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Abstract: This work analyzes the performance of 250 electronic structure theory methods (including
240 density functional approximations) for the description of spin states and the binding properties
of iron, manganese, and cobalt porphyrins. The assessment employs the Por21 database of high-level
computational data (CASPT2 reference energies taken from the literature). Results show that current
approximations fail to achieve the “chemical accuracy” target of 1.0 kcal/mol by a long margin. The
best-performing methods achieve a mean unsigned error (MUE) <15.0 kcal/mol, but the errors are at
least twice as large for most methods. Semilocal functionals and global hybrid functionals with a
low percentage of exact exchange are found to be the least problematic for spin states and binding
energies, in agreement with the general knowledge in transition metal computational chemistry.
Approximations with high percentages of exact exchange (including range-separated and double-
hybrid functionals) can lead to catastrophic failures. More modern approximations usually perform
better than older functionals. An accurate statistical analysis of the results also casts doubts on
some of the reference energies calculated using multireference methods. Suggestions and general
guidelines for users are provided in the conclusions. These results hopefully stimulate advances for
both the wave function and the density functional side of electronic structure calculations.
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1. Introduction

Porphyrins are a class of heterocyclic aromatic compounds that bind transition metals
to form a broad family of coordination complexes, mostly known as metalloporphyrins.
Due to their ubiquitous presence in biology and biochemistry—for example, in the active
site of hemoglobin, myoglobin, and the cytochrome P450 family of enzymes—and their
broad applicability as biomimetic catalysts, porphyrins have been extensively studied both
experimentally and computationally [1–11]. The presence of the metal makes porphyrins
challenging for electronic structure calculations due to several low-lying, nearly degenerate
spin states [12–18]. Multireference treatments, such as those based on active-space meth-
ods such as CAS-SCF/CASPT2 (CAS = complete active space, SCF = self-consistent field,
PT2 = Møller-Plesset perturbation theory truncated at second order), are usually necessary
to correctly describe porphyrins and related compounds, as shown, for example, by Pierloot
et al. [4,5]. Such calculations are not easily affordable due to their high computational cost
and are usually limited to small systems. Variants such as the multiconfiguration pair-
density functional theory (MC-PDFT) of Truhlar and Gagliardi et al. [19] appear promising
for production calculations [9]. Single-reference methods based on Kohn–Sham (KS) density
functional theory (DFT) account for static and dynamic correlation—at least in an approxi-
mate manner [20–22]—and thus represent a competitive alternative to multiconfigurational
methods for large systems. In KS DFT, however, the accuracy of the approximation severely
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impacts the reliability of the calculated results [23–27], and choosing an appropriate func-
tional might be a daunting task [28–31]. Benchmarking functional approximations is an
effective way to understand the reliability of a functional against a wide range of chemical
properties [23–27,32,33]. At the time of writing this article, no benchmark study aimed
at assessing KS DFT calculations for metalloporphyrins is available in the literature. The
main goal of this paper is to provide such a benchmark. This study reports calculations
on spin state energy differences and binding properties of different metal porphyrins with
250 electronic structure methods, including 240 exchange-correlation functional approxi-
mations (a large majority of the functionals available in most electronic structure software).
Suitable recommendations for choosing an appropriate electronic structure method for the
computational study of porphyrins are provided at the end of Section 2.

2. Results and Discussion
2.1. Best Performers and General Trends

To concisely present the results for all 250 methods, we assigned grades to each
functional based on their percentile ranking, as reported in Table 1. We note in passing
that most of the grades obtained for the entire Por21 database are transferable to the
PorSS11 and PorBE10 datasets (the individual rankings for the subsets are reported in the
Supplementary Materials). We set the threshold for a passing grade of D or better at the 60th
percentile, corresponding to an MUE for Por21 of 23.0 kcal/mol. A total of 106 functionals
achieved a passing grade, almost equally distributed among the grades A–D. Most of the
grade-A functionals are local, either GGAs or meta-GGAs, with the addition of five global
hybrids with a low percentage of exact exchange (r2SCANh, r2SCANh-D4, B98, APF(D),
O3LYP). The GAM functional is the overall best performer for the Por21 database, ranking
first for PorSS1 and second for PorBE10. Other notable grade-A functionals are all four
parameterizations of HCTH and several revisions of SCAN, namely, rSCAN, r2SCAN, and
r2SCANh. The three revisions perform better than the original functional, which has a
grade of D. In particular, the r2SCANh and its -D4 variant stood out, with improvements
larger than 50% over the errors obtained with SCAN. These results are consistent with
other findings in the literature [34]. Three local Minnesota functionals are also in class
A: revM06-L, M06-L, and MN15-L. These three functionals—together with r2SCANh and
r2SCAN mentioned above—currently represent the best compromise between accuracy
for general properties and accuracy for porphyrins chemistry and are at the top of our
suggestion list (see below). For spin state energy differences, the results obtained in this
work are consistent with the accepted knowledge that local functionals tend to stabilize
low or intermediate spin states. In contrast, hybrid functionals stabilize higher spin states
by including exact exchange [12,35].

