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Abstract: Rhodium-catalyzed reactions of 2-ethynyl-3-pentamethyldisilanylpyridine derivatives
(1 and 2) are reported. The reactions of compounds 1 and 2 in the presence of catalytic amounts
of rhodium complexes at 110 ◦C gave the corresponding pyridine-fused siloles (3) and (4) through
intramolecular trans-bis-silylation cyclization. The reaction of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)
pyridine with 3-phenyl-1-propyne in the presence of PdCl2(PPh3)2-CuI catalysts afforded 1:2 bis-
silylation adduct 6. DFT calculations were also performed to understand the reaction mechanism for
the production of compound 3 from compound 1.

Keywords: rhodium-catalyzed reaction; trans-bis-silylation; silole; DFT calculation; 2-ethynyl-3-
pentamethyldisilanylpyridine; cyclic silicon compound; Sonogashira coupling reaction; palladium-
catalyzed reaction; copper-catalyzed reaction; energy diagram

1. Introduction

Various synthetic methods of organosilicon compounds have been reported so far [1].
Silicon-containing compounds, due to their unique physical and chemical properties,
are attractive as candidates for optical and electronic materials such as organic thin film
transistors, organic light-emitting diodes, and organic photovoltaics [2–7]. In particular, the
synthesis and properties of silole derivatives with low-lying LUMO have been extensively
studied. The bis-silylation of unsaturated carbon compounds, which provides two silicon-
carbon bonds simultaneously, has been developed [8–23]. Bis-silylation reactions using
various substrates have been reported so far, but most of them are cis-additions of a
silicon–silicon bond to unsaturated compounds. This severely limits the practicality of the
method. It seems to be very important that trans-bis-silylation of alkynes can be carried
out easily and successfully. There are several reports on the trans-bis-silylation reactions of
alkynes. In 2012, Matsuda and co-workers showed the possibility of a trans-selective bis-
silylation reaction of the C–C triple bond in the Rh(I)-catalyzed intramolecular cyclization of
specific (2-alkynylphenyl)disilanes [18]. The reaction mechanism of the rhodium-catalyzed
reactions has not yet been clarified.

Recently, we reported that the reactions of 2-bromo-3-(pentamethyldisilanyl)pyridine
with ethynylbenzene derivatives in the presence of PdCl2(PPh3)2-CuI as catalysts afforded
the corresponding pyridine-fused siloles through intramolecular trans-bis-silylation [24].
DFT calculations for the above reaction were performed to rationalize the formation of
trans-bis-silylation adducts via cis-bis-silylation adducts. We also demonstrated that the
similar reactions of 2-bromo-3-(pentamethyldisilanyl)pyridine with alkynes having bulky sub-
stituents, such as ethynyltrimethylsilane, produced 2-ethynyl-3-pentamethyldisilanylpyridine
derivatives arising from Sonogashira-coupling reactions [24]. Pyridine-containing materials
have been examined for their optical and physical properties, as well as their medical
potential [25].
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It is of considerable interest to us to investigate the chemical behavior of 2-ethynyl-
3-pentamethyldisilanylpyridine derivatives in the presence of rhodium catalysts to syn-
thesize pyridine-fused silole derivatives. In this paper, we report the rhodium-catalyzed
reactions of 2-ethynyl-3-pentamethyldisilanylpyridine derivatives, and DFT calculations
to investigate the energy and structural changes in the synthesis route from 3-(1,1,2,2,2-
pentamethyldisilanyl)-2-(trimethylsilylethynyl)pyridine (1) to trans-bis-silylation product 3.

2. Results and Discussion
2.1. Synthesis and Reactions

The starting compound, 3-(1,1,2,2,2-pentamethyldisilanyl)-2-(trimethylsilylethynyl)
pyridine (1), was prepared by the Sonogashira coupling reaction of 2-bromo-3-(1,1,2,2,2-
pentamethyldisilanyl)pyridine with ethynyltrimethylsilane in triethylamine [24]. It was
shown that base desilylation can be accomplished in potassium carbonate/methanol to
produce 2-ethynyl-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine (2) (Scheme 1).
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Scheme 1. Synthesis of compounds 1 and 2.

