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Abstract: Magnetic protective fabrics with fine wearability and great protective properties are highly
desirable for aerospace, national defense, and wearable protective applications. The study of the
controllable preparation method of Nd3+ doped in Fe3O4 nanoparticles with supposed magnetic
properties remains a challenge. The characterization of the microstructure, elemental composition,
and magnetic properties of NdFe2O4 nanoparticles was verified. Then, the surface of NdFe2O4 was
treated with glyceric acid to provide sufficient –OH. Subsequently, the connection of the nanoparticle
by the succinimide group was studied and then grafted onto cotton fabrics as its bridging effect. The
optimal loading rate of the functional fabrics with nanoparticles of an average size of 230 nm was
1.37% after a 25% alkali pretreatment. The color fatness to rubbing results showed better stability after
washing and drying. The corresponding hysteresis loop indicated that the functional fabrics exhibited
typical magnetism behavior with a closed “S” shape and a magnetic saturation value of 17.61 emu.g−1

with a particle size of 230 nm. However, the magnetic saturation value of the cotton fabric of 90 nm
was just 4.89 emu.g−1, exhibiting controllable preparation for the aimed electromagnetic properties
and great potential in radiation protective fields. The electrochemical properties of the functional
fabrics exhibited extremely weak electrical conductivity caused by the movement of the magnetic
dipole derived from the NdFe2O4 nanoparticles.

Keywords: NdFe2O4 nanoparticles; grafting; cotton fabric; magnetic protective

1. Introduction

The rapid development of electronic information technology, military science, and
intelligent manufacturing technology in the 21st century has provided many conveniences
and high−quality services [1,2]. However, the increasing electromagnetic radiation pol-
lution woul damage the environmental climate, the smooth operation of precision instru-
ments, and eventually human health, especially with the promotion of 5G networks and an
increase in related products. These concerns have raised great attention in both scientific
and industrial circles [3–6]. Since the electromagnetic characteristics of functional fabrics
involve dielectric and magnetic loss, it is necessary to give much consideration to studies
on electromagnetic wave absorption and recurrent reflex design [7]. Therefore, urgently
developing a novel electromagnetic protective lightweight fabric with high−performance
has become a research hot-spot in recent decades.

Recently, multicomponent dielectric and magnetic loss materials with honeycomb
porous, core−shell, hollow, multilayer, or snowflake structures have been developed as
effective electromagnetic wave radiation products [8–10]. The dielectric and magnetic loss
materials, as well as the microstructures, can endow the micro/nano functional units with
excellent impedance matching and synergetic electromagnetic losses. Xu et al. [11] reported
on high−performance electromagnetic interference shielding graphene materials with
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honeycomb porous structures, simultaneously with ultralow density, excellent flexibility,
and good mechanical properties using a laser scribing technology. Zhang et al. [12] studied
a multilayer structure of the growth of Fe3O4 nanoparticles onto the Ti3C2Tx MXene sur-
face and interlayer nanocomposites for enhancing microwave absorption properties. Lei
et al. [13] revealed a simple freeze−drying route for designing a thermoplastic polyurethane
composite with a snowflake structure, consisting of silver fractal dendrites, carbon nan-
otubes, and thermoplastic polyurethane for final studies on electromagnetic interference
shielding properties.

High magnetic permeability is the primary factor determining the magnetic shielding
properties of a material, which is favorable for a multi-reflection loss mechanism [14,15].
Among them, monodispersed Fe3O4 and Fe2O3 nanomaterials with superparamagnetic
properties have been prepared for magnetic protective and medical drug conduction materi-
als using ethanol and aqueous media. However, pure Fe3O4 nanoparticles (NPs) show high
a saturation magnetization (80 emu.g−1) and a high coercive force (55 Oe), and they are
widely used in magnetic protective materials and medical fields [16]. Many doping plans
in the Fe3O4 crystal structure, such as Ni, La, Co, and Mn, have attracted much attention
for their usability in magnetization and functional stability. Doping spherical NPs of M
(M = Ni, Cu, Co, Zn, Au) into the Fe3O4 crystal can efficiently improve the magnetic per-
formances of naked Fe3O4 at different degrees [17]. For instance, CoFe2O4@MgFe2O4 NPs
have excellent magnetic saturation properties based on external spectroscopy in the mag-
netic hyperthermia field [18]. Neodymium exhibits excellent reactive properties, thermal
stability, and effective paramagnetism when Nd3+ is doped into Fe3O4 during the crystal
formation process, and the size, shape, and magnetic properties of the obtained particles
can be improved [19]. Considering the loss of dielectric, magnetic, and reflection properties
during the development of protective products, the conductivity and permeability perfor-
mance of the functional materials must be revealed. At low frequencies, the magnetic losses
are dominated by high permeability materials, which could be caused saturation with an
increase in magnetic field strength. However, dielectric loss was mainly contributed to
by fine conductivity materials at high frequencies. Ji and his team members [20] success-
fully prepared multilayer energy loss materials for clarifying the mechanism of compound
electromagnetic loss with a thick and heavy structure.