Looking at the results for individual systems, we noticed that most functionals (233 out
of 250) predict a triplet ground state for the iron porphyrin (FeP) system, while the CASPT2
reference predicts a quintet ground state (vide infra). Three top performers (GAM, HISS,
and MN15-L) agree with the reference. The other results involving Fe(III) spin states
also appear erratic. For the pentacoordinate FePOH system, 60% of the functionals agree
with the CASPT2 references, predicting the high-spin state as the ground state. For the
hexacoordinate FePNH3OH system, 72% of the functionals predict the ground state to be
either the low- or intermediate-spin state, in contrast to the CASPT2 reference data. Finally,
90% of the methods predict the ground state of the d7 cobalt porphyrin to be a quartet,
with spin state energy differences ranging from 1 to 90 kcal/mol (the CASPT2 reference is
0.90 kcal/mol in favor of the high-spin configuration). These results cast some doubts on
the reference spin state energies for porphyrin containing Fe(III) and Co(II).

For most functionals, the binding energies of the iron porphyrin with CO and NO
appear unproblematic, regardless of the presence or absence of the imidazole ring. 90% of
the functionals correctly predict the bound complexes to be more stable than the separate
molecular fragments. The description of the binding with molecular oxygen appears to
be more challenging: 60% of the methods predict the unbound FeP to be more stable than
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the FePO2 adduct, while only 25% of the methods predict the porphyrin-imidazole system
to be more stable when unbound. This trend is observed for global hybrid functionals
and range-separated functionals in both systems, and there is no apparent correlation
between the stability of the adducts and the percentage of exact exchange employed in the
functional form.

Table 1. List of methods examined in this study and their overall grade based on the MUE for Por21.
Functionals are listed in alphabetical order, and grades are assigned based on percentile ranking,
corresponding to the following thresholds: A: MUE < 14.3 kcal/mol; B: MUE < 17.1 kcal/mol; C:
MUE < 20.0 kcal/mol; D: MUE < 23.0 kcal/mol; F: MUE > 23.0 kcal/mol. The dispersion corrections
are covered in [24,36–46], unless noted otherwise. The MUEs were calculated from the CASPT2
reference energies; see the ‘Material and Methods’ section for further details. See also the Supporting
Information for results on the PorSS11 and PorBE10 subsets.

Functional Grade Functional Grade Functional Grade

APF [47] A HFLYP [48–51] F PKZB [52] D
APFD [47] A HFPW92 [48–50,53] F PM6 [54] F
B2PLYP F HISS [55] A PM7 [56] F
B2PLYP-D3(0) F HSE-HJS [57–59] B PW6B95 [60] D
B2PLYP-D3(BJ) F HSE-HJS-D3(0) B PW6B95-D2 [61] C
B2PLYP-D4 F HSE-HJS-D3(BJ) B PW6B95-D3(0) D
B3LYP [51,62,63] C LC-ωPBE08 [64] F PW6B95-D3(BJ) D
B3LYP-D2 C LC-ωPBE08-D3(0) F PW6B95-D3(CSO) F
B3LYP-D3(0) C LC-ωPBE08-D3(BJ) F PW91 [65] F

B3LYP-D3(BJ) C LC-ωPBE08-
D3M(BJ) F PWB6K [60] F

B3LYP-D3(CSO) C LRC-ωPBE [66] F PWB6K-D3(0) F
B3LYP-D3M(BJ) C LRC-ωPBEh [66] F PWB6K-D3(BJ) F
B3LYP-D4 C M05 [67] D PWPB95-D3(BJ) F
B3LYP-NL [68] C M05-2X [69] F PWPB95-D4 F
B3LYP* [70] F M05-2X-D3(0) F r++SCAN [71] B
B3LYP*-D3(0) F M05-D3(0) D r2SCAN [72] A
B3LYP*-D3(BJ) F M06 [73] B r2SCAN-D4 [74] A
B3P86 [62,63,75] C M06-2X [73] F r2SCAN0 [76] C
B3PW91 [62,63,65] C M06-2X-D2 F r2SCAN0-D4 [76] B
B3PW91-D2 C M06-2X-D3(0) F r2SCANh [76] A
B3PW91-D3(0) C M06-D2 B r2SCANh-D4 [76] A
B3PW91-D3(BJ) C M06-D3(0) B r4SCAN [71] C
B97 [77] C M06-HF [78] F regTM [79] F
B97-1 [80] C M06-HF-D3(0) F revM06 [81] F
B97-1-D2 [61] C M06-L [82] A revM06-L [83] A
B97-2 [84] B M06-L-D2 [61] A revM11 [85] F
B97-2-D2 [61] B M06-L-D3(0) A revPBE [86] D
B97-3 [87] D M08-HX [88] F revPBE-D2 D
B97-3-D2 [61] D M08-SO [88] F revPBE-D3(0) D
B97-3c [89] B M11 [90] F revPBE-D3(BJ) F
B97-D [91] A M11-D3(BJ) F revPBE-NL [68] F
B97-D2 [36] C M11-L [92] F revPBE0 [57,86,93] B
B97-D3(0) C M11-L-D3(0) F revPBE0-D3(0) B
B97-D3(BJ) C mBEEF [94,95] D revPBE0-D3(BJ) B
B97-K [96] F MN12-L [97] F revPBE0-NL [68] C
B97M-rV [98] C MN12-L-D3(BJ) F revTPSS [99] F
B97M-V [100] C MN12-SX [101] F revTPSSh [102] C
B98 [103] A MN12-SX-D3(BJ) F RPBE [104] D
BLOC [105] F MN15 [25] F RPBE-D3(0) D
BLOC-D3(0) [104] F MN15-L [106] A RPBE-D3(BJ) F
BLYP [51,62] F mPW91 [65,107] F rPW86PBE [57,108] F
BLYP-D2 F MS0 [109] F rPW86PBE-D3(0) F
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Table 1. Cont.

