin E1
(PGE1), NO-donors, and forskolin) or augment (e.g., PDE inhibitors and gene therapy) the
vasodilatory systems to produce greater trabecular smooth muscle relaxation of the corpora
cavernosa [35–37] (Figure 6).
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Figure 6. Mechanism of action of papaverine in relaxation of cavernosal smooth muscle. Papaverine
blocks cAMP and cGMP phosphodiesterase to raise the concentration of cAMP and cGMP, which
further releases MLCP that dephosphorylates myosin, resulting in smooth muscle relaxation and
increased cGMP that activates PKG and leads to smooth muscle relaxation (1). Activated PKG lowers
Ca2+ influx. Ca2+ activates MLCK, which contracts smooth muscle via myosin phosphorylation
(2). Papaverine induces efflux of K+ with subsequent hyperpolarization and relaxation of corpora
cavernosa smooth muscle cells.

Intracavernous papaverine was found to play a vital role in the management of male
erectile failure in a study on 48 patients with psychogenic impotence. Intracavernous
papaverine induces erection by several mechanisms. It relaxes the smooth muscles of
sinusoids and increases the arterial flow to the corpora. The use of papaverine has also
been linked to increased venous outflow resistance [34,38]. Research conducted on 17 men
with organic impotence revealed papaverine gel to cause a noticeably larger cavernous
artery diameter [39]. Although its use as a monotherapy to treat impotence was initially
questioned due to priapism being a significant side effect (which occurs in 15–18% of
patients), physicians soon discovered that this side effect was dose-dependent and only
occurs in patients with neurogenic impotence [40,41]. To lessen toxicity and priapism,
papaverine was combined with phentolamine and PGE1 [35]. By raising the amount of
intracellular cyclic adenosine monophosphate, relaxing the smooth muscle of the cavernous
body and helicine arteries, and inhibiting the enzyme phosphodiesterase, papaverine and
phentolamine were able to significantly increase erections in various experiments [42,43].
It has been observed that papaverine’s effectiveness is equal to that of oral sildenafil in a
different trial that involved 31 male patients who had ED injuries and were in the early
stages of paraplegia [44]. Recently, it was discovered that a new topical formulation using
lyotropic liquid crystal (LLC) systems and papaverine-HCl was a suitable and efficient
substitute for the injectable formulation in the treatment of ED [34]. According to a study
conducted in vitro, the substance increases the motility of post-thaw sperm [34].

6.2. Activity against Pulmonary Vasoconstriction

The protective effects of papaverine on the lungs have been demonstrated through
various mechanisms. In a model of pulmonary embolism caused by autologous blood
clots in rabbit lungs that were isolated and perfused, papaverine was discovered to lessen
pulmonary vasoconstriction and edema. In the pulmonary vascular bed, papaverine can
diminish the vasoconstrictor response to ET-1, TxA2, and serotonin without altering their
release. It is generally known that PDE inhibitors also have antiplatelet effects due to their
ability to raise cAMP levels. Papaverine, in particular, has been demonstrated to reduce
platelet aggregation brought on by ADP as well. Such an outcome might have contributed
to the better results observed in the papaverine-treated group in [45]. It was discovered
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that it inhibits voltage-gated Ca2+ channels in a concentration-dependent manner, resulting
in the relaxation of tracheal smooth muscle [46]. Papaverine with nifedipine effectively
decreased the pulmonary artery vasoconstriction brought on by ECS (Euro-Collins solution).
The elevation in cAMP caused by papaverine may improve lung preservation. Additionally,
it has been noted to reduce Ca2+ influx via cell membranes [34].

