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Abstract: Multi-target drug development has become an attractive strategy in the discovery of
drugs to treat of Alzheimer’s disease (AzD). In this study, for the first time, a rule-based machine
learning (ML) approach with classification trees (CT) was applied for the rational design of novel
dual-target acetylcholinesterase (AChE) and β-site amyloid-protein precursor cleaving enzyme 1
(BACE1) inhibitors. Updated data from 3524 compounds with AChE and BACE1 measurements
were curated from the ChEMBL database. The best global accuracies of training/external validation
for AChE and BACE1 were 0.85/0.80 and 0.83/0.81, respectively. The rules were then applied to
screen dual inhibitors from the original databases. Based on the best rules obtained from each
classification tree, a set of potential AChE and BACE1 inhibitors were identified, and active fragments
were extracted using Murcko-type decomposition analysis. More than 250 novel inhibitors were
designed in silico based on active fragments and predicted AChE and BACE1 inhibitory activity
using consensus QSAR models and docking validations. The rule-based and ML approach applied
in this study may be useful for the in silico design and screening of new AChE and BACE1 dual
inhibitors against AzD.

Keywords: Alzheimer’s disease; QSAR; AChE; BACE1; dual-target inhibitor; fragment design

1. Introduction

Alzheimer’s disease (AzD), the most common form of dementia, is characterized by
memory problems and other cognitive impairments that seriously affect executive func-
tions [1]. By 2023, an estimated 6.7 million Americans aged 65 and older have Alzheimer’s
dementia, with most cases occurring in people who are 75 or older [2]. This number could
increase to 13.8 million by 2060 if no medical breakthroughs are made to prevent, slow, or
cure AzD. Due to higher average life expectancy, AzD is considered one of the greatest
health threats contributing to the global burden of non-communicable diseases [3].

In AzD, certain neurons in the brain regions responsible for cognitive functions (e.g.,
thinking, learning, and memory) are gradually damaged or destroyed, leading to severe
dementia symptoms [4]. There are two widely accepted hypotheses of AzD, namely the
cholinergic hypothesis and the amyloid cascade [4]. The cholinergic hypothesis is supported
by the observation that acetylcholine levels, a neurotransmitter that plays an important
role in neuromodulation of learning, memory, and cognitive functions, are decreased in the
cerebral cortex of AzD patients compared with those in healthy brains [5]. Therefore, one
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of the possible therapeutic approaches is to increase brain cholinergic levels by inhibiting
acetylcholinesterase (AChE), the enzyme responsible for the hydrolytic degradation of
acetylcholine. The amyloid hypothesis states that the increasing aggregation of β-amyloid
(Aβ) is another element in the pathogenesis of AzD [6]. Aβ is a fragment of the amyloid
precursor protein (APP) that results from proteolytic cleavage mediated by the enzyme
beta-secretase 1 (BACE1). Consequently, dual inhibitors that block both AChE activity
and BACE1-catalyzed Aβ-aggregation represent a promising therapeutic approach [7].
Dual-acting drugs have been approved for clinical use, such as donepezil-based and tacrine
hybrids [8,9].

On the other hand, ligand-based rational drug design methods are widely used in drug
discovery [10,11]; among them, quantitative structure–activity relationship (QSAR) is one of
the methods with the greatest potential and opportunity for the development and screening
of drug candidates for the treatment of AzD. Numerous studies have been developed using
QSAR techniques for the design and screening of multi-targeting agents for the treatment of
AzD. In 2014, Goyal and colleagues developed a robust and highly predictive group-based
QSAR (GQSAR) model for combination library construction and identification of effective
dual inhibition of BACE-1 and AChE [12]. The authors found some detailed interpretations
of key fragments contributing to the activity. Recently, Dhamodharan and Mohan presented
2D QSAR models on multi-target ligands for predicting the dual inhibitory activity of N-
benzyl piperidine derivatives [13]. Several machine learning (ML) techniques have been
applied, including genetic function approximation (GFA) and nonlinear method, support
vector machine (SVM), and artificial neural networks (ANN) [14,15]. However, the main
drawbacks of these approaches are the poor interpretation of the applied techniques.
In addition, the databases used for the development of QSAR models included only a
small number of compounds and a low diversity of chemical structures, resulting in a
small scope and a limited screening ability for the constructed models. Recently, we
successfully developed powerful 0-3D QSAR models for predicting AChE inhibition using
an expanded chemical library of 1975 bioactive compounds from the ChEMBL database and
ML techniques [16]. Our newly designed compounds were also synthesized and showed
good activities against the AChE enzyme [17,18].

Continuing our previous efforts to design and screen potential anti-AzD agents that
inhibit both AChE and BACE1, this study was conducted to develop interpretable QSAR
models for dual activity prediction using a large set of bioactivity data from the ChEMBL
database and to utilize the chemical structure–activity relationships obtained from the
classification trees for the design of novel dual targeting inhibitors. In this sense, we
present a new design method based on a rule-of-thumb extracted from the established
classification trees to develop dual inhibitors. We then discuss activity prediction and the
future prospects of our new approaches.

2. Results and Discussion
2.1. Data Analysis and Activity Threshold Selection

The random forest (RF) algorithm was used to determine the most appropriate cut-off
value for classification. The results of the RF models for predicting AChE and BACE1
inhibition show that the area under the ROC curve (AUC) at 100 nM has the highest value
for both models (Figure 1). According to these results, the compounds were classified
as active if the IC50 value was <100 nM, otherwise they were inactive inhibitors. Follow-
ing this procedure with a defined cut-off value, the data set for AChE was divided into
503 active and 1472 inactive compounds. In the case of the BACE1 data set, 617 active
and 932 inactive compounds were identified (Tables S1 and S2). Figure 1A (for AChE
inhibitors) and 1B (for BACE1 inhibitors) show the distribution of data for the compounds
belonging to each class. Accordingly, the mean and median values of logIC50 calculated for
AChE-active compounds were 1.04 and 1.28, respectively, whereas the corresponding val-
ues for the inactive compounds were 3.45 and 3.44, respectively. For the BACE1 inhibitors,
mean and median IC50 values for the active compounds were 1.17 and 1.31, respectively,
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whereas the values for the inactive compounds were 3.28 and 3.30, respectively. After the
cut-off values were selected, two data sets were divided into a training set and a test set.
Using k-mean cluster analysis, the AChE data were grouped into seven clusters and the
BACE-1 data into five clusters. By randomly selecting the most diverse structures from each
cluster, we obtained the training set for AChE activity with 1385 data points (345 active
and 1040 inactive compounds). Similarly, the training set of BACE1 activity includes 1085
(433 active and 652 inactive) compounds. It is noted that by using the chosen cut-off, an
unbalanced distribution of the two classes is inevitable, which may affect the performance
of the classifiers [19]. However, we found during the modeling process that this effect was
not significant, so we did not apply a rebalancing strategy to the final data [19].
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Figure 1. Distribution of the IC50 values for (A) active vs. inactive AChE inhibitors; (B) active vs.
inactive BACE1 inhibitors; ROC−curve−based selection of cut-off values for (C) AChE inhibition
and (D) BACE1 inhibition.