We first examined the reaction of compound 1 in the presence of Di-µ-chloro-tetracarbo
nyldirhodium(I), [RhCl(CO)2]2. The treatment of compound 1 in the presence of a catalytic
amount of [RhCl(CO)2]2 in refluxing toluene for 12 h gave 1,1-dimethyl-2,3-bis(trimethylsilyl)-
1H-silolo(3,2-b)pyridine (3) in 46% yield (Scheme 2). Many unidentified products were
detected in the reaction mixture by GLC and GPC. Compound 3 was obtained via the
intramolecular trans-bis-silylation of compound 1. The structure of compound 3 was verified
by spectroscopic analysis. The mass spectrum for compound 3 showed parent ions at m/z
305, corresponding to the calculated molecular weight of C15H27NSi3. The 1H NMR spectrum
for compound 3 showed signals at 0.29, 0.34, and 0.38 ppm due to the methyl protons on the
silicon atoms, and three doublets of doublet signals at 6.98, 7.73, and 8.46 ppm due to the
pyridyl ring protons. The 29Si NMR spectrum for compound 3 showed signals at −9.8, −6.6,
and 10.1 ppm.

The intramolecular trans-bis-silylation of compound 1 proceeded in the presence
of [RhCl(nbd)]2 (nbd = norborna-2,5-diene) to afford compound 3 in 6% yield. Many
unidentified products were detected in the reaction mixture by GLC and GPC. Similar
reactions of compound 1 in the presence of RhCl(PPh3)3 gave compound 3 in 5% yield. The
starting compound 1 was recovered (87%) (Table 1).
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Table 1. Synthesis of silole derivatives 3 and 4. Compounds 1 and 2 were reacted in toluene at 110 ◦C
for 12 h in the presence of rhodium catalysts (10 mol%).

Starting Isolated Yield with

Compound [RhCl(CO)2]2 [RhCl(nbd)]2 [RhCl(PPh)3]3

1 46% 6% 5%

2 48% 5% 0%

The reactions of 2-ethynyl-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine (2) bearing a
terminal alkyne moiety in the presence of a catalytic amount of [RhCl(CO)2]2 afforded
1,1-dimethyl-3-(trimethylsilyl)-1H-silolo(3,2-b)pyridine (4) in 48% yield. The [RhCl(nbd)]2
catalyzed reaction of compound 2 afforded compound 4 in 5% yield. Many unidentified
products were detected in the reaction mixture by GLC and GPC. When RhCl(PPh3)3 was
used as the catalyst, compound 2 failed to yield compound 4. The starting compound 2
was recovered (80%) (Table 1).

We carried out the Sonogashira coupling reaction of 2-bromo-3-(1,1,2,2,2-pentamethyld
isilanyl)pyridine with 3-phenyl-1-propyne in triethylamine to obtain 2-(benzylethynyl)-
3-(1,1,2,2,2-pentamethyldisilanyl)pyridine (5). When a mixture of 2-bromo-3-(1,1,2,2,2-
pentamethyldisilanyl)pyridine and 1.9 equivalent of 3-phenyl-1-propyne in the presence
of a catalytic amount of PdCl2(PPh3)2-CuI was heated to reflux in triethylamine, inter-
molecular bis-silylation product 6 produced from the reaction of compound 5 with 3-
phenyl-1-propyne was obtained in 23% yield (Scheme 3). No compound 5, which is a 1:1
adduct of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine and 3-phenyl-1-propyne,
was detected by spectroscopic analysis. The similar reaction of 2-bromo-3-(1,1,2,2,2-
pentamethyldisilanyl)pyridine with slightly less (0.96 equivalent) 3-phenyl-1-propyne gave
compound 6 in 12% yield based on 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine. All
attempts to obtain compound 5 were unsuccessful. The 1H NMR spectrum for compound 6
revealed two signals at 0.10 and 0.45 ppm due to the methylsilyl protons and a signal at
6.18 ppm attributed to olefinic proton, as well as methylene protons, phenyl, and pyridyl
ring protons. The 13C NMR spectrum of compound 6 showed two resonances at 26.3 and
37.6 ppm, attributed to methylene carbons, and two resonances at 85.7 and 106.4 ppm due
to sp carbons, as well as methylsilyl carbons and phenyl, pyridyl ring, and olefinic carbons.
Its 29Si NMR spectrum showed two signals at −22.2 and −3.3 ppm.
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We carried out the reaction of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine
with 1-hexyne in the presence of a PdCl2(PPh3)2-CuI catalyst. Many products were de-
tected in the reaction mixture by GLC and GPC, and all attempts to isolate 2-(hex-1-yn-
1-yl)-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine, analogous to compounds 1 and 2 were
unsuccessful [24]. The reactions of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine
with 1-octyne, 1-ethynylcyclohexene and ethynylcyclohexane did not afford 2-ethynyl-3-
(1,1,2,2,2-pentamethyldisilanyl)pyridine derivatives. Many products were also detected in
the reaction mixture by GLC and GPC.