6.3. Postoperative Vasospasm

To significantly minimize postoperative vasospasms and maintain regular vascular
morphology throughout antispasmodic therapy, papaverine-loaded electrospun fibrous
membranes were developed [47]. In a rabbit model, it was discovered that the intra-arterial
route is more effective for lowering autologous blood-induced cerebral vasospasms [48].
For a very long time, papaverine has been used to prevent vasospasms induced by sub-
arachnoid hemorrhage [49]. In numerous investigations, including in patients who had
aneurysmal subarachnoid hemorrhages, the effectiveness of papaverine in avoiding va-
sospasms was validated. Papaverine can be given either on its own or in conjunction with
transluminal balloon angioplasty. In these circumstances, papaverine has been found to
improve cerebral oxygenation, increase the angiographic vessel diameter, decrease the
extended cerebral circulation time, and boost cerebral blood flow in an effort to prevent
cerebral infarction. Here, a significant barrier is the short-lived nature of papaverine [50–53].
A sustained-release formulation that can be implanted intracranially might minimize this,
and it would also lower the likelihood of hypotension during surgery [54]. Nevertheless, a
different trial involving 31 patients with a subarachnoid hemorrhage-related vasospasm
found no additional benefits from papaverine when compared to the medical treatment
of vasospasms alone. The authors came to the conclusion that changing the time or indi-
cations for therapeutic intervention could be advantageous [49]. Another retrospective
study on nine consecutive patients with acute large-artery occlusion treated with a stent
retriever and intra-arterial papaverine demonstrated an increase in the caliber and flow of
the infused arteries, suggesting a safe and effective method of treating cerebral vasospasms
following mechanical thrombectomy in acute ischemic stroke [55]. Another investigation of
27 patients with a subarachnoid hemorrhage-related symptomatic vasospasm discovered
that intra-arterial papaverine consistently reduces cerebral circulation time [56]. Following
intra-arterial infusion of papaverine, individuals with symptomatic vasospasms showed an
improvement in cerebral oxygenation as well as a reduction in cerebral lactic acidosis [57].

6.4. Antiviral Properties

Papaverine is also recognized for its antiviral activities against different human viruses
and the murine retrovirus, MSV-Harvey. It has been hypothesized that, at least for the
measles virus, interference with cellular DNA synthesis directly, competitive and reversible
binding to the DNA molecule, or an increase in endogenous cAMP will impede viral RNA
synthesis and the phosphorylation of viral proteins [58]. In a study, papaverine suppressed
the viral growth of measles in neuroblastoma cells by inhibiting the synthesis of viral
RNAs in a dose-dependent and reversible manner [59]. It was reported to show effective
antiviral activity by inhibiting the replication of the CMV virus. The mechanism of action
underlying the relaxing effect of these drugs on smooth muscle may prevent at least the
initial cell rounding, and it is possible that a critical physiologic event(s) (e.g., the rise
in intracellular free Ca2+) may be important to both early cellular responses and CMV
replication [60]. Papaverine inhibited the replication of HIV in H9 cell lines by blocking the
RT activity and p24 expression. It also showed inhibiting activity in the peripheral blood
mononuclear cell (PBMC) culture by influencing the viral markers RT and p24 [58,61]. It
inhibited the replication of the measles virus in neural cells [62]. Papaverine showed a
dose-dependent inhibition of multiple strains of influenza virus when A/WSN/33 (H1N1),
A/Udorn/72 (H3N2), and B/Lee/40 were used in a study [63]. In a very recent study,
papaverine revealed its ability to inhibit the SARS-CoV-2 cytopathicity in the human
epithelial colorectal adenocarcinoma cell line, Caco-2 [64] (Table 1).
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Table 1. Antiviral properties of papaverine.

Molecule Activity
Against

Experimental
Approaches Key Result Mechanism

of Action Reference

Papaverine
hydrochloride

HIV

Determination of viral replication
by liquid competition

radioimmunoassay in H9 cell line
and in peripheral blood

mononuclear cell
(PBMC) culture.

- The drug at a concentration of 10 µg/mL
resulted in no reverse transcriptase activ-
ity or p24 expression-specific viral mark-
ers in the supernatant and no virus anti-
gen detection at the cellular level.

- The drug affected the synthesis of the env
precursor protein gpl60.

- A marked decrease in the expression of
the viral proteins was also observed after
treatment with papaverine.

- Interfere with DNA synthesis
through competitive and reversible
binding to the DNA molecule.

- From the data, the authors concluded
that papaverine seems to affect the
late steps of HIV replication. In fact,
the selective effects on different pro-
teins suggest that papaverine acts af-
ter reverse transcription.

[58]

Determination of viral replication
in MT4 cell line and in peripheral
blood mononuclear cell (PBMC)

culture. Examination of
T-cell lymphocytes.

