Extraction, Purification, and Component Identification of Monoterpene Glycosides from Paeonia suffruticosa Seed Meal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of Monoterpene Glycosides
2.1.1. Single-Factor Analysis
2.1.2. Optimization Using a Box-Behnken Design
2.2. Purification of Monoterpene Glycosides
2.2.1. Screening of Macroporous Resins
2.2.2. Static Adsorption and Desorption
2.2.3. Dynamic Adsorption and Desorption of Macroporous Resin
2.3. Component Analysis of Purified Monoterpene Glycosides
3. Materials and Methods
3.1. Reagents and Materials
3.2. Extraction of Monoterpene Glycosides from P. suffruticosa Seed Meal
3.2.1. Determination of Monoterpene Glycoside Concentration
3.2.2. Single-Factor Experiment Design
3.2.3. Box–Behnken Design
3.3. Purification of Monoterpene Glycosides
3.3.1. Pretreatment of Macroporous Resin
3.3.2. Screening of Macroporous Resin
Adsorption ratio (%) = [(c0v0 − c1v1)/c0v0] × 100
Desorption ratio (%) = [c2v2/(c0v0 − c1v1)] × 100
Recovery ratio (%) = (c2v2/c0v0) × 100
3.3.3. Static Adsorption and Desorption Test
3.3.4. Dynamic Adsorption and Desorption Test
3.4. Identification of Monoterpene Glycosides from P. suffruticosa Seed Meal
3.4.1. Preparation of Sample Solution
3.4.2. Conditions of HPLC-Q-TOF-MS/MS
3.4.3. Identification of Main Components by HPLC
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ekiert, H.; Klimek-Szczykutowicz, M.; Szopa, A. Paeonia × suffruticosa (Moutan Peony)—A Review of the Chemical Composition, T raditional and Professional Use inMedicine, Position in Cosmetics Industries, and Biotechnological Studies. Plants 2022, 11, 3379. [Google Scholar] [CrossRef]
- Tatsumi, S.; Mabuchi, T.; Abe, T.; Xu, L.; Minami, T.; Ito, S. Analgesic effect of extracts of Chinese medicinal herbs Moutan cortex and Coicis semen on neuropathic pain in mice. Neurosci. Lett. 2004, 370, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Jee, S.; Lee, S.; Park, S.; Lee, J.; Kim, S. Anti-inflammatory activity of the methanol extract of Moutan cortex in LPS-activated Raw264.7 cells. Evid-Based Complement. Altern. Med. 2007, 4, 327–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Wang, F.; Mao, W. A new resource of food—Peony seed oil. Food and Drug. 2014, 16, 133–136. [Google Scholar]
- Shi, J.; Zhang, J.; Sun, Y.; Qo, J.; Li, L.; Prasad, C.; Wei, Z. Physicochemical properties and antioxidant activities of polysaccharides sequentially extracted from peony seed dreg. Int. J. Biol. Macromol. 2016, 91, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, Y.; Wang, Z.; Dong, S.; Zhang, B.; Zheng, Z. Extraction optimization and evaluation on properties of protein on peony seed meal. Food Sci. Technol. 2022. accept. [Google Scholar]
- Liu, Y.; Suo, J.; Sun, Z.; Zhang, Q.; Dai, L.; Zhao, H. Progress in Active Components and Comprehensive Utilization of Peony Seeds. Food Drugs 2020, 22, 321. [Google Scholar]
- He, C.; Peng, Y.; Wu, Q.; Xiao, W.; Peng, B.; Wang, Z.; Xiao, P. Simultaneous determination of ten stilbenes in the seeds of Paeonia species using HPLC-DAD. Liq. Chromatogr. Related Technol. 2013, 36, 1708–1724. [Google Scholar] [CrossRef]
- Lin, H.; Ding, H.; Wu, T.; Wu, P. Monoterpene glycosides from Paeonia suffruticosa. Phytochem 1996, 41, 237–242. [Google Scholar]