Scheme 4 illustrates a possible mechanistic interpretation of the reaction course. Due
to the steric hindrance, the [RhCl(CO)2]2 binuclear complex decomposed into monomer
complex RhCl(CO)x. A neutral RhCl(CO)x is the real catalytic species. The coordination
of RhCl(CO)x to compound 1 resulted in model 0, where the Si-Si bond was only slightly
stretched from 1 (2.393 Å from 2.389 Å when x = 1). Therefore, model 0 is not shown in
Scheme 4, but was included in the DFT calculations, as shown in Supplementary Materials
as Figures S15 and S23. By way of TS 0–1, the Si-Si bond was cleaved and Model 1 was
formed. From Model 1, a trimethylsilyl group on the rhodium atom migrated to the
carbon atom of the C=C bond (Model 2) via TS 1–2. The final change was a crossing
of Me3Si and RhCl(CO)x groups over the C=C bond via TS 2–3. This structure took a
skew configuration, and counted the highest energy along the reaction coordinate (when
x = 1). Model 3 was generated from TS 2–3, and the elimination of rhodium species from
Model 3 afforded compound 3 (Model 3 is not shown in Scheme 4, but is shown in the
Supplementary Materials as Figures S21 and S29).

2.2. Theoretical Study

DFT calculations were conducted for the reaction mechanisms from compound 1 to
compound 3 (trans-bis-silylation product), and also for the corresponding cis-bis-silylation
product, 8-[bis(trimethylsilyl)methylene]-7,7-dimethyl-2-aza-7-silabicyclo [4.2.0]octa-1,3,5-
triene, for comparison. The Gaussian09 program package [26] was employed along with
the Becke’s three-parameter Lee–Yang–Parr hybrid functional [27]. Los Alamos effective
core potentials [28] and the Dunning/Huzinaga full double basis sets [29] were used for
the Rh atom. The 6-311G(d) basis sets were used for H, C, N, O, Si, and Cl atoms.

Firstly, transition states (TSs) were searched based on Scheme 4. Then, for each TS,
the intrinsic reaction coordinate (IRC) [30] was evaluated for both directions (reactant and
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product). At the end of IRC, normal optimization was followed until the two local minima
(LMs) were reached.
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Scheme 4. Proposed Mechanism for the Production of Compound 3.

Two catalyst models were used: RhCl(CO)2 and RhCl(CO) in the DFT calculations.
The former is formed by the decomposition of [RhCl(CO)2]2, and the latter is formed by
the disproportionation of the former, i.e., 2RhCl(CO)2 → RhCl(CO) + RhCl(CO)3.

Model 0 is a combined system of compound 1 and RhCl(CO)x. The reaction proceeded
in the order of Model 0→ TS 0–1→Model 1→ TS 1–2→Model 2→ TS 2–3→Model 3
(compound 3 + RhCl(CO)x). Model 3 corresponds to compound 3 with Rh complex. All the
optimized structures for LMs and TSs on the trans route are shown in the Supplementary
Materials (Figures S13–S29). The energy change, along the reaction coordinate, are shown
in Figure 1.
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Figure 1. Energy diagrams for Model 0 [compound 1 + RhCl(CO)x] to Model 3 [compound 3 +
RhCl(CO)x] at the B3LYP/6-311G(d) level of theory. SCF energies (broken line) and free energies
(solid line) are plotted for the RhCl(CO) model (black color) and the RhCl(CO)2 model (red color).