Papaverine significantly inhibited HIV
replication by more than 99% at doses of

30 µM with an CD50 and ED50 of
32 µM and 5.8 µM, respectively.

The drug might affect cellular DNA
synthesis and reverse transcription,

indirectly inhibiting HIV replication.
[61]

Papaverine Measles virus

Determination of viral replication
in neural and non-neural cells.
Analysis of mechanism for the
inhibition of viral replication.

Suppression of virus growth was most
prominent in neuroblastoma cells, followed by

that in epidermoid carcinoma and
glioblastoma cells.

- Synthesis of viral RNAs, includ-
ing genomic RNA and mRNA,
was inhibited.

- Phosphorylation of the viral proteins
was inhibited.

[59]
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Table 1. Cont.

Molecule Activity
Against

Experimental
Approaches Key Result Mechanism

of Action Reference

Papaverine CMV

Assays for inhibition of
infectious CMV yields on human
embryo skin-muscle (SM) cells.
Assays for the rate of cell DNA

synthesis by measuring the
incorporation of [methyl3H]

thymidine into cell DNA.

Inhibition of the multiplication of CMV.
Papaverine was the most potent of the three
drugs (papaverine, verapamil and sodium

nitroprusside); at a concentration of 30 µg/m
(80 µM) the CMV yield was inhibited by 5.21

log10 at 120 hr postinfection (PI).

- Relaxing effect of papaverine on
smooth muscle may at least prevent
the initial cell rounding.

- The greater potency of papaver-
ine relative to nitroprusside may
have resulted from increased lev-
els of both cyclic AMP (cAMP) and
cyclic GMP (cGMP) rather than from
cGMP alone.

- It is possible that a critical physio-
logic event(s) (e.g., the rise in intra-
cellular free Ca2+) may be important
to both early cellular responses and
CMV replication.

[60]

Papaverine

Various strains of
influenza virus as

well as the
paramyxoviruses

parainfluenza
virus 5 (PIV5),

human
parainfluenza

virus 3 (HPIV3),
and respiratory
syncytial virus

(RSV)

Determination of antiviral
activity by plaque reduction
neutralization test (PRNT).

Dose-dependent inhibition of
influenza virus strains.

- Kinetic studies demonstrated that pa-
paverine inhibited influenza virus in-
fection at a late stage in the virus
life cycle through the suppression of
nuclear export of vRNP, and also in-
terfered with the host cellular cAMP
and MEK/ERK cascade pathways.

[63]

Papaverine SARS-CoV-2 Cytopathicity assays.
Inhibit SARS-CoV-2 cytopathicity in the

human epithelial colorectal adenocarcinoma
cell line, Caco-2, with IC50 value of 1.1 ± 0.39.

Additional studies required. [64]
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6.5. Cardiovascular Activity

Papaverine exhibited potent cardioprotective effects by diverse mechanisms. It directly
stimulated the sinus rate and atrial contractility by demonstrating positive chronotropic
and inotropic effects on an isolated atrial preparation from a dog, which again points to
the inhibition of PDE and accumulated cAMP. Additionally, papaverine may partially
trigger the release of catecholamines from adrenergic nerve fibers and may interfere with
the process of adenosine uptake. It is hypothesized that papaverine may directly stimulate
atrial contractility and SA nodal pacemaker activity [65]. Similar effects were found in
another study where papaverine displayed positive inotropic effects on atrial preparation,
whereas in ventricular preparation, it did not affect the force of contraction significantly [66].
Papaverine inhibits both hKv1.5 and native hKv1.5 channels in a concentration, voltage,
state, and time-dependent manner. This interaction shows that papaverine may change
cardiac excitability in vivo [67].

6.6. Anti-Inflammatory Activity

Through the cAMP/PKA and MEK/Erk pathways, papaverine reduced the expression
of proinflammatory factors and inhibited the activation of primary retinal microglia caused
by LPS, and the MEK/Erk pathway may be partially regulated by cAMP/PKA, which
can provide theoretical and experimental support for its protection of the central nervous
system [68]. Yoshikawa et al. first noticed that papaverine could prevent the release of TNF-
α and IL-1β in LPS-induced BV2 cells [69]. Similar activities were reported in another study
where papaverine prevented the production of nitric oxide and proinflammatory cytokines
in LPS-stimulated microglia [31]. Furthermore, it appeared to have anti-inflammatory
effects in mouse models by inhibiting high mobility group box 1-mediated inflammatory
responses [70]. Similar effects were demonstrated in LPS-stimulated macrophages and
microglia where papaverine suppressed TNF-α [68,71], IL1β, and the NF-κB signaling
pathway [72], thus proving its potential to treat neurodegenerative diseases.