Functional Grade Functional Grade Functional Grade

BLYP-D3(0) F MS0-D3(0) [110] F rPW86PBE-D3(BJ) F
BLYP-D3(BJ) F MS1 [110] F rregTM [111] F
BLYP-D3(CSO) F MS1-D3(0) [110] F rSCAN [71,112] A
BLYP-D3M(BJ) F MS2 [110] F rSCAN-D4 [74] B
BLYP-D4 F MS2-D3(0) [110] F rVV10 [113] F
BLYP-NL [68] F MS2h [110] F SCAN [114] D
BMK [96] F MS2h-D3(0) [110] F SCAN-D3(0) [115] F
BMK-D2 [61] F mTASK [116] F SCAN-D3(BJ) [115] D
BMK-D3(0) F MVS [117] A SCAN-rVV10 [118] F
BMK-D3(BJ) F MVSh [117] D SCAN0 [119] D
BOP [62,120] F N12 [121] F SOGGA [57,122] F
BOP-D3(0) F N12-D3(0) F SOGGA11-X [123] D
BOP-D3(BJ) F N12-SX [101] F SOGGA11-X-D3(BJ) D
BP86 [62,75] F N12-SX-D3(BJ) F SPW92 [53,124] F
BP86-D2 F O3LYP [125] A SVWN5 [124,126] F
BP86-D3(0) F OLYP [51,125] A τ-HCTH [127] A
BP86-D3(BJ) F OLYP-D3(0) B τ-HCTHh [127] B
BP86-D3(CSO) F OLYP-D3(BJ) B TASK [128] B
BP86-D3M(BJ) F OPBE [57,125] B TM [129] F
BPBE [57,62] D oTPSS-D3(0) [37] F TPSS [130] F
BPBE-D3(0) F oTPSS-D3(BJ) [37] F TPSS-D2 F
BPBE-D3(BJ) F PBE [57] F TPSS-D3(0) F
CAM-B3LYP [131] F PBE-D2 F TPSS-D3(BJ) F
CAM-B3LYP-D3(0) F PBE-D3(0) F TPSS-D3(CSO) F
CAM-B3LYP-D3(BJ) F PBE-D3(BJ) F TPSSh [132] D
DSD-PBEP86-D3(BJ)
[133] F PBE-D3(CSO) F TPSSh-D2 [61] D

DSD-PBEPBE-D3(BJ)
[133] F PBE-D3M(BJ) F TPSSh-D3(0) D

GAM [134] A PBE-D4 F TPSSh-D3(BJ) D
GFN1-xTB [135] F PBE0 [93] B TPSSh-D4 F
GFN2-xTB [136] F PBE0-2 [137] F VV10 [138] F
HCTH/120 [139] A PBE0-D2 [61] B ωB97 [140] F
HCTH/120-D3(0) A PBE0-D3(0) B ωB97M-V [141] F
HCTH/120-D3(BJ) A PBE0-D3(BJ) B ωB97M(2) [142] F
HCTH/147 [139] A PBE0-D3(CSO) B ωB97X [140] F
HCTH/407 [143] A PBE0-D3M(BJ) C ωB97X-D [144] F
HCTH/93 [80] A PBE0-D4 B ωB97X-D3 [145] F
HF [48–50] F PBEh-3c [146] F ωB97X-V [147] F
HF-3c [148] F PBEOP [57,120] F ωM05-D [149] F
HF-D3(0) F PBEsol [94] F ωM06-D3 [145] F
HF-D3(BJ) F PBEsol-D3(0) F X3LYP [150] B