2.2. Machine Learning Models

Table 1 summarizes the performance parameters of all tree-based ML models in both
data sets. The results of the training set were calculated based on the results of the 10-fold
CV procedures. For the AChE data set, the overall accuracy of the best model matched the
AChE-RF obtained using RF algorithm. The global accuracy (Q2) for training and testing
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validation of the best model were 0.87 and 0.86, respectively. It is not surprising that a
multiclassification system such as AChE-RF was able to outperform the two individual
models obtained using the general classification and regression tree (CART) and chi-square
automatic interaction detection (CHAID) algorithms [20]. However, it should be noted that
these two stand-alone models performed acceptably compared with AChE-RF. Moreover,
the effect of unbalanced data on the performance of all three models can be observed.
Whereas the accuracy and sensitivity of the models were generally quite high (>0.8), the
precision values were still low, resulting in a low F1 performance (<0.77). This effect was
not observed in the ROC analysis. As can be seen in Table 1, the AUC values for the test sets
were almost identical to the global accuracy. Compared with the AChE data, the BACE1
data are less unbalanced with a prevalence ratio of 1.5 in favor of the inactive class. The
difference between the values for precision and sensitivity was not very large. We can
note that the global accuracy of the BACE1-RF model was also higher compared with
the other classifiers. In general, all the models obtained here showed good performance,
especially the predictability on the external test set, which is important for the screening of
active compounds against each target.

Table 1. Overview of the performance parameters of the six machine learning models.

Model
Accuracy Precision Sensitivity F1-Score MCC 1 AUC

Training Test Training Test Training Test Training Test Training Test Test

AChE-CART 0.85 0.83 0.66 0.64 0.80 0.77 0.72 0.70 0.62 0.59 0.83 ± 0.024
AChE-CHAID 0.86 0.85 0.71 0.68 0.78 0.76 0.74 0.72 0.65 0.61 0.85 ± 0.024
AChE-RF 0.87 0.86 0.71 0.69 0.84 0.81 0.77 0.75 0.68 0.66 0.89 ± 0.013
BACE1-CART 0.83 0.82 0.74 0.72 0.89 0.87 0.81 0.79 0.67 0.64 0.83 ± 0.024
BACE1-CHAID 0.82 0.80 0.74 0.76 0.77 0.73 0.77 0.75 0.62 0.59 0.83 ± 0.020
BACE1-RF 0.85 0.83 0.79 0.75 0.83 0.85 0.81 0.80 0.68 0.66 0.88 ± 0.016

1 Matthews correlation coefficient.

The applicability domain (AD) for each ML model was determined using the distance-
based method (see Table 2). If a new chemical is to be predicted, it must fall within
the AD of the model. Accordingly, some compounds in the test set were identified as
structural outliers.

Table 2. Applicability domains of all six machine learning models.

Models Applicability Domain (AD) Outliers of Test Set

AChE-CART Di ≤ Dk + 0.5 × Sk = 0.3311 + 0.5 × 0.3447 = 0.5035 121/590
AChE-CHAID Di ≤ Dk + 0.5 × Sk = 1.1011 + 0.5 × 0.7766 = 1.4894 130/590
AChE-RF Di ≤ Dk + 0.5 × Sk = 5.5469 + 0.5 × 3.2381 = 7.1660 121/590
BACE1-CART Di ≤ Dk + 0.5 × Sk = 0.3826 + 0.5 × 0.4915 = 0.6284 43/464
BACE1-CHAID Di ≤ Dk + 0.5 × Sk = 0.5055 + 0.5 × 0.5208 = 0.7659 66/464
BACE1-RF Di ≤ Dk + 0.5 × Sk = 3.9731 + 0.5 × 2.3496 = 5.1479 95/464

2.3. Identification of AChE and BACE1 Inhibitory Activity Rules

The decision trees are combinations of rules describing the relationships between
molecular descriptors [21]. Since the rules are the basis of activity predictions, we define
the chemical space of active inhibitors following the rule paths that lead to the highest
classification accuracy of the positive class. As the RF models are ensemble decisions trees,
these activity rules were mainly based on CART and CHAID models. These activity rules
are of great interest because the ligand-based design approaches implemented in this study
are based on the structural fragments of the active compounds that accomplished the rules
and the predictions of all the constructed ML models.