6.7. Anticancer Activity

It was found that papaverine effectively induced a morphological change and inhibited
proliferation and the invasive potential of human prostate cell lines PC-3, DU145, and
LNCaP primarily through its PDE-inhibiting capability, which resulted in raised cAMP
levels [73]. Similar effects were reported on the LNCaP cell line due to a synergistic
effect induced by a combination of papaverine and prostaglandin E2 (PGE2) [74] and
on PC-3 by inducing apoptosis and cell cycle arrest along with the downregulation of
NFkB and the PI3K/Akt signaling pathway [75]. The phytochemical has been reported to
exhibit cytotoxic effects on cancerous HT29, T47D, and HT1080 cell lines without affecting
the noncancerous mouse NIH3T3 cell line as compared to doxorubicin, a widely used
anticancer drug. The mechanism behind it was selective DNA damage and the induction
of apoptosis on cancerous cell lines [76]. It expressed a cytotoxic effect against cancer stem
cells, especially human breast cancer cell line MCF-7, by arresting the cell cycle in the
G1 phase and inducing apoptosis [77]. Antiproliferative activity of the compound was
reported on hepatocarcinoma cell line HepG-2 as it affected the telomerase activity [78]. It
has been proven to be an effective radiosensitizing agent that reduces the rate of oxygen
consumption through the inhibition of mitochondrial complex I. Thus, the compound was
found to improve the response to radiation therapy and is a potential candidate for tumor
hypoxia treatment [9]. Papaverine is found to prevent cell migration and delay zebrafish
development by suppressing the kit-signaling pathway [79]. The compound significantly
inhibited the proliferation of human glioblastoma cell lines U87MG and T98G and the tumor
volume in the U87MG xenograft mouse model [80,81]. The papaverine–Au(III) complex
was reported to have better cytotoxic activities against human breast cancer MCF-7 cells
and hepatocellular carcinoma HepG-2 cells than papaverine itself, and the inhibiting ability
was higher than that of cisplatin against MCF-7 [16]. Caroverine, which is one derivative of
papaverine, prevented the expression of VEGF, which is a well-known tumor-promoting
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factor [82]. In another study, a papaverine oxidation product that is a 6a,12a-diazadibenzo-
[a,g]fluorenylium derivative inhibited the MCF-7 cell line by blocking the G0/G1 phase
of the cell cycle and telomerase activity [83]. An investigation involving S. cerevisiae and
docking and molecular dynamic simulation studies showed evidence that papaverine
induces ROS-mediated apoptosis and inhibits Bcr-Abl downstream signaling [84] (Table 2).

Table 2. Anticancer properties of papaverine.

Molecule Cell Line Cell Type Significant Benefit Achieved Reference

Papaverine PC-3, DU145, and
LNCaP Prostate cancer

Induced morphologic change and also
raised intracellular cyclic AMP levels

in LNCaP cells.
[73]

Papaverine combined
with prostaglandin E2

(PGE2)
LNCaP Prostate cancer

Decreased proliferation and
malignancy of LNCaP cells and
caused the suppression of the

expression of oncogenes such as c-myc
and Bcl-2 in differentiated

LNCaP cells.

[74]

Papaverine PC-3 Prostate cancer

Showed cytotoxic effects by inducing
early and late apoptosis along with

inducing sub-G1 cell cycle arrest, and
caused the downregulation of Blc-2,
Bax, and NF-kB proteins and PI3K

and phospho-Akt expression.

[75]

Papaverine HT29, T47D, and
HT1080

Colorectal cancer,
breast cancer, and
fibrosarcoma cells

Showed cytotoxic effects by selective
DNA damage and induction

of apoptosis.
[76]

Papaverine MCF-7 and
MDA-MB-231 Breast cancer

Showed cytotoxic effects by arresting
cell cycle in G0/G1 phase and

inducing apoptosis.
[77]

Papaverine HepG-2 Hepatocarcinoma
Induced antiproliferative activity by

inhibiting telomerase through
downregulation of hTERT gene.