HF-NL [68] F PBEsol-D3(BJ) F XYG3
[151]/XYGJ-OS [152] F

2.2. Results for Most Used and Most Suggested (MUMS) Functionals

To discuss the results in more detail, we selected a set of 25 functionals among the
most used or the most suggested (MUMS) approximations for general and transition
metal chemistry applications. The results are reported in Table 2. We note that selecting
functionals is always subjective, but we tried to pick MUMS for their (unbiased) historical
usage in the transition metal chemistry field [28,153,154] or following recent literature
suggestions on methods that perform well for a broad range of properties [23–27,32]. When
reporting standard functionals in the MUMS results, such as B3LYP or PBE, we included the
parameterization without the dispersion corrections because we noticed that they generally
worsen the MUEs for Por21. However, the magnitude of the worsening has no significant
effect (usually within 5% or less) on the overall error of the method for all cases. As such,
the results of standard functionals such as B3LYP and PBE can be transferred to the different
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dispersion correction ‘flavors’ (e.g., B3LYP-D3(BJ) or PBE-D2) without loss of generality.
This consideration aligns with the fact that most interactions considered in Por21 are purely
electronic. For example, dispersion corrections are almost entirely canceled out for the
spin states when calculating the energy differences. For the bond energies, only a little
overbinding residual remains, resulting in a modest worsening of the overall MUEs for
methods that intrinsically overbind (which, in this case, is the vast majority). For functionals
defined with dispersion corrections, such as PWPB95-D4 or ωB97M-V, we report their
MUEs including such corrections, since this is how the functional was originally developed.
Detailed results on each method can also be found in the Supplementary Materials for
more granular analysis.

Table 2. General performance of selected functional approximations for the Por21 database for 25 of
the “most used, most suggested” (MUMS) functionals in the literature. All values are mean unsigned
errors (MUEs) in kcal/mol calculated from the CASPT2 reference energies.

MUMS Functional: Type a Por21 PorSS11 PorBE10

r2SCANh GH-mGGA 10.8 7.49 14.4
M06-L mGGA 11.8 11.9 11.6
MN15-L mGGA 11.9 17.9 5.26
r2SCAN mGGA 13.4 13.1 13.6
M06 GH-mGGA 15.1 17.9 12.0
PBE0 GH-GGA 16.1 17.1 15.0
r2SCAN0 GH-mGGA 17.3 17.4 17.1
B3LYP GH-GGA 19.1 21.1 16.8
B97M-V mGGA 19.8 20.6 18.9
PW6B95 GH-mGGA 22.2 20.4 24.2
SCAN mGGA 22.6 21.3 24.1
TPSSh GH-mGGA 22.9 26.7 18.8
BLYP GGA 25.6 27.6 23.4
PBE GGA 26.3 27.8 24.6
TPSS mGGA 26.7 30.5 22.5
MN15 GH-mGGA 26.8 30.5 22.7
B2PLYP DH 27.2 21.3 33.6
BP86 GGA 27.5 29.3 25.5
CAM-B3LYP RSH-GGA 28.5 32.5 24.2
ωB97M-V RSH-mGGA 31.5 36.2 26.4
M06-2X GH-mGGA 31.8 36.1 27.2
ωB97X-V RSH-GGA 36.0 35.4 36.7
PWPB95-D4 DH 37.1 31.5 43.3
ωB97M(2) DH 42.0 46.7 36.7
B3LYP* GH-GGA 43.9 20.8 69.4

a GGA: generalized gradient approximation; mGGA: meta-GGA; GH: global hybrid; RSH: range-separated hybrid;
DH: double-hybrid.

The overall best performer among the MUMS approximations is the r2SCANh func-
tional, with an MUE of 10.8 kcal/mol for the Por21 database, and 7.49 kcal/mol and
14.4 kcal/mol for the PorSS11 and PorBE10 subsets, respectively. The local Minnesota func-
tionals M06-L and MN15-L come next, followed by r2SCAN, for a total of four functionals
with MUEs < 15.0 kcal/mol (M06 is only 0.1 kcal/mol above this threshold). MN15-L is by
far the best performer for the PorBE10 subset, with an MUE of 5.26 kcal/mol, but, unfortu-
nately, it is only seventh for PorSS11, with an MUE of 17.9 kcal/mol. Looking at historically
significant functionals, the PBE0 approximation performs well, followed by B3LYP. Modern
transferable functionals such as B97M-V, PW6B95, SCAN, and MN15 position themselves
in the middle of the pack, perhaps disappointingly, given their usually accurate perfor-
mance for main-group elements [23–25]. TPSSh, traditionally regarded as one of the ‘gold
standards’ of transition metal chemistry, ranks similarly with an MUE of 22.9 kcal/mol.
On the disappointing side of the results, with MUEs higher than 25.0 kcal/mol, are some
of the most popular semilocal functionals for transition metal applications, such as PBE,
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BP86, and TPSS. Range-separated hybrid functionals and double-hybrid functionals are
even more disappointing, with MUEs higher than 30.0 kcal/mol. The latter class also
presents challenges compared to most other functionals due to their computational cost
and difficulty converging to the lowest energy solution. The notorious problems of the
PT2-like correlation term for systems with multireference character easily explain these
difficulties. For this reason, double-hybrid functionals are the only category where we
did not explore every possible functional we had access to, but we limited ourselves to
the most accurate approximations [142,155]. The B3LYP* is the worst performer among
MUMS functionals for Por21, despite being specifically created to target spin state energy
differences [70]. The improvements from B3LYP for PorSS11 are evident, but so are the
deteriorating performances for PorBE10, where B3LYP is far superior. As already pointed
out above, including dispersion corrections does not impact the results much, consistent
with previous findings in the literature [35].