- Ikuta, A.; Kamiya, K.; Satake, T.; Saiki, Y. Triterpenoids from callus tissue cultures of paeonia species. Phytochem 1995, 38, 1203–1207. [Google Scholar] [CrossRef]
- He, C.; Zhang, Y.; Yong, P.; Yang, J.; Xiao, P. Monoterpene glycosides from the seeds of Paeonia suffruticosa protect HEK 293 cells from irradiation-induced DNA damage. Phytochem. Lett. 2012, 5, 128–133. [Google Scholar] [CrossRef]
- Yu, H.; Liu, M.; Liu, D.; Shang, G.; Wang, Y.; Qi, C. Antinociceptive effects of systemic paeoniflorin on bee venom-induced various ‘phenotypes’ of nociception and hypersensitivity. Pharm. Biochem. Be. 2007, 2, 88. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, G.; Ying, G.; Ying, P.; Kang, M.; Park, Y. Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson’s disease. Food Chem. Toxiclo. 2014, 65, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Dai, S. Mechanisms involved in the therapeutic effects of paeonia lactiflora pallas in rheumatoid arthritis. Int. Immunopharmacol. 2012, 14, 27–31. [Google Scholar]
- Wu, Y.; Chen, Z.; Wu, Y. Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 2012, 29, 1137–1147. [Google Scholar]
- Hao, W.; Wei, L.; Wang, T.; Shu, Y.; Ping, L. Paeoniflorin suppress Nf-κB activation through modulation of IκBα and enhances 5-fluorouracil-induced apoptosis in human gastric carcinoma cells. Biomed. Pharmacother. 2008, 62, 659–666. [Google Scholar]
- Cheng, H.; Shi, X.; Zhang, L.; Yao, L.; Cen, L.; Li, L.; Lv, Y.; Wei, C. Ultrasonic Extraction Process of Polysaccharides from Dendrobium nobile Lindl.: Optimization, Physicochemical Properties and Anti-Inflammatory Activity. Foods 2022, 11, 2957. [Google Scholar] [CrossRef]
- Sun, L.; Liu, D.; Sun, J.; Yang, X.; Fu, M.; Guo, Y. Analytical methods simultaneous separation and purification of chlorogenic acid, epicatechin, hyperoside and phlorizin from thinned young qinguan apples by successive use of polyethylene and polyamide resins. Food Chem. 2017, 230, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.; Li, X.; Liu, Y.; Zeng, M.; Liu, P. Optimization of ultrasonic extraction of monoterpene glycosides from Paeonia ostii seed meal by response surface methodology. Food Ind. Technol. 2015, 36, 10. [Google Scholar]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; You, L. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydr. Polym. 2015, 130, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Tsakani, M.; Yannick, N.; Boitumelo, T.; Themba, M.; Anita, E. Optimization of hemp bast microfiber production using response surface modelling. Processes 2022, 10, 1150. [Google Scholar]
- Bai, C.; Zhao, G. Separation of salvianic acid A from the fermentation broth of engineered Escherichia coli using macroporous resins. J. Sep. Sci. 2015, 38, 2833–2840. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, E.; Zhang, J.; Chen, S.; Chen, A.; Shao, Y. Purification, antioxidant capacity and component analysis of hawthornleaf polyphenols. Food Ferment. Ind. 2020, 46, 8. [Google Scholar]
- Zhang, H.; Wang, Y.; Liu, Y. The condition of XAD-7 macroporous resin for the Purification of polyphenol from Aronia melanocarpa. Food Res. Dev. 2019, 40, 159. [Google Scholar]
- Hu, Y.; Pei, Y.; Wu, H.; Xu, Q.; Xu, G.; Jiang, L.; Zhou, J. Difference analysis of chemical compositions in Moutan Cortex from different origins by UPLC-Q-TOF-MS. Chin. Tradit. Herb. Drugs 2016, 47, 2984. [Google Scholar]