[78]

Papaverine combined
with temozolomide U87MG and T98G Glioblastoma

Significantly inhibited the
clonogenicity of the cell lines, delayed

tumor growth, and increased the
radiosensitivity of T98G cells.

[80,81]

Papaverine–Au(III)
complex MCF-7 and HepG-2

Breast cancer and
hepatocellular

carcinoma

Showed significant cytotoxic activity
against the examined cell lines.

Additionally, the Au complex showed
anticancer activity against the breast

cancer MCF-7 cells better than
that of cisplatin.

[16]

Papaverine

HCT15 (colon),
A549 (lung), HeLa

(cervical), K562
(Bcr-Abl positive

CML), and
RAW 264.7

Colon, lung, cervical,
and lymphoblast

cancers

Induced ROS-mediated apoptosis and
inhibited Bcr-Abl

downstream signaling.
[84]

Caroverine, derivative
of papaverine LT97 and SW480 Colorectal cancer Inhibition of expression of VEGF. [82]

6a,12a-diazadibenzo-
[a,g]fluorenylium,

derivative of
papaverine

MCF-7 Breast cancer
Inhibition of MCF-7 cell line by

blocking G0/G1 phase of the cell cycle
and telomerase activity.

[83]
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6.8. Neuroprotective Effect

Papaverine may also exert neuroprotective effects to treat neuropsychiatric diseases
such as schizophrenia and depression [85,86]. In a clinical trial involving three female
patients with tardive dyskinesia, it was revealed that daily 300 to 600 mg doses of pa-
paverine improved the dyskinesia condition without showing any side effects. The authors
concluded that the effects were due to the inhibition of the dopamine pathway, which might
be the reason for dyskinetic movements [87]. The study was again conducted with a larger
number of patients via the oral administration of sustained-release 150 mg papaverine
capsules. Two out of nine patients showed clinical improvements [88]. Oro-facial dyskine-
sia was improved in another clinical trial conducted on 150 patients [89]. Papaverine was
also found to potentiate nerve growth factor (NGF)-induced neurite outgrowth in PC12
cells in a concentration-dependent manner [90]. By significantly raising the levels of BDNF,
synapsin-IIa, DCX, pCREB, IL-10, and GSH in various brain regions while significantly
lowering the levels of TNF-α, IL-6, and TBARS, the drug was found to restore the basic
behavioral phenotype in autism spectrum disorder [9]. Another study revealed that the
substance may be useful in reducing the ischemic infarct volume, suggesting that it may
be used to treat cerebral ischemia in clinical practice [91]. By modifying the NF-B and
CREB signaling pathways, it prevents the activation of the NLRP3 inflammasome, which
reduces microglial activation and neuronal cell death. As a result, it could be a promising
treatment for Parkinson’s disease, which is exacerbated by systemic inflammation [92]. In
the subacute MPTP/P animal model of Parkinson’s disease, the data revealed that papaver-
ine reduces neuroinflammation and MMP-3 production, which prevents dopaminergic
neuronal cell death and α-synuclein aggregation. In light of this, it might be a viable med-
ication for the management of Parkinson’s disease [93]. Papaverine enhanced cognitive
function in a mouse model with Huntington’s disease by inhibiting PDE10, resulting in
cAMP-responsive element-binding protein (CREB) phosphorylation and GluA1 [94]. It
also provided efficient protection to the spinal cord during descending thoracic and thora-
coabdominal aortic aneurysm repair surgery by perfusing the spinal cord [1]. In another
study, papaverine revealed its direct effect on synaptic vesicles, which was exhibited via
the increase in norepinephrine and dopamine-β-hydroxylase from isolated perfused cat
spleen [95]. Furthermore, papaverine temporarily increased sublingual microcirculatory
blood flow in septic shock patients who needed vasoconstrictors to maintain blood pressure
during fluid resuscitation without affecting systemic hemodynamics [96].