For comparison, the reaction mechanisms from compound 1 to compound 3b, 8-
[bis(trimethylsilyl)methylene]-7,7-dimethyl-2-aza-7-silabicyclo [4.2.0]octa-1,3,5-triene (cis-
bis-silylation product), were also investigated based on Scheme S1 in the Supplementary
Materials. All the LMs and TSs on the cis route are shown in the Supplementary Materials as
Figures S30–S37. The energy change, along the reaction coordinate, are shown in Figure 2.
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Figure 2. Energy diagrams for Model 0 [compound 1 + RhCl(CO)x] to Model 3B [cis-bis-silylation
product + RhCl(CO)x] at the B3LYP/6-311G(d) level of theory. SCF energies (broken line) and free
energies (solid line) are plotted for the RhCl(CO) model (black color) and the RhCl(CO)2 model
(red color).

Figures 1 and 2 show the SCF energy and the free energy, referring to the sum of
energies of [RhCl(CO)2]2 and compound 1, where the destabilization due to decomposition
or disproportionation was taken into consideration. Both of the energies changed in parallel,
and the location of the rate determining step did not depend on the two criteria.
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Adopting the free energy, the rate determining steps were TS 2–3 and TS 2–3B for
the trans and cis routes, and their activation energies were 169 and 189 kJ mol−1, respec-
tively, with the RhCl(CO) model. With the RhCl(CO)2 model, the rate determining step
for the cis route was TS 2–3B with an activation energy of 170 kJ mol−1; however, the rate
determining step for the trans route was TS 0–1 with an activation energy of 123 kJ mol−1.
Thus, both of the calculation models afforded the same result: that the trans-bis-silylation
is the more stable product with respect to the activation energy, in accordance with our
experimental result. Although the reactions with the RhCl(CO) model seem to proceed
on the lower potential energy surfaces, the RhCl(CO)2 mode is a more promising catalyst
for two reasons. (1) The activation energies for the rate determining step were 169 and
123 kJ mol−1 with RhCl(CO) and RhCl(CO)2 modes for the trans route. (2) The destabi-
lization by disproportionation ([RhCl(CO)2]2 → RhCl(CO) + RhCl(CO)3) was 117 and
59 kJ mol−1 for the SCF and free energies. On the other hand, the decomposition energies
([RhCl(CO)2]2 → 2RhCl(CO)2) were 30 and −36 kJ mol−1, respectively. At the free energy
level, the decomposition became stabilization. The present work is the first to investigate
the two catalyst models intensively.

3. Conclusions

We have described here the rhodium-catalyzed reactions of 2-ethynyl-3-(1,1,2,2,2-pentame
thyldisilanyl)pyridine derivatives. The reactions of 3-(1,1,2,2,2-pentamethyldisilanyl)-2-(trimet
hylsilylethynyl)pyridine (1) in the presence of a catalytic amount of rhodium complexes
proceeded to give the pyridine-fused silole, 1,1-dimethyl-2,3-bis(trimethylsilyl)-1H-silolo(3,2-
b)pyridine (3). Similar treatment of 2-ethynyl-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine
(2) afforded 1,1-dimethyl-3-(trimethylsilyl)-1H-silolo(3,2-b)pyridine (4). DFT calculations
were performed to rationalize the formation of compound 3 via the intramolecular trans-
bis-silylation of compound 1. The synthesis of 2-(alkyl-substituted ethynyl)-3-(1,1,2,2,2-
pentamethyldisilanyl)pyridine was unsuccessful.

4. Materials and Methods
4.1. General Procedure

All reactions were carried out under an inert atmosphere using dry nitrogen. NMR
spectra were recorded on a JMN–ECS400 spectrometer using a deuteriochloroform solution.
Low-resolution mass spectrometry was performed on a JEOL JMS-700 mass spectrometer.
High-resolution mass spectrometry (HR-MS) was performed on a JEOL JMS-700 mass spec-
trometer. Gas chromatographic separations were carried out using a column (3 m× 10 mm)
packed with 30% silicone on chromosorb W AM DMCS 80/100. Gel permeation chromato-
graphic analysis was performed with a Model LC-908 Recycling Preparative HPLC (Japan
Analytical Industry Co., Ltd., Tokyo, Japan). Column chromatography was performed
using a silica gel column (Wakogel C–300; Wako Pure Chemical Industries, Osaka, Japan).
Bis(triphenylphosphine)palladium(II) dichloride [PdCl2(PPh3)2], copper(I) iodide (CuI),
Di-µ-chloro-tetracarbonyldirhodium(I) [RhCl(CO)2], Bis(norbornadiene-µ-chlororhodium)
[RhCl(nbd)]2, and tris(triphenylphosphine)rhodium(I) chloride [RhCl(PPh3)3] were pur-
chased from Sigma-Aldrich, St. Louis, MO, USA. Potassium carbonate, triethylamine,
methanol, and toluene were purchased from Tokyo Kasei Kogyo, Tokyo, Japan. Triethy-
lamine was distilled over potassium hydroxide under nitrogen just before use, and toluene
was distilled from sodium benzophenone ketyl under nitrogen just before use. 2-Bromo-3-
(1,1,2,2,2-pentamethyldisilanyl)pyridine was prepared as reported in the literature [24].