2.3. Results for Functionals Divided by “Ingredients”

An additional way to analyze the results is by classifying them according to how the
approximation is constructed. For this purpose, we divided functionals into the following
seven groups:

• Group 0: LDA, HF, LC, SE—local spin density approximations, Hartree-Fock, low-cost
methods, and semiempirical methods (15 methods).

• Group 1: GGA—generalized gradient approximations and nonseparable gradient
approximations (63 methods).

• Group 2: mGGA—meta-GGA and meta-NGA functionals (46 methods).
• Group 3: GH-GGA—global hybrid GGA and NGA functionals (43 methods).
• Group 4: GH-mGGA—global hybrid meta-GGA and meta-NGA functionals

(43 methods).
• Group 5: RSH—range-separated hybrid functionals (28 methods).
• Group 6: DH—double-hybrid functionals (12 methods).

This classification follows well-established paths in the literature [23,28,156], and
it provides valuable information to understand which ingredient is necessary for good
performance. The distribution of the results for the methods in these groups is collected in
the violin plots in Figure 1.

The plot analysis shows that the group of global hybrid GGA functionals (Group 3)
is the best, with an average MUE of 19.8 kcal/mol. Groups 1, 2, and 4 perform similarly,
with average MUEs of ~24 kcal/mol. The difference between Group 3 and Group 4 is
particularly fascinating since global hybrid meta-GGA functionals, in principle, should
be superior to global hybrid GGA functionals. To understand this (perhaps surprising)
behavior, we report the MUEs of all functionals in both these groups against the percentage
of exact exchange in each functional, as shown in Figure 2. From this plot, we notice a strong
dependency of the MUE on the percentage of exact exchange, with the best results obtained
by functionals with less than 30%, as expected [34,157,158]. As noted previously, B3LYP* is
a particularly surprising outlier for the reasons we discussed in the previous section. The
average percentage of exact exchange among the functionals in Group 3 is 23.0%, while the
average percentage in Group 3 is 34.6%. This difference explains the superior performance
of Group 3 functionals for the entire Por21 database compared to Group 4 functionals. If
functionals with a percentage of exact exchange higher than 30% are removed from Group 4,
then the average MUE for the remaining global hybrid meta-GGA functionals becomes
identical to that of Group 3 (~20 kcal/mol). Additionally, we notice from the results for
the subsets that the deterioration of the global hybrids meta-GGA results is mainly due to
the PorSS11 database. The PorBE10 subset shows instead that Groups 2, 3, 4, and 5 have
very similar average MUEs of ~22.0 kcal/mol, confirming that bond energies are far less
sensitive to the choice of the method than spin state energy differences.



Molecules 2023, 28, 3487 7 of 19Molecules 2023, 28, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 1. Distribution of the mean unsigned error (MUE) for the Por21 database for electronic struc-

ture methods divided into seven groups based on their ingredients (see text). Each group’s average 

MUEs is reported at the bottom-right of each violin. The area of each violin is proportional to the 

number of functionals in each group. The white dot in the center of the plot shows the median of 

the distribution. The thicker horizontal bar inside a violin shows the interquartile range of the data. 

The thinner black bar inside a violin shows 1.5 times the interquartile range of the data. Individual 

MUEs are also reported as black points within each violin (smoothness was applied; hence some 

outliers exist). Chemical accuracy and transition metal (TM) chemical accuracy (vide infra) are also 

reported (in red/orange, respectively, vertical dashed lines). All values in this plot are in kcal/mol. 