- Deng, A. Research of Quality Evaluation and Commercial Grades of Moutan Cortex. Master’s Thesis, Guangdong Pharmaceutical University, Guangdong, China, 2018. [Google Scholar]
- Li, J.; Zeng, R.; Qu, Y.; Huang, L. Rapid identification on chemical constituents in roots of Paeonia delavayi var lutea by HPLC-Q-TOF-MS combined with UNIFI informatics platform. Chin. Tradit. Herb. Drugs 2017, 48, 1529. [Google Scholar]
- Wu, J.; Cao, D.; Liu, Y.; Chang, G.; Yu, H.; Zhang, H. Chemical constituents from seed meal of Paeonia Suffruticosa. Acta Chin. Med. Pharmac. 2014, 42, 9. [Google Scholar]
Run | A | B | C | D | E | Extraction Yield (mg/g) |
---|---|---|---|---|---|---|
1 | 1(40) | 0(50) | 0(360) | 0(30:1) | 1(50) | 110.73 ± 0.32 |
2 | 0(30) | 0(50) | 0(360) | 0(30:1) | 0(40) | 118.93 ± 0.84 |
3 | 0(30) | 0(50) | 1(420) | 0(30:1) | −1(30) | 107.57 ± 0.36 |
4 | 0(30) | 0(50) | 0(360) | −1(20:1) | −1(30) | 105.62 ± 0.57 |
5 | 0(30) | 0(50) | 0(360) | 0(30:1) | 0(40) | 120.16 ± 0.44 |
6 | −1(20) | 0(50) | 0(360) | −1(20:1) | 0(40) | 106.32 ± 0.21 |
7 | 0(30) | 0(50) | 0(360) | 0(30:1) | 0(40) | 120.81 ± 0.71 |
8 | 0(30) | 1(60) | 0(360) | 0(30:1) | −1(30) | 105.75 ± 0.44 |
9 | 0(30) | 0(50) | −1(300) | −1(20:1) | 0(40) | 103.35 ± 0.21 |
10 | 0(30) | 1(60) | 0(360) | 1(40:1) | 0(40) | 110.64 ± 0.42 |
11 | 0(30) | 0(50) | 0(360) | −1(20:1) | 1(50) | 108.91 ± 0.64 |
12 | 0(30) | −1(40) | 0(360) | 0(30:1) | −1(30) | 103.54 ± 0.28 |
13 | −1(20) | 0(50) | 0(360) | 1(40:1) | 0(40) | 110.32 ± 0.16 |
14 | 0(30) | 0(50) | −1(300) | 1(40:1) | 0(40) | 106.71 ± 0.97 |
15 | 1(40) | 0(50) | 0(360) | −1(20:1) | 0(40) | 109.47 ± 0.61 |
16 | 0(30) | 0(50) | −1(300) | 0(30:1) | 1(50) | 108.69 ± 0.13 |
17 | 0(30) | 0(50) | 1(360) | −1(20:1) | 0(40) | 105.52 ± 0.29 |
18 | 0(30) | −1(40) | 0(360) | −1(20:1) | 0(40) | 106.35 ± 0.23 |
19 | 0(30) | 1(60) | −1(300) | 0(30:1) | 0(40) | 107.84 ± 0.56 |
20 | 0(30) | −1(40) | 1(420) | 0(30:1) | 0(40) | 108.92 ± 0.50 |
21 | 0(30) | 0(50) | 1(420) | 1(40:1) | 0(40) | 107.84 ± 0.66 |
22 | 0(30) | 0(50) | 0(360) | 0(30:1) | 0(40) | 119.65 ± 0.42 |
23 | 0(30) | 0(50) | 0(360) | 0(30:1) | 0(40) | 121.24 ± 0.13 |
24 | 1(40) | −1(40) | 0(360) | 0(30:1) | 0(40) | 108.46 ± 0.12 |
25 | −1(20) | 0(50) | −1(300) | 0(30:1) | 0(40) | 104.34 ± 0.33 |
26 | 0(30) | −1(40) | 0(360) | 0(30:1) | 1(50) | 106.82 ± 0.74 |
27 | −1(20) | 1(60) | 0(360) | 0(30:1) | 0(40) | 107.79 ± 0.33 |
28 | 0(30) | 1(60) | 0(360) | 0(30:1) | 1(50) | 107.93 ± 0.31 |
29 | 1(40) | 0(50) | 0(360) | 0(30:1) | −1(30) | 108.62 ± 0.12 |
30 | 1(40) | 0(50) | −1(300) | 0(30:1) | 0(40) | 106.53 ± 0.13 |
31 | 0(30) | 1(60) | 0(360) | −1(20:1) | 0(40) | 108.47 ± 0.41 |
32 | −1(20) | 0(50) | 0(360) | 0(30:1) | 1(50) | 109.68 ± 0.66 |
33 | 0(30) | 0(50) | 1(420) | 0(30:1) | 1(50) | 109.84 ± 0.07 |
34 | 0(30) | 1(60) | 1(420) | 0(30:1) | 0(40) | 110.04 ± 0.18 |
35 | −1(20) | 0(50) | 1(420) | 0(30:1) | 0(40) | 107.57 ± 0.28 |
36 | 0(30) | 0(50) | −1(300) | 0(30:1) | −1(30) | 105.38 ± 0.14 |
37 | 1(40) | 0(50) | 1(360) | 0(30:1) | 0(40) | 108.69 ± 0.48 |
38 | −1(20) | −1(40) | 0(360) | 0(30:1) | 0(40) | 102.26 ± 0.15 |
39 | 0(30) | −1(40) | −1(300) | 0(30:1) | 0(40) | 105.68 ± 0.33 |
40 | 0(30) | 0(50) | 0(360) | 1(40:1) | −1(30) | 107.83 ± 0.63 |