4.2. Procedures

Synthesis of Compound 1. In a 300-mL three-necked flask fitted with a stirrer, re-
flux condenser, and dropping funnel, 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine
(6.108 g, 21.2 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.760 g, 1.08 mmol),
and copper(I) iodide (0.214 g, 1.12 mmol) were added to 50 mL of dry triethylamine. To
this mixture, ethynyltrimethylsilane (2.553 g, 26.0 mmol) was added dropwise at room
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temperature. The mixture was heated to reflux for 12 h. The solution was then hydrolyzed,
and the organic layer was separated, washed with water, and dried over anhydrous mag-
nesium sulfate. The solvent was then evaporated, and the residue was chromatographed
on a silica gel column and eluted with hexane-ethyl acetate (10:1) to obtain 1.571 g (24%
yield) of compound 1: 1H NMR δ(CDCl3) 0.09 (s, 9H, Me3Si), 0.27 (s, 9H, Me3Si), 0.45 (s,
6H, Me2Si), 7.17 (dd, 1H, pyridyl-ring proton, J = 7.6, 5.2 Hz), 7.70 (dd, 1H, pyridyl-ring
proton, J = 7.6, 2.0 Hz), 8.51 (dd, 1H, pyridyl-ring proton, J = 5.2, 2.0 Hz). All spectral data
for compound 1 were identical to those of an authentic sample [24].

Synthesis of Compound 2. A mixture of compound 1 (1.571 g, 5.14 mmol), potassium
carbonate (0.982 g, 7.11 mmol), and methanol (50 mL) was stirred at room temperature for
2 h. The reaction mixture was concentrated under reduced pressure, and hexane (15 mL)
and water (30 mL) were added to the residue. The layers were separated and the aqueous
layer was extracted with hexane (4 × 15 mL). The solvent was then evaporated, and the
residue was chromatographed on a silica gel column, eluted with hexane-ethyl acetate
(10:1), to obtain 0.995 g (83% yield) of compound 2: HR-MS: calcd. for C12H19NSi2 (M+):
233.1056, found: 233.1052. MS m/z 233 (M+); 1H NMR δ(CDCl3) 0.10 (s, 9H, Me3Si), 0.44 (s,
6H, Me2Si), 3.24 (s, 1H, HC), 7.21 (dd, 1H, pyridyl ring proton, J = 7.8 Hz, 4.8 Hz), 7.72 (dd,
1H, pyridyl ring proton, J = 7.8 Hz, 2.0 Hz), 8.52 (dd, 1H, pyridyl ring proton, J = 4.8 Hz,
2.0 Hz); 13C NMR δ(CDCl3) −3.7 (Me2Si), 1.3 (Me3Si), 79.5, 85.0 (sp carbons), 122.8, 138.1,
142.0, 146.7, 149.5 (pyridyl ring and olefinic carbons); 29Si NMR δ(CDCl3) −20.7, −17.2.

Reaction of Compound 1 in the Presence of [RhCl(CO)2]2 Catalyst. In a 30 mL two-
necked flask fitted with a reflux condenser were placed 0.375 g (1.23 mmol) of compound 1
and 0.047 g (0.121 mmol) of [RhCl(CO)2]2 in 5 mL of dry toluene. The mixture was heated
to reflux for 12 h. The solution was then hydrolyzed, and the organic layer was separated,
washed with water, and dried over anhydrous magnesium sulfate. The solvent was then
evaporated, and the residue was chromatographed on a silica gel column, eluting with
hexane-ethyl acetate (10:1), to obtain 0.172 g (46% yield) of compound 3: HR-MS: calcd. for
C15H27NSi3 (M+): 305.1451, found: 305.1455. MS m/z 305 (M+); 1H NMR δ(CDCl3) 0.29
(s, 9H, Me3Si), 0.34 (s, 6H, Me2Si), 0.38 (s, 9H, Me3Si), 6.98 (dd, 1H, pyridyl ring proton,
J = 7.2 Hz, 5.2 Hz), 7.73 (dd, 1H, pyridyl ring proton, J = 7.2 Hz, 1.6 Hz), 8.46 (dd, 1H,
pyridyl ring proton, J = 5.2 Hz, 1.6 Hz); 13C NMR δ(CDCl3) −2.7 (Me2Si), 2.5, 2.7 (Me3Si),
120.5, 132.6, 138.1, 149.0, 165.0, 172.0, 176.6 (pyridyl ring and olefinic carbons); 29Si NMR
δ(CDCl3) −9.8, −6.6, 10.1.