6.9. Gestational Activity

In the 1990s, research on papaverine and its derivatives revealed that they could
shorten the time needed for the first stage of labor. A specific inhibitor of PDE 4, drotaverine
hydrochloride, is a homolog of papaverine. Because of its ability to relax smooth muscles,
it was found to be beneficial in accelerating cervical dilation [97]. Madhu et al. found
that women who were treated with drotaverine through the latent phase of labor had a
significantly shorter time between the administration of the medication and the delivery
of the fetus compared to women who were treated with a placebo. The study involved
146 women who gave birth vaginally (182 min compared to 245 min with a placebo) [98].
Another retrospective comparative investigation of 498 pregnant women indicated that
short-term prenatal exposure to papaverine adjusted for indication was not linked to
preterm births, cesarean birth, reduced birth weight, small gestational age, or perinatal
death [99]. Additionally, it was claimed that the medication worked well to lower pre-
eclamptic patients’ blood pressure [100].

6.10. Other Activities

Papaverine hydrochloride is equally as effective as sodium diclofenac for the short-
term relief of acute renal colic pain, and it may be advantageous in patients with contraindi-
cations according to a prospective, single-blind clinical study that involved 86 patients
with acute renal colic who were given 120 mg intravenous papaverine hydrochloride [101].
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Another study found that the injection of alprostadil and papaverine into the spermatic
cord protected against ischemia/reperfusion injury following right-side testes torsion and
reduced histological alterations following testicular ischemia-reperfusion injury [102].

7. Limitations of the Study

Executing an ideal drug discovery and development process is one of the primary
challenges for the pharmaceutical research community. ADME is a critical step in the
drug design process that investigates the fate of a drug molecule after ingestion. Notably,
drug metabolism studies are critical processes for optimizing the lead compounds with
optimal PK/PD features, identifying new chemical entities based on the discovery of active
metabolites, minimizing potential safety liabilities due to the development of reactive or
toxic metabolites, comparing preclinical metabolism in animals with humans to guarantee
that animals used in experiments have the potential to adequately cover human metabolites
and support human dose predictions, and so on [103]. However, ADME and the PK/PD
parameters of papaverine were not evident in this review. When it comes to drug attrition
during the clinical stage of development, compound failure rates because of the toxicity
prior to human testing are relatively high, and they may account for up to 30% of the
loss. In order to establish an anticipated safe dose range and to gather knowledge on drug
distribution, organ-specific toxicity, and metabolism, toxicology studies in at least two
nonhuman species are typically utilized [104]. The toxicological parameters of papaverine
were not defined in this review. Proper translation and determination of the maximum
recommended starting dose in humans is a critical task in new drug development and
research [105]. No specific dose of papaverine was studied in this review. Moreover, study
data are not available for use in lactating mothers and pediatric and geriatric patients.
The three-dimensionality of molecules is intimately related to the clinical success of drug
candidates [106], which was not elaborated on in this review. The efficacy of traditional
medicines is frequently the consequence of a synergistic interaction between numerous
components, targets, and pathways [107]. This review did not include the positive or
negative synergistic effects of possible analogs of papaverine found in opium. Possible side
effects of papaverine include priapism, penile fibrosis, and arrythmia [108]. No studies
have been conducted on whether these side effects can be utilized as a secondary usage
via repurposing; e.g., metformin is the first-line therapy of type II diabetes, and it can be
repurposed as an antiobesity drug for both diabetic and nondiabetic patients [109,110].