41 | 1(40) | 1(60) | 0(360) | 0(30:1) | 0(40) | 110.68 ± 0.40 |
42 | 1(40) | 0(50) | 0(360) | 1(40:1) | 0(40) | 111.65 ± 0.40 |
43 | 0(30) | 0(50) | 0(360) | 0(30:1) | 0(40) | 119.94 ± 0.19 |
44 | 0(30) | −1(40) | 0(360) | 1(40:1) | 0(40) | 108.62 ± 0.44 |
45 | 0(30) | 0(50) | 0(360) | 1(40:1) | 1(50) | 110.31 ± 0.28 |
46 | −1(20) | 0(50) | 0(360) | 0(30:1) | −1(30) | 106.43 ± 0.12 |
ANOVA Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 945.16 | 20 | 47.26 | 22.23 | <0.0001 |
A | 25.30 | 1 | 25.30 | 11.90 | 0.002 |
B | 21.37 | 1 | 21.37 | 10.05 | 0.004 |
C | 19.08 | 1 | 19.08 | 8.97 | 0.0061 |
D | 24.78 | 1 | 24.78 | 11.65 | 0.0022 |
E | 30.72 | 1 | 30.72 | 14.45 | 0.0008 |
AB | 2.74 | 1 | 2.74 | 1.29 | 0.2671 |
AC | 0.29 | 1 | 0.29 | 0.13 | 0.7168 |
AD | 0.83 | 1 | 0.83 | 0.39 | 0.5382 |
AE | 0.32 | 1 | 0.32 | 0.15 | 0.6992 |
BC | 0.27 | 1 | 0.27 | 0.13 | 0.7244 |
BD | 2.50 × 10−3 | 1 | 2.50 × 10−3 | 1.18 × 10−3 | 0.9729 |
BE | 0.30 | 1 | 0.30 | 0.14 | 0.7092 |
CD | 0.27 | 1 | 0.27 | 0.13 | 0.7244 |
CE | 0.27 | 1 | 0.27 | 0.13 | 0.7244 |
DE | 0.16 | 1 | 0.16 | 0.077 | 0.7835 |
A2 | 281.21 | 1 | 281.21 | 132.26 | <0.0001 |
B2 | 367.48 | 1 | 367.48 | 172.84 | <0.0001 |
C2 | 419 | 1 | 419 | 197.07 | <0.0001 |
D2 | 294.66 | 1 | 294.66 | 138.59 | <0.0001 |
E2 | 331.95 | 1 | 331.95 | 156.13 | <0.0001 |
Residual | 53.15 | 25 | 2.13 | ||
Lack of Fit | 49.75 | 20 | 2.49 | 3.66 | 0.0777 |
Pure Error | 3.40 | 5 | 0.68 | ||
Cor Total | 998.31 | 45 | |||
R2 = 0.9468 R2Adj = 0.9042 R2Pred = 0.7957 |
Macroporous Resin | Adsorption Capacity (mg/g) | Adsorption Ratio (%) | Desorption Ratio (%) | Recovery Ratio (%) |
---|---|---|---|---|
AB-8 | 43.68 ± 0.44 bc | 58.24 ± 0.59 bc | 74.37 ± 1.39 d | 43.31 ± 0.45 c |
NKA-9 | 50.54 ± 1.38 a | 67.39 ± 1.85 a | 85.19 ± 1.15 b | 57.41 ± 1.72 b |
HPD-100 | 42.25 ± 0.22 cd | 56.33 ± 0.29 bcd | 61.42 ± 0.36 e | 34.60 ± 0.34 e |
LAS-900C | 50.32 ± 0.50 a | 67.10 ± 0.66 a | 93.59 ± 1.28 a | 62.79 ± 0.45 a |
LSA-900E | 49.99 ± 1.09 a | 66.66 ± 1.45 a | 85.69 ± 1.27 b | 57.11 ± 1.22 b |
D-101 | 44.42 ± 0.40 b | 59.22 ± 0.22 b | 55.29 ± 1.22 f | 32.74 ± 0.61 f |
HPD-826 | 37.18 ± 0.40 e | 49.57 ± 0.53 e | 81.25 ± 1.18 c | 40.27 ± 0.29 d |
S-8 | 40.92 ± 0.50 d | 54.57 ± 0.67 d | 23.05 ± 2.33 g | 12.57 ± 1.19 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Hu, F.; Zheng, Z.; Zhao, H.; An, Q.; Wang, Z. Extraction, Purification, and Component Identification of Monoterpene Glycosides from Paeonia suffruticosa Seed Meal. Molecules 2023, 28, 3498. https://doi.org/10.3390/molecules28083498
Wang F, Hu F, Zheng Z, Zhao H, An Q, Wang Z. Extraction, Purification, and Component Identification of Monoterpene Glycosides from Paeonia suffruticosa Seed Meal. Molecules. 2023; 28(8):3498. https://doi.org/10.3390/molecules28083498
Chicago/Turabian StyleWang, Fengqin, Fuxia Hu, Zhenjia Zheng, Haoyan Zhao, Qitong An, and Zhaosheng Wang. 2023. "Extraction, Purification, and Component Identification of Monoterpene Glycosides from Paeonia suffruticosa Seed Meal" Molecules 28, no. 8: 3498. https://doi.org/10.3390/molecules28083498
APA StyleWang, F., Hu, F., Zheng, Z., Zhao, H., An, Q., & Wang, Z. (2023). Extraction, Purification, and Component Identification of Monoterpene Glycosides from Paeonia suffruticosa Seed Meal. Molecules, 28(8), 3498. https://doi.org/10.3390/molecules28083498