Reaction of Compound 1 in the Presence of [RhCl(nbd)]2 Catalyst. In a 30 mL two-
necked flask fitted with a reflux condenser were placed 0.300 g (0.98 mmol) of compound 1
and 0.045 g (0.098 mmol) of [RhCl(nbd)]2 in 5 mL of dry toluene. The mixture was heated
to reflux for 12 h. The solution was then hydrolyzed, and the organic layer was separated,
washed with water, and dried over anhydrous magnesium sulfate. The solvent was then
evaporated and the residue was chromatographed on a silica gel column, eluting with
hexane-ethyl acetate (10:1), to obtain 0.018 g (6% yield) of compound 3. All spectral data
for compound 3 were identical to those of an authentic sample.

Reaction of Compound 1 in the Presence of RhCl(PPh3)3 Catalyst. In a 30 mL two-
necked flask fitted with a reflux condenser were placed 0.575 g (1.88 mmol) of 1 and 0.176 g
(0.190 mmol) of RhCl(PPh3)3 in 5 mL of dry toluene. The mixture was heated to reflux for
12 h. The solution was then hydrolyzed, and the organic layer was separated, washed with
water, and dried over anhydrous magnesium sulfate. The solvent was then evaporated
and the residue was chromatographed on a silica gel column, eluting with hexane-ethyl
acetate (10:1), to obtain 0.030 g (5% yield) of compound 3. The starting compound 1 was
almost recovered (0.502 g). All spectral data for compound 3 were identical to those of an
authentic sample.

Reaction of Compound 2 in the Presence of [RhCl(CO)2]2 Catalyst. In a 30 mL two-
necked flask fitted with a reflux condenser were placed 0.134 g (0.574 mmol) of compound
1 and 0.023 g (0.059 mmol) of [RhCl(CO)2]2 in 5 mL of dry toluene. The mixture was heated
to reflux for 12 h. The solution was then hydrolyzed, and the organic layer was separated,
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washed with water, and dried over anhydrous magnesium sulfate. The solvent was then
evaporated and the residue was chromatographed on a silica gel column, eluting with
hexane-ethyl acetate (10:1), to obtain 0.064 g (48% yield) of compound 4: HR-MS: calcd. for
C12H19NSi2 (M+): 233.1056, found: 233.1060. MS m/z 233 (M+); 1H NMR δ(CDCl3) 0.30
(s, 9H, Me3Si), 0.31 (s, 6H, Me2Si), 6.99 (s, 1H, olefinic proton), 7.00 (dd, 1H, pyridyl ring
proton, J = 7.0 Hz, 5.2 Hz), 7.75 (dd, 1H, pyridyl ring proton, J = 7.0 Hz, 2.0 Hz), 8.48 (dd,
1H, pyridyl ring proton, J = 5.2 Hz, 2.0 Hz); 13C NMR δ(CDCl3) −4.3 (Me2Si), −1.0 (Me3Si),
120.6, 132.3, 138.7, 148.4, 149.6, 168.7, 170.7 (pyridyl ring and olefinic carbons); 29Si NMR
δ(CDCl3) −6.4, 2.9.

Reaction of Compound 2 in the Presence of [RhCl(nbd)]2 Catalyst. In a 30 mL two-
necked flask fitted with a reflux condenser were placed 0.130 g (0.557 mmol) of compound
1 and 0.025 g (0.054 mmol) of [RhCl(nbd)]2 in 5 mL of dry toluene. The mixture was heated
to reflux for 12 h. The solution was then hydrolyzed, and the organic layer was separated,
washed with water, and dried over anhydrous magnesium sulfate. The solvent was then
evaporated and the residue was chromatographed on a silica gel column, eluting with
hexane-ethyl acetate (10:1), to obtain 0.007 g (5% yield) of compound 4. All spectral data
for compound 4 were identical to those of an authentic sample.