8. Discussion and Future Recommendations

Papaverine has been proven to be a high-value opioid alkaloid in the field of ther-
apeutics either in solitude or in combination with other metabolites/molecules [9]. It
was approved by the Food and Drug Administration (FDA) of the United States as a va-
sodilator to be predominantly used in the treatment of cerebral vasospasms and coronary
circulation [108]. Several preclinical and clinical studies also demonstrated its potential effi-
cacy against pulmonary vasoconstriction, erectile dysfunction, postoperative vasospasms,
some particular viral infections, inflammation, cardiac excitability, carcinoma, neurological
disturbances, gestational difficulties, pre-eclampsia, acute renal colic pain, and ischemia-
reperfusion injury, as well as other muscle spasm-oriented complications [87,88,91,101].
Some of the notable mechanisms underlying the different pharmacological actions include
vasodilation, the activation of cGMP and cAMP-dependent biomolecules, the inhibition
of vasoconstrictor responses to biomolecules, interference with certain viral nucleic acids,
the inhibition of cytokine release (such as TNF-α, IL-1β, and NF-κB), the apoptosis of dis-
eased cells, the potentiation of neurite outgrowth, the alteration of different biomolecular
signaling pathways, etc., which are discussed throughout this review. As a consequence,
the multiple bioactive capabilities of papaverine suggest that it may also be an effective
natural phytoconstituent in disease management. Moreover, synthetic drugs consist of
several drawbacks, such as a lack of bioavailability, cost-effective issues, drug resistance
issues, unexpected adverse effects, etc. [111]. To combat these drawbacks, there is a need to
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search for lead compounds among the natural substances [112]. Plants are a present from
the Earth that have been providing us vital phytochemicals for thousands of years [113,114].
Bioactive phytochemicals from natural sources play pivotal roles in drug discovery and
development. Almost 80% of all currently available drugs are either directly derived
from plant or are a modified version [115,116]. Alkaloids are a very important class of
bioactive phytochemicals that play a significant role in drug discovery [117]. Thus, pa-
paverine is a potential natural drug candidate that may be utilized in the near future.
Researchers should carry out several studies on the papaverine alkaloid, including by
studying the determination and revision of its PK/PD parameters, the therapeutic index,
safety and toxicological profiles, dosage, drug–drug interactions, drug-food interactions,
and other important parameters. Considering all these factors, papaverine should be
subjected to extensive research to establish it as a novel drug and/or lead compound. This
review will provide future researchers with important insights for further studies on this
conspicuous alkaloid.

9. Conclusions

The majority of the alkaloids isolated from the opium poppy seed, such as morphine
and codeine, have analgesic properties; nevertheless, papaverine varies from the opium
group of alkaloids both chemically and therapeutically. While the majority of the primary
alkaloid chemicals derived from the opium poppy are narcotic and have an analgesic effect,
the majority of papaverine’s pharmacological usage is as a non-narcotic, non-analgesic
smooth muscle relaxant and vasodilator. Papaverine is a recognized inhibitor of phospho-
diesterases. Papaverine is FDA-approved and is already in clinical use as a vasodilator. It
is gaining more and more attention for use in other biological activities. Within the scope
of this work, we described multiple bioactive properties of papaverine in addition to the
molecular mechanisms behind such activities. Both in vitro and in vivo as well as clinical
studies showed that papaverine possessed considerable pharmacological properties besides
its vasodilator effects. As a result, it is a vital potential candidate both for the discovery
of novel drugs and the development of the existing drug. As a matter of fact, its antiviral
and anticancer actions both exhibit unique mechanisms of action that show considerable
potential for treating their respective illnesses, which demonstrates that papaverine is a
prominent candidate for use in the research and development of new antiviral and anti-
cancer medications. In addition, toxicological research must be carried out to establish the
substance’s safety for use in other pharmaceutical applications.
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34. Berkó, S.; Zsikó, S.; Deák, G.; Gácsi, A.; Kovács, A.; Budai-Szűcs, M.; Pajor, L.; Bajory, Z.; Csányi, E. Papaverine Hydrochloride
Containing Nanostructured Lyotropic Liquid Crystal Formulation as a Potential Drug Delivery System for the Treatment of
Erectile Dysfunction. Drug Des. Dev. Ther. 2018, 12, 2923–2931. [CrossRef]

35. Bivalacqua, T.J.; Champion, H.C.; Hellstrom, W.J.G.; Kadowitz, P.J. Pharmacotherapy for Erectile Dysfunction. Trends Pharmacol.
Sci. 2000, 21, 484–489. [CrossRef] [PubMed]

36. Mcmahon, C.G. Narrative Review Current Diagnosis and Management of Erectile Dysfunction. MJA 2019, 210, 469–476.
[CrossRef]

37. Padma-Nathan, H.; Christ, G.; Adaikan, G.; Becher, E.; Brock, G.; Carrier, S.; Carson, C.; Corbin, J.; Francis, S.; Debusk, R.; et al.
Pharmacotherapy for Erectile Dysfunction. J. Sex. Med. 2010, 7, 524–540. [CrossRef] [PubMed]
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