However, considering the ubiquitous difficulty of easily aggregating, surface modi-
fication is required for Fe3O4−based NPs to improve their dispersion and stability. For
instance, a fine composite of molybdenum disulfide@polypyrrole decorated with modified
doping Fe3O4 NPs was shown to improve stability in the sensing field as an electromagnetic
matching material. The core−shell structure of Fe3O4@SiO2 NPs with fine dispersion in
thermosensitive poly (N−isopropylacrylamide) and luminescent lanthanide polyoxometa-
lates was previously described for wearable flexibility materials [21–23].

According to the Schelkunoffs transmission theory [24,25], the electromagnetic in-
terference of shielding materials with SE reflection (SER) and absorption (SEA), is mainly
correlated with their electrical conductivity at high frequencies and magnetic permeability
at low frequencies. However, reflection occurs once the incident waves reach the surface
of the shielding materials, which is undesirable due to the risk of secondary radiation
contamination [26]. Therefore, the loss in the process of multi reflection and absorption,
which is attenuated by the movement and transferring of electric and magnetic dipoles
in the shielding products under certain electric and magnetic fields, is greatly dependent
on the materials’ magnetic permeability, electrical conductivity, and thickness [27]. Xu
et al. [28] studied a waterborne polyurethane composite film with multilayer rGO@Fe3O4
structures, exhibiting an excellent electromagnetic shielding and a low reflection. A similar
approach was taken by Duan and his team members [29] for designing an asymmetric
conductive polymer composite foam with extremely low reflection characteristics as a
shielding material.

However, the X−band frequency range, from 8.2 to 12.4 GHz, is widely used in radar
detection and camouflage applications, and it is applicable to the flexible sample test via the
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rectangular waveguide method [30,31]. To obtain efficient magnetic protective fabrics, this
work studied the effects of particle size on the magnetic performance of functional fabrics
in the X−band. Firstly, a controllable-sized NdFe2O4 NP was developed using the solvent
thermal synthesis method with a microwave synthesizer. The as−prepared NdFe2O4 NPs
with average particle sizes of 90 nm and 230 nm were respectively studied for related
structures and magnetic properties. Then, the functional groups on the surface of the
NPs after modification were connected with rich −OH on cotton fabrics using a bridging
agent for durable interface graft bonding. By using the above method, NdFe2O4 NPs with
spherical shapes, fine dispersions, magnetic properties, and final functional fabrics with
magnetic protective properties were developed. The structure and relevant properties of
the as−prepared NPs and final fabrics were systematically characterized and analyzed.

2. Results and Discussion
2.1. Illustration of the Preparation Process

The detailed preparation process of the functional fabrics is diagrammatically exhibited
in Figure 1, which includes the solvothermal synthesis and surface modification for reliable
magnetic protective fabrics. First, a typical synthesis reaction was successfully performed
to prepare controllable NdFe2O4 NPs. Glyceric acid was then used to improve the reaction
capacity of NPs for further interface bonding. The structural formula of glyceric acid
contains one carboxyl group and two hydroxyl groups. The carboxyl group of glyceric
acid connects with the hydroxyl group on the surface of the particles through dehydration
and condensation to form an ester group, thus obtaining the hydroxylation product of the
nanoparticles. The cotton fabrics were fabricated with a fine appearance and performance
through a weaving machine in our laboratory, and the samples were treated with a NaOH
solution at a concentration of 25% to improve the surface activity for rich hydrophilic
groups. Subsequently, the proper number of moles of DSC were added into the NdFe2O4
NPs dispersion, which acted as a bridge agent between the final fabrics and the NPs. The
carbonated group on one side of the succinamide combined with the hydroxyl group on the
surface of the particle through a dehydration condensation reaction to form an ester bond
at a low temperature (40 ◦C). Meanwhile, the oxygen on the other side of the succinamide
carbonate combined with the hydrogen proton in the hydroxyl group on the surface of the
cotton fiber at a high temperature (80 ◦C). Then, the reliable cotton fabrics with durable
magnetic protective properties were obtained.
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2.2. Characteristics and Magnetic Properties of NdFe2O4 NPs