Reaction of Compound 2 in the Presence of RhCl(PPh3)3 Catalyst. In a 30 mL two-
necked flask fitted with a reflux condenser were placed 0.094 g (0.403 mmol) of compound
2 and 0.037 g (0.040 mmol) of RhCl(PPh3)3 in 5 mL of dry toluene. The mixture was heated
to reflux for 12 h. The solution was then hydrolyzed, and the organic layer was separated,
washed with water, and dried over anhydrous magnesium sulfate. The solvent was then
evaporated and the residue was chromatographed on a silica gel column, eluting with
hexane-ethyl acetate (10:1). The starting compound 2 was recovered (0.075 g).

Reaction of 2-Bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 1.9 equivalent of
3-Phenyl-1-propyne in the Presence of Palladium and Copper Catalysts. In a 300 mL two-
necked flask fitted with a reflux condenser, 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine
(2.675 g, 9.28 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.316 g, 0.450 mmol),
and copper(I) iodide (0.086 g, 0.452 mmol) were added to 50 mL of dry triethylamine. To this
mixture, 3-phenyl-1-propyne (2.091 g, 18.0 mmol) was added dropwise at room temperature,
after which the mixture was heated to reflux for 12 h. The solution was then hydrolyzed, and
the organic layer was separated, washed with water, and dried over anhydrous magnesium
sulfate. The solvent was then evaporated, and the residue was chromatographed on a silica
gel column, eluting with hexane-ethyl acetate (50:1) to obtain 0.933 g (23% yield) of compound
6: HR-MS: calcd. for C28H33NSi2 (M+): 439.2152, found: 439.2150. MS m/z 439 (M+); 1H
NMR δ(CDCl3) 0.10 (s, 9H, Me3Si), 0.45 (s, 6H, Me2Si), 3.14-3.27 (m, 2H, methylene), 3.66 (s,
2H, methylene), 6.18 (br s, 1H, olefinic proton), 7.12−7.35 (m, 11H, phenyl and pyridyl ring
protons), 8.10 (s, 1H, pyridyl ring proton), 8.62 (br d, 1H, pyridyl ring proton, J = 3.2 Hz); 13C
NMR δ(CDCl3) −0.9 (Me3Si), 1.0, 1.3 (MeSi), 26.3, 37.6 (CH2), 85.7, 106.4 (sp carbons), 120.0,
125.9, 126.6, 127.8, 128.3, 128.5, 128.7, 129.5, 136.0, 140.1, 140.6, 143.9, 147.5, 149.7, 165.8 (phenyl,
pyridyl ring, and olefinic carbons); 29Si NMR δ(CDCl3) −22.2, −3.3.

Reaction of 2-Bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 0.96 equivalent of
3-Phenyl-1-propyne in the Presence of Palladium and Copper Catalysts. In a 300 mL two-
necked flask fitted with a reflux condenser, 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine
(1.800 g, 6.24 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.211 g, 0.301 mmol),
and copper(I) iodide (0.057 g, 0.299 mmol) were added to 50 mL of dry triethylamine. To this
mixture, 3-phenyl-1-propyne (0.695 g, 5.98 mmol) was added dropwise at room temperature,
after which the mixture was heated to reflux for 12 h. The solution was then hydrolyzed, and
the organic layer was separated, washed with water, and dried over anhydrous magnesium
sulfate. The solvent was then evaporated, and the residue was chromatographed on a silica
gel column eluting with hexane-ethyl acetate (50:1) to obtain 0.334 g (12% yield based on
2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine) of compound 6. All spectral data for
compound 6 were identical to those of an authentic sample.
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Reaction of 2-Bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 1-Hexyne in the
Presence of Palladium and Copper Catalysts. In a 300 mL two-necked flask fitted with a
reflux condenser, 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine (5.474 g, 19.0 mmol),
bis(triphenylphosphine)palladium(II) dichloride (0.667 g, 0.950 mmol), and copper(I) iodide
(0.181 g, 0.950 mmol) were added to 50 mL of dry triethylamine. To this mixture, 1-hexyne
(3.194 g, 38.9 mmol) was added dropwise at room temperature, after which the mixture
was heated to reflux for 12 h. Many products were detected in the reaction mixture by
GLC and GPC. The solution was then hydrolyzed, and the organic layer was separated,
washed with water, and dried over anhydrous magnesium sulfate. The solvent was then
evaporated, and the residue was chromatographed on a silica gel column, eluting with
hexane-ethyl acetate (10:1). Although the 1H NMR spectrum showed the existence of
2-(hex-1-yn-1-yl)-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine produced from a Sonogashira
coupling reaction of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine and 1-hexyne,
analogous to compounds 1 and 2, all attempts to isolate the compound were unsuccessful.