According to the rules for AChE inhibition, we identified four rules based on eight
molecular descriptors (see Table 3). The first rule consists of three descriptors, including
H-051, SpMaxA_EA(ed), and Eta_betaP_A (Figure 2). The descriptor H-051 represents the
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number of fragments consisting of H bound to alpha C and makes a positive contribution
to the logP value and molar refractivity (MR) of active compounds according to the Ghose–
Crippen method [22]. Note that alpha C can be defined as C bonded to any electronegative
atom such as O, N, S, P, and halogens [23]. At the first stage, H-051 values of 0, 1, 5, 10,
and 11 identified 19.2% of the active compounds. This percentage increased significantly
to 39.5% when an upper limit of SpMaxA_EA(ed) was applied. This is a topological index
derived from the edge adjacency matrix and related to molar volume [24]. Applying
another limit to the descriptor Eta_betaP_A (≤0.035), Rule 1 achieved 77.5% accuracy in
classifying the active compounds. The descriptor Eta_betaP_A is derived from the valence
electron mobile (VEM) environment theory [25] and represents the total contribution of pi
bonds and lone pairs of all the atoms in the molecule. Based on the descriptors selected
in Rule 1, a small chemical space for AChE inhibitors was determined. In terms of the
chemical properties exhibited by these descriptors, aromatic rings and lipophilicity were
identified as important factors contributing to activity. AChE Rule 2 was identified by
applying the lower limit of the edge adjacency index SM15_EA(dm) in combination with the
same number of two atom-centered fragments C-006 and O-058 [23]. The descriptor O-058
is the number of =O fragments that make a negative contribution to the logP value. In
addition, AChE Rule 2 showed better accuracy than Rule 1 (80.0%). Similar to Rule 2, AChE
Rule 3 consisted of three descriptors, including H-051, SM15_EA(dm), and C-006. This rule
also showed the highest accuracy compared with the other AChE rules. In contrast to H-051,
the fragment C-006, defined as CH2RX, has a negative contribution to the logP value and a
positive contribution to MR parameters according to the Ghose–Crippen model. Since the
logP value is mainly associated with lipophilicity and MR with the mean polarizability of
a molecule, Rule 3 emphasizes the importance of a balance between the lipophilicity and
polarizability in AChE inhibitors. Rule 4 is composed of H-051, Yindex, and F09[C-N] and
has an accuracy of 76.5%. It is worth noting that Yindex and F09[C-N] are mainly related
to the size of the molecules. The Balaban-like information Yindex is defined as the vertex
distance degree of the topological distance matrix of molecules [26], and F09[C-N] simply
represents the number of topological distance (order 9) between C-N atom pairs. As can
be seen from Rule 4, AChE inhibitors in this chemical space can have 4-8 H-051 fragments
but the lipophilicity and molecular size should be limited, with Yindex and F09[C-N] not
exceeding 0.385 and 5, respectively. Another interesting point is the activity space, which
corresponds to the chemical space defined by all the rules. Comparing the mean and the
median IC50 values of AChE inhibitors in four rules, the ranking is as follows: Rule 4 < Rule
1 < Rule 2 < Rule 3 (Figure 2). A total of 139 compounds falls under these rules, with the
median and mean IC50 values for compounds in Rule 4 being 12.9 and 3.6 nM, respectively.
Applying the four rules, 70 compounds with IC50 < 7.79 nM (median value) were identified,
indicating that these rules are suitable for screening very potent AChE inhibitors whose
structural features can be used to design new inhibitors of this enzyme.

Table 3. Molecular descriptors included in the four AChE rules.

Descriptors ID Description Descriptor Family

C-006 CH2RX Atom-centered fragments
H-051 H attached to alpha C Atom-centered fragments
O-058 =O Atom-centered fragments
F09[C-N] Frequency of C-N at topological distance 9 (order 9) 2D atom pairs
Yindex Balaban Y index Information indices

SpMaxA_EA(ed) Normalized leading eigenvalue from edge adjacency mat. weighed by
edge degree Edge adjacency indices

SM15_EA(dm) Spectral moment of order 15 from edge adjacency matrix weighted by
dipole moment Edge adjacency indices

Eta_betaP_A Eta pi and lone pair average VEM count ETA indices
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The second group comprises three rules for the inhibition of BACE1 (Figure 3). These
rules were defined based on the six descriptors listed in Table 4. Rule 1 was the combination
of three descriptors SM06_EA(ri), P_VSA_e_3, and GGI9, with a classification accuracy of
79.4%. The descriptor SM06_EA(ri) is a theoretical feature and is calculated by the sum
of the diagonal elements of the sixth power of the atomic adjacent matrix weighted by
resonance integral, which in turn is a measure of the strength of intramolecular binding
interaction [23]. P_VSA_e_3 is calculated by summing the van der Waals surface area
(VSA) over the atoms with a Sanderson electronegativity within a range of 3 [27]. This
descriptor is likely related to the shape and size of the inhibitors. GGI9 is based on the
total charge transfer between atoms located at topological distance 9 [23]. In this context,
docking simulations demonstrated the role of pH value and charge state of the ligand in
the interaction with the aspartic dyad (Asp32/Asp228), the key residue in the active site of
BACE1 [28]. Rule 2, which has a very high accuracy of 98.1%, was created by combining
SM06_EA(ri) and two interpretable descriptors, nR10 and IC1 (Figure 3) [23]. It is worth
mentioning that using a lower limit of 8.331 for SM06_EA(ri), the one-property rule is
able to identify >71% of BACE1 inhibitors from 459 compounds in the database. This rule
should be considered a good starting point for further exploration of the structure–activity
relationships of BACE1 inhibitors. By applying the lower limit for IC1 as 3.513, the accuracy
of this rule increased significantly to >80%. The descriptor IC1 is simply defined as the
probability of encountering an order 1 carbon atom over the total carbons of the molecules,
represented as a multigraph filled with hydrogen [23]. Rule 2 was filled in by adding a
cyclicity index, namely nR10. Accordingly, 98% of the compounds with SM06_EA(ri) > 8.331
and IC1 > 3.513 together with one or two 10-membered rings could be classified as active
inhibitors. Rule 3, which simply combined a range of SM06_EA(ri) [8.181; 8.331] together
with the cyclomatic number nCIC equal to 3 or 6, achieved a good prediction accuracy of
>75%. Moreover, BACE1 inhibitors identified by Rule 2 had mean and median IC50 values
of 9.48 and 3.25 nM, respectively (Figure 3), showing greater potential compared with
Rules 1 and 3. Overall, three rules for BACE1 inhibition covered a large chemical space
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encompassing the structures of 617 active compounds and had very good performance in
screening potential inhibitors, especially Rule 2.
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Table 4. Molecular descriptors included in the three BACE1 rules.