The crystal forms of Fe3O4, Nd2O3, and NdFe2O4 NPs with different mole ratios of
NaAC were detected though XRD, as shown in Figure 2a. The typical XRD pattern peaks
of Fe3O4 were observed at 30.1◦, 35.4◦, 43.0◦, 56.9◦, and 62.5◦, corresponding to the (220),
(311), (400), (511), and (440) planes, respectively, which were consistent with the Joint
Committee on Powder Diffraction Standards of Fe3O4 (JCPDS Card no: 65−3107) [32].
Furthermore, the typical lattice plane (222) of Nd2O3 at 27.891◦ (JCPDS Card no: 65−3187)
appeared in the corresponding doping curves. Thus, the solvent thermal synthesis of Nd
doping in Fe3O4 was successful in different mole ratios of NaAC, which supports previous
reports. As the NaAC concentration increased from 1;6 to 1;10, the crystallite sizes were
13.2 dm, 13.6 nm, and 14.5 nm, respectively. The trend of the data was not obvious at
this stage. Figure 2b shows a distinct absorption peak located at 582 cm−1 in the patterns,
which could be attributed to the vibration of the Fe−O group that was obtained from the
NdFe2O4 crystal structure [33]. Furthermore, the common peaks at 1046 and 1627 cm−1

corresponded to the hierarchical ether group (−C−O−C−) and carbonyl group (C=O),
respectively [34]. However, the carbonyl group peaks among the three samples were similar
because of the oxidation of hydroxy from PEG in the reducing reaction of partial Fe3+ to
Fe2+ [35]. Considering the influence of the small size effect, some adsorption peaks showed
a slight shift, as shown in the spectrum. However, the characteristic peak of the Nd−O
group was located at 345 cm−1, which was out of this test range and further analyzed by
XPS.
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Figure 2. (a) XRD patterns, and (b) FT−IR patterns of Fe3O4 and NdFe2O4 NPs.

The elemental composition and the corresponding chemical binding energies of each
element were investigated by examining the Fe3O4 and NdFe2O4 NPs at different mole
ratios of NaAC via XPS in Figure 3. The survey scan patterns (Figure 3a) showed the binding
energies of C and O in all the curves, which were located at 286.4 and 529.8 eV, respectively,
while Nd 4d was only observed in the curves of NdFe2O4. The high−resolution peak of Fe
2p and Nd 3d for Fe3O4 and NdFe2O4 NPs were further confirmed in Figure 3b−d. Two
obvious peaks were centered at 710.1 and 724.2 eV, which corresponded to Fe 2p1 and
Fe 2p3 derived from Fe−O bonds, respectively [36]. In addition, the Nd 3d narrow scan
peaks were detected at 974.12, 981.6, 994.4, and 1,003.5 eV, which could be assigned to Nd
3d5A, Nd 3d5B, Nd 3d3A, and Nd 3d3B, respectively [37]. The atomic percent data shown
in Figure 3e indicated the elemental composition of the as-prepared NPs, exhibiting the
successful doping of Nd in the Fe3O4 crystal structure without changing the valence state of
the Fe. The XPS analysis above provides favorable evidence for the successful preparation
and structural confirmation of the Nd doped in Fe3O4 crystal, which were consistent with
the above XRD observations.
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Apart from the element and crystal analysis of the sample, the surface morphology was
also investigated. Figure 4 presents the TEM and SEM images of Fe3O4 and NdFe2O4 NPs
prepared under different parameters together with the high-magnification lattice fringes
and electron diffraction results. The as−prepared NdFe2O4 NPs had regular spherical
structures at major particle sizes of 70−110 nm (Figure 4a,b) in 1:6 NaAc. However, larger
NPs were obtained with a major size range of 200−270 nm (Figure 4d,e) in 1:10 NaAC,
which can be attributed to the different reduction ability in different mole ratios of the Fe
source to NaAC for the formation of the magnetic crystal [38]. Subsequently, the lattice
fringe spacing showed common fringe spacings of 0.253 and 0.296 nm, corresponding to
the (311) and (220) lattice planes from JCPDS Card no: 65−3107, respectively (Figure 4d,f).
The electron diffraction pattern (Figure 4g) of the product displayed evident (220), (311),
(400), (511), and (440) crystal plane electron diffraction signals, which belonged to the
Fe3O4 crustal [39]. In addition, the blue electron diffraction signal of the (222) crystal plane
coincided with the Nd product of JCPDS Card no: 65−3187, which was consistent with
the XRD and XPS results of the above representations [40]. The body elements of NdFe2O4
were Fe, O, Cu, and some Nd in an atomic percentage (Figure 4h). In the measured area,
the atomic percentage of Cu was associated with the test condition of the Cu net for the
weight tray. The atomic percentage of Nd was only 4.34%, whereas that of Fe was 30.12%
and that of O was 49.89%. This result can be attributed to the larger ionic radius of Nd3+