The plot analysis shows that the group of global hybrid GGA functionals (Group 3) 

is the best, with an average MUE of 19.8 kcal/mol. Groups 1, 2, and 4 perform similarly, 

with average MUEs of ~24 kcal/mol. The difference between Group 3 and Group 4 is par-

ticularly fascinating since global hybrid meta-GGA functionals, in principle, should be 

superior to global hybrid GGA functionals. To understand this (perhaps surprising) be-

havior, we report the MUEs of all functionals in both these groups against the percentage 

of exact exchange in each functional, as shown in Figure 2. From this plot, we notice a 

strong dependency of the MUE on the percentage of exact exchange, with the best results 

obtained by functionals with less than 30%, as expected [34,157,158]. As noted previously, 

B3LYP* is a particularly surprising outlier for the reasons we discussed in the previous 

section. The average percentage of exact exchange among the functionals in Group 3 is 

23.0%, while the average percentage in Group 3 is 34.6%. This difference explains the su-

perior performance of Group 3 functionals for the entire Por21 database compared to 

Group 4 functionals. If functionals with a percentage of exact exchange higher than 30% 

are removed from Group 4, then the average MUE for the remaining global hybrid meta-

GGA functionals becomes identical to that of Group 3 (~20 kcal/mol). Additionally, we 

Figure 1. Distribution of the mean unsigned error (MUE) for the Por21 database for electronic
structure methods divided into seven groups based on their ingredients (see text). Each group’s
average MUEs is reported at the bottom-right of each violin. The area of each violin is proportional to
the number of functionals in each group. The white dot in the center of the plot shows the median of
the distribution. The thicker horizontal bar inside a violin shows the interquartile range of the data.
The thinner black bar inside a violin shows 1.5 times the interquartile range of the data. Individual
MUEs are also reported as black points within each violin (smoothness was applied; hence some
outliers exist). Chemical accuracy and transition metal (TM) chemical accuracy (vide infra) are also
reported (in red/orange, respectively, vertical dashed lines). All values in this plot are in kcal/mol.

The disappointing performance of range-separated hybrid functionals in Group 5 is
also easily rationalized based on a too-high percentage of exact exchange. This rational-
ization also applies to the double-hybrid functionals in Group 6. DH functionals usually
include >50% exact exchange, which, together with the limitations already discussed in the
previous section, are highly detrimental to their performance for Por21. Finally, Group 0
is perhaps an oddity since it includes methods with vastly different origins and ingredi-
ents. We grouped these methods because they do not belong to any of the other classes.
Results reflect this non-uniformity, and given their poor performance, they will not be
analyzed further.

When interpreting the results presented here, it is essential to remember that the MUE
is a statistical parameter showing average performance. In other words, the MUE results of
this study can be loosely interpreted as standard deviations (σ) and can be employed to
give approximate error bars on metalloporphyrin calculations. In order to do so, however,
we need to keep in mind that error bars of 1σ are not sufficiently stringent since individual
errors might be (sometimes catastrophically) larger than the average one. This fact is
confirmed by a granular analysis of our results, showing that the biggest individual error
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for one system can be as large as three times the average error. For example, our best
performer, GAM, has an MUE of 6.93 kcal/mol, but its largest error is 17.7 kcal/mol. When
using the stringent statistical threshold of 3σ (99.7 percentile of the error distribution), even
the best performer gives error bars larger than 20 kcal/mol. If the less stringent 2σ threshold
(95.5 percentile) is adopted instead, the error bars are smaller but still as significant as
~15 kcal/mol. For example, with a widely popular functional such as B3LYP, the 3σ and
2σ thresholds are ~60 and ~40 kcal/mol, respectively. Even for highly reliable functionals
such as ωB97M-V, the 3σ error bars can be as large as ~100 kcal/mol, especially if the
system is poorly described by a single determinant. This consideration is not intended
as an endorsement in favor of B3LYP and againstωB97M-V but rather as a warning that
the choice of the computational method should never be taken lightly [28–31], even if
metals such as the closed-shell (d10) Zn(II) might seem less problematic at first glance. It is
impossible to know a priori if the studied system requires a multireference treatment.
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2.4. Discussion on Reference Energies and Chemical Accuracy for Transition Metals

The case of iron(II) porphyrin is of particular interest because—despite the ubiquity
of this moiety in chemistry and biology—the energetic ordering of its spin states is still
highly debated, even in recent literature [9,158,159]. The difficulties in describing FeP
arise because the spin states are very close to each other, and even a small change in the
geometry of the complex results in a reordering of the energy levels. This situation results
in an intricate connection between the Fe–N distance and the predicted ground state, with
the quintet state more stable at long distances and the triplet state more stable at short
ones [159]. This complex dependence on geometry also complicates the interpretation of
the experimental results since it is difficult to exclude the effect of the doming motion of the
metal from the porphyrin plane in most experimental conditions. For completely co-planar
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iron and porphyrin—as in the Por21 geometry—CASPT2 predicts a quintet ground state,
which is a reasonable prediction. However, given the complex nature of the energy states
and considering the results of other reference calculations, the CASPT2 predicted energy
difference of 7.00 kcal/mol between the quintet and the triplet seems suspiciously large.