Descriptors ID Description Descriptor Family

nR10 Number of 10-membered rings Ring descriptors
nCIC Number of rings (cyclomatic number) Ring descriptors
IC1 Information content index (neighborhood symmetry of 1 order) Information indices
GGI9 Topological charge index of order 9 2D autocorrelations

SM06_EA(ri) Spectral moment of order 6 from edge adjacency matrix weighted by
resonance integral Edge adjacency indices

P_VSA_e_3 P_VSA-like on Sanderson electronegativity, bin 3 P_VSA-like descriptors

2.4. Reposition of Dual-Targeted Inhibitors

The developed rules and QSAR models could be considered as useful tools for screen-
ing potential dual inhibitors against AChE and BACE1 simultaneously. The original curated
database, which included 3500 compounds, was mainly screened for inhibitory activity
against a single experimental target such as AChE or BACE1. In this context, the AChE
rules and models were applied to screen AChE inhibitors from the BACE1 database and
vice versa. The activity predictions were then validated by molecular docking simulations.

First, three BACE1 rules were applied to characterize 503 active compounds from
1975 compounds in the AChE database. As a result, 30 compounds were accomplished with
Rule 1, 3 compounds with Rule 2, and 19 compounds with Rule 3. By applying three QSAR
models, 32 compounds were predicted to be active BACE1 inhibitors with experimental
AChE inhibition. Of 630 active inhibitors with IC50 ≤ 100 nM against the BACE1 enzyme,
0 compounds matched Rule 1, 13 compounds matched Rule 2, 18 compounds matched
Rule 3, and 1 compound matched Rule 4. Based on QSAR predictions, only 2 compounds
were predicted to be dual inhibitors.

A total of 34 compounds were predicted to be active dual inhibitors against AChE
and BACE1. The prediction results and experimental measurements are summarized
in Table 5, and the chemical structures of these 34 compounds are shown in Figure 4.
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Most of the confirmed AChE and predicted BACE1 inhibitors were tacrine derivatives.
Only two compounds were not tacrine analogues, including a shogaol–huprine hybrid
(CHEMBL3355580) and rutin (CHEMBL226335), a natural flavonoid glycoside from citrus.
Whereas rutin has been shown to be able to impair BACE1 cleavage by acting as a βAPP-
selective BACE1 inhibitor [29], huprine-based hybrids have shown promise as AChE
inhibitors with potential inhibitory effects against both β-amyloid peptide (βA) and tau
aggregation [30]. In fact, five compounds with huprin–tacrin hybrid structures were
predicted to be AChE and BACE1 dual inhibitors. Interestingly, these inhibitors were
experimentally shown to act as multitargets, with inhibitory effects on AChE and AChE-
induced Aβ1−40 and PrP106−126 aggregation, BChE, self-induced Aβ1−42 aggregation,
and BACE1 [31].

Table 5. AChE and BACE1 dual inhibitors screened by experimental and rule-based approaches.

Molecule ChEMBL
ID Activity Rules QSAR

Prediction

Docking
Scores

(kCal/mol)

AChE
IC50 (nM)

BACE1
IC50 (nM) Reference 1

CHEMBL3355580 BACE1 Rule 3 2/3 −16.12 18.3 - [30]
CHEMBL3600552 BACE1 Rule 1 2/3 −11.78 3.46 - [31]
CHEMBL3600553 BACE1 Rule 1 2/3 −7.93 6.46 - [32]
CHEMBL3600554 BACE1 Rule 1 2/3 −12.14 10.1 - [32]
CHEMBL3600555 BACE1 Rule 1 2/3 −10.12 1.48 - [30]
CHEMBL3600556 BACE1 Rule 1 2/3 −7.24 3.53 - [30]
ChEMBL3403874 BACE1 Rule 1 2/3 −6.92 6.9 - [33]
CHEMBL3632989 BACE1 Rule 1 3/3 −12.63 80.0 - [34]
CHEMBL440983 BACE1 Rule 3 2/3 −10.77 6.65 - [35]
CHEMBL238230 BACE1 Rule 3 2/3 −8.27 1.83 - [35]
CHEMBL226335 BACE1 Rule 2 2/3 −6.16 12.0 - [29]
CHEMBL195241 BACE1 Rule 3 2/3 −11.67 4.1 - [36]
CHEMBL179455 BACE1 Rule 1 2/3 −10.54 1.55 - [37]
CHEMBL3343885 BACE1 Rule 3 2/3 −7.97 92.6 - [38]
CHEMBL4286601 BACE1 Rule 3 3/3 −10.72 6.3 - [39]
CHEMBL3403878 BACE1 Rule 1 2/3 −9.11 32.5 - [33]
CHEMBL3403877 BACE1 Rule 1 2/3 −7.75 17.3 - [33]
CHEMBL1819176 BACE1 Rule 1 2/3 −11.98 1.05 [40]
CHEMBL1196204 BACE1 Rule 1 2/3 −8.32 19.3 - [41]
CHEMBL3343882 BACE1 Rule 3 2/3 −10.96 98.2 - [41]
CHEMBL4278287 BACE1 Rule 3 3/3 −11.23 38.0 - [39]
CHEMBL3400187 BACE1 Rule 1 2/3 −9.54 21.6 - [33]
CHEMBL4210729 BACE1 Rule 3 2/3 −9.97 41.9 - [42]
CHEMBL4213591 BACE1 Rule 3 2/3 −12.31 51.7 - [42]
CHEMBL4293418 BACE1 Rule 1 3/3 −15.31 3.6 - [39]
CHEMBL4282154 BACE1 Rule 3 3/3 −19.64 2.1 - [39]
CHEMBL4215154 BACE1 Rule 1 2/3 −12.65 89.6 - [42]
CHEMBL4217346 BACE1 Rule 3 2/3 −11.96 94.1 - [42]
CHEMBL4290039 BACE1 Rule 3 3/3 −10.27 22.0 - [39]
CHEMBL4215217 BACE1 Rule 1 2/3 −17.45 74.5 - [42]
CHEMBL4278686 BACE1 Rule 3 3/3 −14.42 6.4 - [39]
CHEMBL4285581 BACE1 Rule 1 3/3 −14.23 23.0 - [39]
CHEMBL255838 AChE Rule 1 2/3 −17.70 - 5.6 [43]
CHEMBL2407494 AChE Rule 3 2/3 −14.39 - 76.0 [44]

1 References of experimental data.

The docking results of these compounds showed their good binding interactions
with BACE1 (PDB ID: 2WJO) [45]; however, most of the binding energies estimated by
docking scores (dG) are lower than that of the co-crystal ligand, which had a value of
−15.23 kCal/mol. This value was determined after the native ligand, namely QUD, a
catalytic inhibitor (2-(2-amino-6-phenoxy-4H-quinazolin-3-yl)-2-cyclohexyl-ethyl)-amide,
was redocked into the active site of BACE1 as a reference compound (r.m.s.d = 0.6678 Å).