than that of Fe2+ [41], which reduced the crystallization capacity of Nd in Fe3O4. Thus,
the production of Nd was successfully doped into the Fe3O4 crystal structure, which was
consistent with the above XPS observations.
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diffraction, and (h) EDS pattern of NdFe2O4 NPs at 1:10 NaAC.

The magnetization performances of the obtained NdFe2O4 NPs were measured using
VSM, and their hysteresis loops with closed “S” shapes are shown in Figure 5a. The
saturation magnetization values of the samples were 27.03, 46.89, and 48.00 emu.g−1,
indicating the differences in magnetization capacity [42]. Combined with the corresponding
TEM results, NPs with a small particle size (at a mole ratio of 1:6) showed low saturation
magnetization value of 27.03 emu.g−1, but it was close to 48 emu.g−1 for samples prepared
at higher exposure times to NaAC, possibly because of the effect of particle size in different
mole ratio of the iron source to NaAC. Thus, the particle size plays a key role in determining
magnetism properties [43]. As shown in the inset picture, the prepared NPs could realize
the rapid switch between good dispersion and absorption on the wall with and without
the action of the magnet [44]. Thus, the as-prepared NPs were well-dispersed in water at
room temperature, thereby promoting their medical and biological protective applications.
The residual magnetization value and coercive force obtained from the enlarged curves
(Figure 5b) are relatively close, which was beneficial for enhancing the following functional
fabrics’ electromagnetic protective performances for the prospective applications [45].
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Particle size analysis was carried out to measure the DLS distribution curves of the
NPs at a 1:6 and 1:10 ratio for three times (Figure 5c,d). The tested particle size was mainly
distributed at approximately 90 and 230 nm, respectively, which was generally consistent
with the SEM and TEM results [46]. However, the polymer dispersity index values of
the obtained NdFe2O4 NPs were between 0.071, 0.111, and 0.121, 0.183, respectively. This
finding indicates a good shape and controllable particle size, and a slightly larger dispersion
rate in 1:10 samples than that of the 1:6 samples, which support the above VSM results.