As emerges from the DFT results already discussed, single-reference methods should
stabilize the low-spin states compared to high-spin ones. Pierloot and coworkers reported
results from CCSD(T) calculations for FeP alongside the CASPT2 reference. These CCSD(T)
results also present stabilization of the triplet, predicting a quintet ground state with a
split of only 2.30 kcal/mol from the triplet, compared to the 7.00 kcal/mol predicted
by CASPT2 (see Table 3). Most MUMS functionals predict a triplet ground state, ex-
cept for MN15-L. On the one hand, we notice that the best functionals—r2SCANh and
M06-L—are within 4 kcal/mol from the CCSD(T) results, although more than 8 kcal/mol
from the reference CASPT2 results. On the other hand, MN15-L has an error of 5.6 kcal/mol
compared to the CASPT2 reference but a difference of more than 10 kcal/mol from the
CCSD(T) results. Similar trends, with significant differences between CCSD(T) and CASPT2
reference energies, appear also for the 5A1g → 3Eg gap of FeP (see last column in Table 3)
and the 6A1g → 4A2g and 6A1g → 2Eg states of MnP. The 5A1g → 3A2g of FeP (not con-
sidered in Por21 for precisely this reason) and the 4B1g → 2A1g of CoP (see results in the
Supporting Information) appear less problematic.

Table 3. Spin state energy differences for the FeP system with 25 of the “most used, most suggested”
(MUMS) functionals in the literature. All values are in kcal/mol. WFT = Wavefunction theory.

MUMS Functional: Type a FeP5 → FeP3 FeP5 → FeP1

r2SCANh GH-mGGA −1.76 34.9
M06-L mGGA −1.35 25.6
MN15-L mGGA 12.6 48.7
r2SCAN mGGA −9.58 26.3
M06 GH-mGGA −4.49 27.2
PBE0 GH-GGA −8.69 27.2
r2SCAN0 GH-mGGA −3.83 33.2
B3LYP GH-GGA −14.6 18.6
B97M-V mGGA −21.5 10.8
PW6B95 GH-mGGA −12.4 19.6
SCAN mGGA −24.0 5.44
TPSSh GH-mGGA −19.7 13.8
BLYP GGA −16.4 17.4
PBE GGA −15.9 19.1
TPSS mGGA −26.2 6.68
MN15 GH-mGGA −45.2 −9.77
B2PLYP DH −19.7 14.3
BP86 GGA −13.7 19.6
CAM-B3LYP RSH-GGA −11.4 24.2
ωB97M-V RSH-mGGA −57.5 106.
M06-2X GH-mGGA −49.4 −11.8
ωB97X-V RSH-GGA −53.9 108.
PWPB95-D3(BJ) DH −62.1 93.0
ωB97M(2) DH −80.9 −54.0
B3LYP* GH-GGA −14.6 18.6

CCSD(T) WFT 2.30 33.0
CASPT2 WFT, Reference 7.00 39.9

a GGA: generalized gradient approximation; mGGA: meta-GGA; GH: global hybrid; RSH: range-separated hybrid;
DH: double-hybrid.

Because of the complications highlighted above, these results are hard to interpret.
It seems evident that the development of reliable, highly accurate reference electronic
structure theory methods is required to address several of these issues. Lowering the cost
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of methods such as multireference coupled cluster [160], density matrix renormalization
group (DMRG) [161], and quantum Monte Carlo (QMC) [162,163] might provide an answer
in the future, even if those methods are not immune from interpretational difficulties (see
Reference [164] for a recent unsolved controversy). Additional variants of the CAS method-
ology, such as the Stochastic Generalized Active Space (Stochastic-GAS) by Li Manni et al.,
also appear promising [158]. Given this situation, we still support the concept of “transi-
tion metal chemical accuracy” introduced by Wilson and coworkers [165]. Despite being
proposed more than a decade ago, we reiterate the necessity to bring the chemical accuracy
threshold to at least 3 kcal/mol for transition-metal-containing systems. The analysis of
the results presented here and the available reference energies [9,11,158,159] suggest that a
more conservative threshold could be considered at 5 kcal/mol for calculations on some
of the most problematic metalloporphyrins. In the words of Wilson et al.: “This targeted
accuracy is larger than for energetics of main group species because greater uncertainties
are common in the experimental data for transition metal compounds and greater errors are
expected with theory due to a number of factors, including increased valence electron space,
stronger relativistic effects, and increased complexity of metal–ligand bonding.” [166].

2.5. Recommendations for Users and Final Remarks

In this work, we assessed the performance of 250 approximations for calculations
of spin state energy differences and binding energies of Mn(II), Co(II), Fe(II), and Fe(III)
porphyrins. Unfortunately, the average errors observed for these systems are very far from
the chemical accuracy threshold of 1.0 kcal/mol that several functionals achieve for reaction
energies of main-group elements [23,24]. These results reflect both an intrinsic difficulty
of density functional calculations on metalloporphyrin and the difficulties in obtaining
reliable reference energies and experimental results. We support raising such a chemical
accuracy threshold to at least 3 kcal/mol for transition metals, as previously suggested by
Wilson et al. [165,166].