Reaction of 2-Bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 1-Octyne in the
Presence of Palladium and Copper Catalysts. In a 300 mL two-necked flask fitted with a
reflux condenser, 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine (4.285 g, 14.9 mmol),
bis(triphenylphosphine)palladium(II) dichloride (0.529 g, 0.754 mmol), and copper(I) io-
dide (0.144 g, 0.756 mmol) were added to 50 mL of dry triethylamine. To this mixture,
1-octyne (3.270 g, 29.7 mmol) was added dropwise at room temperature, after which
the mixture was heated to reflux for 12 h. Many products were detected in the reac-
tion mixture by GLC and GPC. The solution was then hydrolyzed, and the organic
layer was separated, washed with water, and dried over anhydrous magnesium sul-
fate. The solvent was then evaporated, and the residue was chromatographed on a silica
gel column, eluting with hexane-ethyl acetate (10:1). No 2-(oct-1-yn-1-yl)-3-(1,1,2,2,2-
pentamethyldisilaneyl)pyridine would be produced from a Sonogashira coupling reaction
of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine, and 1-octyne, analogous to com-
pounds 1 and 2, was not detected.

Reaction of 2-Bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 1-Ethynylcycloh
exene in the Presence of Palladium and Copper Catalysts. In a 300 mL two-necked flask
fitted with a reflux condenser, 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine (1.899 g,
6.59 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.667 g, 0.349 mmol), and
copper(I) iodide (0.068 g, 0.357 mmol) were added to 50 mL of dry triethylamine. To
this mixture, 1-ethynylcyclohexene (1.513 g, 14.3 mmol) was added dropwise at room
temperature, after which the mixture was heated to reflux for 12 h. Many products were
detected in the reaction mixture by GLC and GPC. The solution was then hydrolyzed, and
the organic layer was separated, washed with water, and dried over anhydrous magnesium
sulfate. The solvent was then evaporated, and the residue was chromatographed on a silica
gel column, eluting with hexane-ethyl acetate (10:1). No 2-(cyclohex-1-en-1-ylethynyl)-3-
(1,1,2,2,2-pentamethyldisilanyl)pyridine would be produced from a Sonogashira coupling
reaction of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine, and 1-ethynylcyclohexene,
analogous to compounds 1 and 2, was not detected.

Reaction of 2-Bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with Ethynylcyclo-
hexane in the Presence of Palladium and Copper Catalysts. In a 300 mL two-necked flask
fitted with a reflux condenser, 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine (1.558 g,
5.40 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.175 g, 0.249 mmol), and
copper(I) iodide (0.047 g, 0.247 mmol) were added to 50 mL of dry triethylamine. To this
mixture, ethynylcyclohaxane (1.064 g, 9.84 mmol) was added dropwise at room tempera-
ture, after which the mixture was heated to reflux for 12 h. Many products were detected in
the reaction mixture by GLC and GPC. The solution was then hydrolyzed, and the organic
layer was separated, washed with water, and dried over anhydrous magnesium sulfate.
The solvent was then evaporated, and the residue was chromatographed on a silica gel
column, eluting with hexane-ethyl acetate (10:1). No 2-(cyclohexylethynyl)-3-(1,1,2,2,2-
pentamethyldisilanyl)pyridine would be produced from a Sonogashira coupling reaction
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of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine, and ethynylcyclohexane, analogous
to compounds 1 and 2, was not detected.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28083284/s1, all NMR spectra for compounds 2–4 and 6,
and optimized structures for all local minima (LMs) and transition states (TSs) for trans-bis-silylation
product and cis-bis-silylation product.
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