2.3. Characteristics and Magnetic protective of the Functional Fabrics

Glyceric acid and DSC were selected for the grafting of NdFe2O4 NPs onto cotton
fabrics for durable wearability. The best load rate of the functional fabrics was 1.37% at
room temperature, which can be attributed to the best water absorption of cotton fabrics
following a 25% alkali treatment. The SEM images of the cotton fabrics before and after
alkali treatment at a concentration of 25% are shown in Figure 6a,b. The surface of the fiber
was quite smooth, a rough and etching shape of the cellulose fiber was obtained after the
alkali treatment, and the surface activity was improved, which was useful for the following
grafting of NPs. The sample grafted with a proper amount of the prepared NdFe2O4 NPs is
shown in Figure 6d,e. The as−grafted fabric possessed a uniformly thin layer of nanosheet
structure and showed an adequate grafting response to cellulose fibers. The durability of
the functional fabrics was verified by rubbing the sample thrice and then washing it. The
color fatness to rubbing was observed using a fatness tester, and the results are shown in
Figure 6c,f. Generally, the grade of the color fatness of the grafting fabrics from Figure 6c
was obviously higher than that of Figure 6f after washing and drying three times, and the
specific fatness values of the samples are shown in the corner tables. The grade of color
fatness was close to level-3 in Figure 6f, which is consistent with the ordinary outwear
clothing fabrics’ value based on the ISO105/A03−1993 and GB/T251-2008 standards [47].
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The permanent and reliable interface grafting is a safeguard for the subsequent fastness
problem in the wearing and washing process of the protective fabrics.
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In general, when the prepared magnetic nanoparticles were grafted onto the surface
of the cotton fabrics in a gradient, their small particles were evenly scattered. This process
allows for their use in electric and magnetic property testing and analysis. When the
test frequency of electromagnetic wave radiation was incident upon the surface of the
functional fabric, its magnetic energy was partially reflected in the fabric’s interior into the
air as heat energy. Furthermore, the second part was absorbed by the multiple reflections
on the functional component through dielectric and magnetic loss in the interior of the
fabrics [48]. Finally, the transmitted radiation was evidently attenuated to a low value for
the electromagnetic protective materials, as shown in Figure 7a. Figure 7b presents the
electromagnetic property parameters of the obtained sample under the frequency range
of 8.2−14.2 GHz in the X band, including the real and imaginary part, and the dielectric
and magnetic loss were also calculated [49]. In addition, the imaginary parts would be
transferred to each other until the end of the loss by the functional body through dielectric
and magnetic loss [50]. These losses are often verified based on several electromagnetic
parameters, such as permeability and permittivity. Furthermore, the real permeability
ε’ and permittivity µ’ are connected to the dispassion capacity of the test fabric, and the
imaginary parts µ” and ε” are related to the degradation capability of the electromagnetic
energy, respectively [51]. The dielectric loss (tanδe = ε”/ε’) and magnetic loss (tanδm = µ”/µ’)
curves of the fabric were generated (Figure 7c). The ε’ values were near 2.5, and the µ’
values floated around 2. When the frequency was under 9 GHz, the µ’ and µ” values
showed a downtrend, which could be attributed to the magnetic dipoles’ movement for
the magnetic loss property of NdFe2O4 [52]. However, the ε” and µ” values were relatively
low, indicating a difficulty in transferring the electric and magnetic field forces [53]. The
as-prepared fabrics exhibited a weak conductive ability, as shown in Figure 7d,e, which
could be attributed to the magnetite NdFe2O4 NPs’ low interior motion of the magnetic
dipole in varying magnetic fields for transferring electric fields, thus supporting the results
in Figure 7b,c [54]. In comparison with the existing samples, the fabrics with different NPs
had little difference in their specific capacitance (Cp) values and dielectric constants. The
best Cp value was 0.0551 F/g, which was recorded from the fabric with NPs at 1:6 NaAC,
and this value could be calculated based on the area of the curve through the CV results in
Figure 7d. Furthermore, Figure 7e exhibits a different dielectric capacity for the obtained
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samples with a slight discrepancy in the curve radian. The double Ohm curve for such
fabric with NPs at 1:6 NaAC also showed the lowest curve radian for the best dielectric
property, which was consistent with the results in Figure 7d [55,56].
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The stability of the functional fabrics at high temperatures was evaluated based on their
magnetic susceptibility under a changing temperature M−T curve and magnetizing M−H
curve. The samples exhibited fine magnetic properties and magnetic loss performances
as the temperature increased from 300 K to 800 K (Figure 7f), and the magnetization
ability decreased sharply from 3.3 emu.g−1 to close to 0 emu.g−1, thus confirming the
loss velocity of magnetic properties in hot environments [57]. Furthermore, the three
as-prepared samples exhibited obvious differences in magnetic properties from Figure 7g
and the enlarged picture Figure 7h. The fine magnetic value of the functional fabric with
NdFe2O4 NPs at 1:10 NaAC was 17.61 emu.g−1, which was higher than 12.67 emu.g−1 for
the sample with 1:8 NaAC and 4.89 emu.g−1 for the sample with 1:6 NaAC, which belonged
to the reduction action of different mole ratios of NaAC in the synthesis process [58,59].
The as-prepared fabrics with NdFe2O4 NPs showed fine magnetic properties with weak
dielectric properties that need to be improved, proving the effect of the obtained particle
size on the electromagnetic properties for the finally functional protective fabrics.
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3. Experiment
3.1. Materials

All the reagents, including ferric trichloride (FeCl3·6H2O), neodymium trichloride
(NdCl3·6H2O), polyethylene glycol (PEG), ethylene glycol (EG), sodium acetate (CH3COONa,
NaAC), glyceric acid (C3H6O4), N,N′−dissuccinimide carbonate (C9H8N2O7, DSC), and
alkali (NaOH) were obtained from Aladdin Industrial and Sinopharm Reagent Corporation.
Ultrapure water with a conductivity of 18.33 Ω/cm was prepared using a deionizing water
purification system (PT−10T, Hitech Instruments Co., Ltd., Shanghai, China). Natural
cotton yarn with a fitness of 2 × 32S was provided by Haian Country Lianci Textile Co.,
Ltd. (Nantong, China).