Molecules 2023, 28, 3588 9 of 28

The docking score applied is based on GBSA/MM function, which combines numerous
weighted energy terms, including van der Waals, H-bonding, and the hydrophobic, sol-
vation, and desolvation energy changes [46]. Based on dG values, only four compounds
exhibited better binding energy than QUD; these were CHEMBL4282154, CHEMBL4293418,
CHEMBL3355580, and CHEMBL4215217 [30,39,42]. Notably, the first two compounds were
designed by combining 6-Cl-tacrine with a pyridine carboxamide moiety, a promising frag-
ment found in glycogen synthase kinase-3β (GSK-3β) inhibitors (Figure 4) [39]. According
to the docking interactions (Figure 5), all the compounds were able to bind strictly to the
active site of BACE1, with multiple H-bonds and stacking interactions from the 6-Cl-tacrine
and huprin moieties to Val69, Tyr71, Ile226, Val332, and Tyr198. It is worth highlighting
that all the compounds consistently participate in two H-bonds with Asp32 and Asp228
(Asp dyad), which are among the key interactions of the catalytic mechanism of BACE1
(Figure 5).
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Figure 5. Two- and three-dimensional docking conformations of some exemplary dual inhibitors
estimated by experimental and rule−based approaches in the active site of BACE1.

In contrast to the screening of BACE1 inhibitors, the screening of AChE inhibitors using
activity rules and QSAR models revealed only two active compounds, CHEMBL255838, a
polypeptide with a 5-fluoroorotyl group [43], and CHEMBL2407494, a hydroxyethylamine-
based inhibitor with a pyridone ring [44]. They were predicted to be AChE inhibitors
and had IC50 values <100 nM against the enzyme BACE1 (Table 5). Docking simulations
revealed that they were able to bind to the active site of the AChE enzyme with similar or
even better binding energies than the reference drug donepezil (dG = −14.35 kCal/mol,
r.m.s.d = 0.389 Å) [18]. Both CHEMBL255838 and CHEMBL2407494 were able to interact
with residues in the peripheral anionic site (PAS) of AChE, such as Tyr72, Tyr341, and
Trp286, and those in the choline binding site, such as Trp86 and Gly448 (Figure 6). Moreover,
these compounds were able to form stacking interactions with Phe295 and Phe338 at the
acyl binding pocket, which are important for selective inhibition of AChE. The active site of
BACE1 (beta-secretase 1) is relatively large and deep [47], whereas the active site of AChE
is shorter and narrower [48]. Although the active sites of AChE and BACE1 have different
structures and residues, both enzymes are homologous in their catalytic mechanisms. The
serine residue in AChE and the aspartic acid residue in BACE1 both act as nucleophiles
that attack the substrate to form a tetrahedral intermediate that eventually collapses and
releases the products. The role of the inhibitors is to interact with the active site and prevent
the substrates from reaching the active site. The obtained results confirmed the inhibition
of the AChE enzyme by CHEMBL255838 and CHEMBL2407494.
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2.5. Design of Novel Dual-Targeted Inhibitors

In this study, we proposed a fragment-based drug design method that can be used for
the development of novel chemical entities acting as dual-targeted inhibitors of AChE and
BACE1 enzymes. This method consists of two steps: (i) identification of the most active frag-
ments based on the chemical space defined by the chemical rules established for each activ-
ity and (ii) assembly of the most active fragments to obtain novel dual-targeted inhibitors.

First, the rules were applied to filter the data set from which we selected 67 active
cases for the AChE and 144 cases for BACE1 data sets (Tables S5 and S6). To characterize
the chemical profiles of these data sets, cluster analysis was performed using the k-MCA
algorithm. As a result, the data from 67 AChE inhibitors were divided into four clusters
using 100 variables (Figure 7A,C). The results also indicated that there are significant
differences between the clusters in both the chemical profiles (p < 0.01) and inhibitory
activities of the selected inhibitors. Among the four clusters, the mean and median values
of cluster 2 were the lowest at 1.07 and 0.53 nM, respectively. This was followed by
cluster 1, with mean/median values of 8.59/3.46 nM, cluster 4 (19.35/5.01 nM), and cluster
3 (22.53/6.96 nM).

According to the 144 BACE1 inhibitors, the data were divided into six clusters
based on 110 variables selected by analysis of variance (Figure 7B,D). The ranking along
with the mean/median values calculated for all the clusters were as follows: cluster 3
(1.54/0.58 nM), cluster 1 (3.78/0.4 nM), cluster 2 (9.55/2.0 nM), cluster 6 (9.33/4.0 nM),
cluster 5 (11.95/6.7 nM), and cluster 4 (21.21/9.5 nM). The compounds from each cluster
were then predicted by the AChE or BACE1 models, and only those that were actively
predicted by all three models for each activity were selected for the further stages of
drug design.

In the next step, the chemical space of compounds in each cluster was represented by
the more than 4000 bitsized ECFP4 fingerprint of Murcko scaffolds. The active fragments
were defined as those whose abundance in each cluster was >0.5. For the AChE data 58, 67,
89, and 70 fragments were determined for clusters 1, 2, 3, and 4, respectively, (Figure 8A).
The correlations of fragment frequencies of all four clusters were very low, indicating the
chemical diversity of each cluster. It is noteworthy that the Murcko fingerprints are defined
based on the graph framework centered on the ring systems and linker atoms connecting
the ring systems. The decomposition radius should not be very low because the basic graph
path might not represent the active fragments, as the inhibitory activity seems to be mainly
determined by the larger scaffolds such as tacrine, benzisoxazole, N-benzylpiperidine, and
pyrrolidinone as well as other complex heterocyclic systems [49]. We then selected those
Murcko fingerprints with radii greater than 0.5 for designing new inhibitors. Figure 8C
shows some of the most active AChE inhibitors of each cluster, along with the major
scaffolds determined by Murcko-type decomposition algorithm implemented in RDKit
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(https://www.rdkit.org/). A total of 192 active fragments of AChE inhibitors were selected
for assembly.
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Following the same steps described above, we identified the most frequently counted
scaffolds for six clusters (1–6) of the BACE1 data set, comprising 69, 59, 74, 86, 108, and
61 bits, respectively. After selecting the highest reassembly radius, the final number of
fragments to be used in the next design tasks was 240.