In light of these underwhelming results, we believe that the purpose of this extensive
benchmark should not be the identification of a single best performer but rather to suggest
trends and guidelines. In this spirit, we provide the following general recommendations
for calculations on porphyrin-containing systems:

1. Avoid LDA, Hartree-Fock, and semiempirical methods (Group 0).
2. Avoid functionals containing PT2-like correlation, such as double-hybrids (Group 6).
3. Avoid range-separated hybrids (Group 5).
4. Prefer semilocal functionals (Group 1 and Group 2) for spin states and other purely

electronic properties.
5. Among hybrid functionals in Group 3 and Group 4, prefer those with a percentage of

exact exchange below 30%.
6. For all other properties—including thermochemistry—prefer functionals that scored

a grade of A or B in this study (Group 3 and Group 4) and are highly transferable
to other systems across chemistry, as established in other benchmark studies. Some
suitable suggestions are (our grades are in parenthesis, and high transferability is
indicated in bold font):

(1) Semilocal functionals: MN15-L (A), GAM (A), revM06-L (A), M06-L (A),
r2SCAN-D4 (A).

(2) Global hybrids: r2SCANh-D4 (A), M06 (B), PBE0-D3(BJ) (B).

The suggestions above are our (current) top recommendations for methods that retain
a certain degree of transferability across a broad range of chemical properties.
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3. Materials and Methods
3.1. Software and Settings

Most of the calculations in this study are single-point KS DFT calculations performed
with the def2-TZVP Gaussian-type basis set [167] and the functionals listed in Table 1.
Functionals belonging to all rungs of Perdew’s Jacob’s ladder of density functional approx-
imations [168] were employed. The list of functionals includes almost all the approxi-
mations developed to date, spanning more than forty years of functional development.
The effect of dispersion corrections was also studied by adding -D2 [36], -D3 (in different
“flavors”) [24,37–43], or -D4- [44–46] corrections to some common functionals. Selected
semiempirical and other low-cost methods were also included for comparison. The calcu-
lations with the low-cost methods employed the basis sets accompanying each method
(MINIX [148] for HF-3c, def2-mSVP [146] for PBEh-3c, and mTZVP [89] for B97-3c). The ma-
jority of the calculations were performed using a development version of the Q-Chem quan-
tum chemistry package [169]. The calculations with the APF(D) [47], B98 [103], HISS [55],
and X3LYP [150] functionals and the semiempirical PM6 [54] and PM7 [56] methods were
performed using the Gaussian16 program [170]. The xtb program [171] was used for calcu-
lations with the GFN1-xTB [135] and GFN2-xTB [136] semiempirical tight binding methods,
while the standalone dftd4 program [172] was used to obtain the -D4 dispersion corrections
for selected approximations. Among the available semiempirical and low-cost methods,
we chose the most accurate according to recent benchmark studies [89,136,173]. A Lebedev
grid with 99 radial and 590 angular points was employed to integrate all functionals, and
the stabilities of the final solutions were checked to ensure the proper convergence of the
electronic energies, allowing for symmetry-breaking when necessary. For double-hybrid
functionals, the default frozen-core option for the PT2-like correlation was enabled for
computational efficiency.

3.2. The Por21 Database

The database used in this study is called Por21, as defined in the ACCDB collec-
tion [174]. The reference energies were obtained with the CASPT2 method by Pierloot,
Radón, and coworkers [4,11]. The database includes 11 spin states [11] of Mn(II), Co(II),
and differently substituted Fe(II) and Fe(III) porphyrins, and 10 binding energies [4] of
the complexes between a model system of the heme group and three different diatomic
molecules: NO, CO, and O2. To analyze the results in more detail, the spin states data
have been grouped in a subset called PorSS11, while the bond energies data were grouped
in the PorBE10 subset. All the molecular geometries are taken from the original publica-
tions [4,11], and were not re-optimized in this work. The geometry for iron porphyrin is
optimized at the PBE0/def2-TZVP level [93,167], while all the remaining PorSS11 ones are
optimized at the BP86/def2-TZVP level [62,75,167]. The spin multiplicities considered are
sextuplet, quadruplet, and doublet for Mn(II) and Fe(III), quartet and doublet for Co(II),
and quintet, triplet, and singlet for Fe(II). The binding energies are calculated using the
following reaction:

FeP(Im) + X→ FeP(Im)X (1)

where FeP corresponds to the iron porphyrin, FePIm is the iron porphyrin bound to
the imidazole ring, and X is either CO, NO, or O2. The geometries of the reactants in
Equation (1) were optimized at the PBE0/def2-TZVP level, while the geometries of the
products were optimized at the BP86/def2-TZVP level. The reader is referred to the original
publications [4,11] for additional details. A representative example of the systems included
in each subset is reported in Figure 3. The geometries used in the calculations are available
on our group’s GitHub page [175].
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