3.2. Synthesis of Nd3+-doped Fe3O4 NPs

Spherical Fe3O4 NPs with uniform structures were prepared using a repeated syn-
thesis method similar to the process described in our previous study [9]. Approximately
0.15 moles of NdCl3·6H2O were added to the FeCl3 solution, and the mixture was homoge-
neously dispersed and placed into a Teflon−lined container for the solvothermal reaction.
Then, the NdFe2O4 NPs were obtained. The mole ratio of NaAC, a key reduction agent,
was varied at different times: 1:6, 1:8, and 1:10 times as much as iron. Furthermore, a
solvothermal reaction time of 12 h resulted in controllable sized NdFe2O4 NPs.

3.3. Preparation of Functional Fabrics with Modified NPs

First, plain weave fabrics with 2 × 32S cotton yarns were finished through a proofing
rapier loom (Y300S, Automatic Rapier Loom Machine, Nantong, China) at 240 yarns per
10 cm centimeters in both warp and weft directions. The cotton fabrics were then subjected
to alkali treatment for the optimization of water absorption for the subsequent functional
finishing. The alkali treatment was conducted at concentrations of 15%, 20%, 25%, and 30%.
The best alkali treatment concentration on the cotton fabric was found to be 25%, resulting
in 10.37% water absorption. The obtained NdFe2O4 NPs were modified using glyceric acid,
allowing a connection with −OH on the cotton fabric through a bridging agent, DSC. The
prepared samples were washed thrice and dried to remove the residual reagent.

3.4. Characterizations

The morphology of the NPs and functional fabrics were observed using a TM4000Plus
scanning electron microscope (SEM, Hitachi, Japan) and a JEM−2100Plus transmission
electron microscope (TEM, Jeol, Japan) connected with an energy dispersive X−ray (EDS,
Jeol, Japan). X−ray powder diffraction (XRD, Bruker−D8, 10−70◦, Germany), IS50 Fourier
infrared spectroscopy (FT−IR, Nicolet 6700, America) with KBr pellets, dynamic light
scattering (DLS, Vasco, Portugal), and X−ray photoelectron spectroscopy (XPS, Thenno,
ESCALAB250, America) were carried out. The magnetic properties of the obtained nanopar-
ticles and fabrics were analyzed using the Lake Shore 7307 vibrating sample magnetometer
(VSM) from−20 KOe to 20 KOe at room temperature and a physical property measurement
system (PPMS, Quantum Design PPMS 9) at 300−800 K. The color fatness to the rubbing
of fabrics was detected using an instrument (YG5711−II, Meibon Instruments Co., Ltd.,
Quanzhou, China). The electrical properties of the fabrics were tested using an electro-
chemical working station measurement (PGSTAT302N, Metrohm Autolab, Kanaalweg,
The Netherlands). The electromagnetic wave absorption performance of the samples was
measured using an N5234A vector network analyzer (VNA, Agilent, Santa Clara, CA,
America) based on a wave−guide method from 8.2 GHz to 12.4 GHz.

4. Conclusions

Novel Nd3+−doped Fe3O4 nanoparticles based on a microwave synthesis method
and a surface modification were grafted onto cotton fabrics, and their magnetic protective
properties were examined. The structural characterization of the obtained doping nanopar-
ticles showed a spherical shape and a good dispersion for fine magnetic properties that
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can be attributed to the contribution of nano−structural spinel ferrite. In addition, the
controllable particle size was confirmed for the electromagnetic properties of the obtained
nanoparticles and final fabrics. The surface modification on NdFe2O4 nanoparticles and
alkali treatment on cotton fabrics for rich hydrophilic groups were further determined
using a bridging agent for durable interface bonding, and the samples showed fine color
fatness to rubbing at level−3 after washing. The final structure and obvious hysteresis loop
results of the obtained fabrics had a maximum magnetic saturation value of 17.61 emu.g−1

and weak electric properties for magnetic protective applications. However, the synthesis
and surface modification method, which involved a grafting reaction, can also be applied
for the preparation of other similar controllable nanoparticles for further functional fabric
studies and product development, showing good universality.
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