The final key fragments of each property were used to develop novel dual inhibitors.
These compounds were created by assembling fragments thought to be active on each
target, which is shown by dashed lines (Figure 9). The newly designed compounds were
then predicted by all six QSAR models, including three for AChE and three for BACE1
inhibition. Only those estimated to be active inhibitors of both AChE and BACE1 enzymes
were selected for further analysis.

https://www.rdkit.org/
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Figure 9. Structural design of novel AChE and BACE1 dual inhibitors. 13 designed compounds are
sorted in 6 groups (A–F) according to their structural similarity. The active fragments are highlighted
and colored according to their targets. The * indicates in each structure where that substituent group
attaches to the designed molecule.



Molecules 2023, 28, 3588 15 of 28

To expand the structural diversity of novel dual-target AChE/BACE1 inhibitors, we
added and/or replaced various substituents to/from the main scaffold or replaced the
entire core with equivalent surrogates based on the theory of bioisosterism. For example,
we replaced the benzene ring with a thiophene or a furan ring. The chlorine substituent was
exchanged for an electron-donating group such as a methoxy substituent (-OCH3) or an
even stronger electron-withdrawing group such as a trifluoromethyl group (-CF3) among
others. As a result, 250 new compounds were manually designed and then predicted using
the developed ML models to estimate their activity. Before the predictions, all compounds
were evaluated by the applicability domain of all the models. Only 73 compounds were
identified that met the AD of the six models. Of these, 13 compounds were predicted
as active inhibitors by both the AChE and BACE1 consensus models. They were then
validated by docking simulations. The results are shown in Table 6 and Figure 10.

Table 6. Predictions of the designed inhibitors targeting AChE and BACE1 enzymes.

Cpd. ID AChE Rule AChE QSAR
Prediction

AChE Docking
Scores (kCal/mol) BACE1 Rule AChE QSAR

Prediction
BACE1 Docking

Scores (kCal/mol)

M02 - 2/3 −14.84 Rule 1 2/3 −10.75
M06 - 2/3 −12.31 Rule 1 3/3 −10.92
M07 Rule 4 2/3 −15.54 Rule 1 2/3 −14.89
M09 - 3/3 −14.70 Rule 2 2/3 −11.80
M13 - 3/3 −18.30 Rule 3 3/3 −15.82
M14 Rule 4 3/3 −19.30 - 2/3 −16.38
M17 Rule 4 2/3 −21.20 - 3/3 −12.33
M18 Rule 4 3/3 −18.71 Rule 1 3/3 −16.14
M19 Rule 4 3/3 −16.90 - 2/3 −15.32
M27 Rule 3 3/3 −19.43 Rule 1 3/3 −16.11
M30 Rule 3 3/3 −17.42 Rule 1 3/3 −14.75
M96 - 3/3 −18.80 Rule 2 3/3 −17.03
M97 - 3/3 −18.50 Rule 2 3/3 −16.52

As shown in Figure 9, the first group (A) includes two hybrids of aminooxazoline
xanthene and cyclic ether containing quinoline (M27 and M30). M27 was predicted to bind
more strictly to both targets compared with M30. A recent study has shown that nitrogen-,
oxygen-, and sulfur-containing heterocyclic scaffolds significantly enhance the inhibitory
effects of AChE and BChE [51]. In this context, the aromatic system of the quinoline moiety
penetrates deeply into the AChE pocket and contributes to the stacking interactions with
the acyl and choline binding site, whereas the secondary amine and halogen groups interact
well with the Asp dyad of the BACE1 enzyme. The aminooxazoline 3-aza-xanthene (3-aza-
AOX) core plays an important role in the interaction with the PAS region in AChE and the
mobile flap region in BACE1, which is important to keep the molecule stable inside the
pocket [18,52].

The tacrine derivative M18 and the tricyclic isatins M14, M17, and M19 of group (B)
showed good activities according to rule-based QSAR models and docking interactions.
The cores of tacrine and 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline-1,2-dione were able to
form multiple stacking interactions with acyl pocket and PAS regions in AChE and the
flap domain from Pro70 to Trp76 in BACE1. Importantly, the hydroxyethylamine-based
linker is responsible of two H-bonds towards Asp32 and Asp228 of the Asp dyad of
BACE1 [44]. With the incorporating 2-(3-fluorophenyl)thiazole on the other side, M14
showed a higher H-bonding interaction ability with residues in the catalytic triad and
oxyanion hole of AChE, resulting in better binding energy toward the target. In addition,
the α-methoxypropanamide moiety in M14 and M18 might play a role in the interactions
with the PAS region in AchE, as well as hydrophobic and amphipathic residues at a subsite
closed to the C-terminal lobe of BACE1, such as Ser35, Val69, Tyr71, Ile126, and Tyr198.
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The 6,8-dichlorotacrine derivatives were further explored by incorporating other active
BACE1-inhibitory scaffolds such as 2-pyridyl-substituted pyridonyl dienes in M02, M06,
and M07 (Figure 9F). Compound M07 proved to be the most active dual-enzyme inhibitor
among these derivatives. The halogen group in M07 was able to interact with several
residues at the bottom of AChE pocket, including those of the catalytic triad and the choline
binding site. Its binding energy was similar to that of donepezil and was −14.84 kCal/mol.
The pyridonyl dienes interacted with Trp286 of PAS in AChE but showed no interactions
with the catalytic centers of BACE1. In contrast, the secondary amine in the linker interacted
well with Asp32 and Asp228 of the Asp dyad and with Tyr71 in the flap domain of BACE1.

Macrocyclization has been shown to improve the potency of BACE1 inhibitors [44,53].
In this study, this core structure was combined with the AChE inhibitor fragments in
group (D) to generate dual inhibitors. Among them, compounds M09 and M13 were
predicted to be active compounds based on the QSAR models and docking simulation.
As shown in Figure 10, the alkyl-linked 15-membered macrocycle is responsible for the
interactions with the different domains in AChE and the catalytic dyad of BACE1. The
incorporation of a pyridone moiety into the macrocycle significantly improved the stacking
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linkage to Trp286 (AChE PAS) and H-bonding to Thr232 (BACE1). One the other hand, the
dichlorotacrine- or isoxazole-containing tricycles are important scaffolds for interaction
with the choline binding site of AChE and the flap domain of BACE1 [54,55]. The long
aliphatic chain also plays a role while the inhibitors insert into the hydrophobic cavity of
the respective enzymes.

Considering the importance of isoxazole-containing tricycles in AChE binding, this
moiety was combined with a cyclic ether containing a quinoline of group (A) to obtain
several novel inhibitors of group (E). Among them, M96 and M97 showed the strongest
inhibition of the two enzymes. The long and highly flexible structures of the compounds
of this group allow them to interact with all the catalytic cavities of AChE and BACE1.
Compound M96 displayed better binding affinity, with the lowest docking scores compared
with the other derivatives and the two reference docking compounds donepezil and QUD.
The results once again confirmed the importance of a long aliphatic chain linking two active
scaffolds with inhibition of two targets, especially for interaction with residues in the PAS
region of AChE and catalytic Asp dyad of BACE1 (Figure 10) [56].

2.6. Comparison with Previous Studies

As is well known, rational multi-target drug design has emerged in recent years as
an attractive paradigm for drug discovery, offering potential therapeutic solutions for
AzD [49]. Computational tools such as QSAR models, activity rules, and molecular docking
have long been successfully used in the early stages of drug design and virtual screening
of bioactive compounds [21]. Classically, most of the published QSAR work focused
on only one targeting strategy, e.g., AChE, butyrylcholinesterase (BuChE), monoamine
oxidase (MAO), or BACE1. In our literature search, we found 18 studies applying QSAR
approaches to AChE inhibitor development and another 11 papers on BACE1 inhibitors
(Tables S7 and S8).

Specifically, from 2007 to 2021, dozens of models were developed to predict the
inhibitory effects of AChE based on a variety of chemical structures, including pyrimidines,
porphins, pentenones, and flavonoid derivatives among others. Both 2D and 3D descriptors
were used, and various ML techniques were employed to develop QSAR models. However,
most published models were mainly based on homogeneous and small databases (mostly
<100 compounds), so their scope seemed to be limited. Moreover, training and validation
results were variable, especially for regression models, with coefficients of determination
(R2) ranging from 0.6 to 0.9. This was similar to QSAR models for BACE1 inhibitors,
although the number of publications in this area was somewhat smaller.

To allow direct comparison with the same studies already reported in the context
of multi-targeting anti-AzD drug development, we filtered out only 2D-QSAR meth-
ods, including regression and classification models applied to dual AChE and BACE1
inhibitors. As a result, four studies were found, and their main findings are summarized
in Table 7. Of these, three were published after 2020, highlighting the current trend to-
ward multi-target drug design to combat AzD. In general, all published models showed
reasonable performance.

Using regression models, Goyal et al. developed a global model, namely GQSAR,
which included only three variables (delta epsilon A, nitrogen count, and K3 alpha) and
showed good performance in predicting BACE1 activity [12]. AChE activity was then
estimated using the same model in combination with docking simulations. However,
the training group included only 20 dihydropyridine derivatives, which might limit the
predictive ability of the developed models.
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Table 7. Comparison with previous QSAR studies dealing with AChE and BACE1 dual inhibitors.

Year Methods Molecular
Descriptors Database QSAR Model Performance References

2014
- Fragment-based QSAR

using partial least
square (PLS) regression

- Molecular docking

705 2D descriptors by
vLifeMDS software

20
1,4-dihydropyridine
(DHP) derivatives

Best models:
- Training set: R2 = 0.85
- Cross validation:

Q2 = 0.68

Goyal et al. [12]

2020

- 2D-QSAR model using
PLS regression

- 3D pharmacophore and
molecular docking for
virtual screening

2D molecular
descriptors by MOE

2008.10

72 AChE and 215
BACE1 inhibitors
(varied structures)

AChE models:
- R2 (training) = 0.70; R2

(LOO) = 0.57; Q2

(external
validation) = 0.78

BACE1 models
- R2 (training) = 0.80; R2

(LOO) = 0.77; Q2

(external
validation) = 0.83

Tran et al. [57]

2022

- Classification
algorithm: iterative
stochastic elimination
(ISE)

- Molecular docking for
virtual screening

Tanimoto index (TI)
calculated by

OpenBabel using FP2
fingerprints

- 3 AChE active
molecule lists

included
195–428 compounds

- 4 BACE1 active
molecule lists

included
194–1317 compounds

8 AChE models:
- MCC = 0.56–0.79;

average
AUC = 0.77–0.95

5 BACE1 models:
- MCC = 0.65–0.82;

average
AUC = 0.78–0.97

Stern et al. [14]

2022

Regression algorithms:
- Genetic function

approximation (GFA)
and nonlinear method,

- Support vector
machine (SVM) and
artificial neural
network (ANN)

2D descriptors:
spatial, structural,
thermodynamics,

electro-topological
and E-state indices

57 AChE and 53
BACE1 inhibitors
(varied structures)

AChE models:
- R2 (training) = 0.87, Q2

(external
validation) = 0.86

BACE1 models:
- R2 (training) = 0.82, Q2

(external
validation) = 0.78

Dhamodharan
and Mohan [13]

2023
- Rule-of-thumb
- Classification

algorithms: CART,
CHAID, and RF

1100 and 1151 0-2D
descriptors

calculated using
Dragon 6.0

ChEMBL databases
including 1975 AChE
inhibitors and 1549
BACE1 inhibitors

AChE models:
- 4 rules with accuracies

of 0.77–0.89
- 3 models: R2

(training) = 0.85–0.87;
Q2 (test) = 0.83–0.86

BACE1 models:
- 3 rules with accuracies

of 0.75–0.98
- 3 models: R2

(training) = 0.82–0.85;
Q2 (test) = 0.80–0.83

Current study

On the other hand, the study by Tran et al. employed various methods, including 2D-
QSAR, pharmacophore, and molecular docking, for the rational design of several curcumin
and flavonoid derivatives with dual AChE and BABE1 inhibitory activity [57]. Although
the amount of data was still limited, the authors demonstrated their predictive ability by
synthesizing two inhibitors (F9 and F24) that clearly showed good activity against two
targets, indicating the general validity of QSAR tools.

By using various ML techniques, Dhamodharan and Mohan were able to develop sev-
eral regression models that showed good performance [13]. According to the classification
models, Stern et al. developed numerous models based on a large chemical collection from
the ChEMBL database [14]. Their models showed regular performance, and screening tests
revealed six active compounds.

Compared with the previous studies, the models developed in this work showed
higher performance in an updated and larger data set. By integrating different approaches
into the design protocol, we also rescreened the ChEMBL database to identify dual AChE
and BACE1 inhibitors. In addition, no rule-based approaches have been explored to date.
Based on the developed activity rules, we identified the active fragments and assembled
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them into novel structures that were most likely to act as dual inhibitors. Several of them
showed very good binding affinity to AChE and BACE1 targets in docking simulations.
The comparison revealed that the rule-based and classification models developed in the
current work for the design of novel AChE and BACE1 inhibitors can overcome the main
drawbacks of previously published models, which are related to the limited training data
set and the low interpretability of ML algorithms.

Despite the mentioned advantages, the current computational approaches still have
their own limitations. Since the activity rules only focused on the chemical space in
which the QSAR models showed the highest accuracy, the screening spaces were likely
to be narrowed. Consequently, the newly screened or designed structures are not “really
new”. As a solution, future studies should adopt more activity rules by reducing the
accuracy cut-off to an acceptably lower level, e.g., >0.65. We have previously discussed
the potential application of a multiclassification system for improving decision making by
QSAR models [15]. Several approaches can be used, such as voting, support function fusion,
bagging, boosting, and stacking. In addition, the main drawback of docking simulations
is the low correlation between the docking scores and binding energies [52]. Meanwhile,
the docking assays were only used in this study for simulating the binding modes of
newly designed inhibitors. To estimate the free binding energies of these compounds, it is
desirable to perform more sophisticated techniques such as QM/MM-GBSA, MM-PBSA,
or MM-GBSA [58]. Lastly, experimental evaluations using AChE and BACE1 enzyme
assays, even though they were out of the scope of this study, would be useful for additional
confirmation of the computational predictions.

In this sense, in silico methods are widely used in pharmaceutical fields, and in many
cases, computerized assessments in both preclinical and clinical phases are adopted by the
respective regulatory authorities [59]. To this end, the current modeling approaches were
developed according to the general validation principles for QSAR models established by
the OECD (Organization for Economic Co-operation and Development) [60]. Therefore, the
models developed in this study are suitable to support wet-lab experiments in future work.

Nevertheless, there are also limitations in the present study such as the risk of ADMET
issues (absorption, distribution, metabolism, excretion, and toxicity). When using predictive
tools to estimate these ADMET parameters of compounds, it is important to consider the
structure and molecular weight of the compound in question. Compounds with a large
and complex structure and high molecular weight may not lend themselves to accurate
predictions using these tools. Therefore, it is necessary to continue research after proposing
the structure of the compound by conducting further studies to optimize it for the best
possible ADMET profile. This may mean modifying the structure or properties of the
compound by various methods such as synthesis or formulation, followed by testing the
ADMET profile by various assays and experiments to ensure the success of the optimization.
Therefore, the first step is to propose the best possible structure of the compound, as was
performed in the present study. This will be followed by further studies to improve and
obtain the best possible ADMET profile to pave the way for future in vivo studies.

In addition, it must be taken into account that, in general, small molecules often have
an effect on multiple targets depending on their binding affinity. These targets may or
may not be related to AChE or BACE1 and may have unintended effects beyond anti-
Alzheimer’s activity. Various methods, such as proteomics-based research using protein
interaction networks and similarity studies with known agents, could help identify such
targets.

3. Materials and Methods
3.1. Data Curation and Labeling

A large bioactivity library of 28,304 AChE inhibitors and 14,457 BACE1 inhibitors was
extracted from the ChEMBL database (https://www.ebi.ac.uk/chembl/ accessed on 10
April 2022). In this way, compounds were selected whose test organism category was Homo
sapiens and whose target was a single protein. The half-maximal inhibitory concentration

https://www.ebi.ac.uk/chembl/
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(IC50) values were converted to nanomolar (nM) units. In the next step, the data were
cleaned by removing duplicate structures, compounds with unclear inhibitory activity
(inconclusive IC50 values), and salts. In the ChEMBL data validity section, compounds
that were “outside typical range” or “Potential transcription error” were removed. After
data curation, we obtained a homogenized library of 1975 AChE inhibitors with differ-
ent chemical functional groups, including indoles, acridines, catechins, quinolines, and
others. The same procedure was performed for the extracted BACE1 data set. A total of
1549 compounds with different structural cores were found (Tables S1 and S2).

In order to assign discriminatory labels to AChE or BACE1 activities, such as active
and inactive inhibitors, an appropriate threshold was chosen for the response variable. In
this regard, the selected cut-off value should meet the following criteria: (i) it must be small
enough to distinguish active from inactive inhibitors and (ii) it must be at a balance-dividing
point because the problem of biased data could negatively affect the model performance.
Then, three levels of IC50 values (10, 100, and 1000 nM) were considered. The susceptibility
of each cut-off value was estimated based on the machine learning RF approach, comparing
the model performance of 200 trees with ~100 molecular features. The main criteria used
for comparison included the receiver operating characteristic (ROC) curves, data variance,
and area under the ROC curve (AUC).

3.2. Descriptor Calculation and Training Set Selection

Dragon software (academic version 6.0) was used to calculate molecular descriptors
for the two data sets using the simplified molecular-input line-entry system (SMILES)
codes [23]. Excluding missing values and those with zero variance, a total number of 1100
and 1151 0-2D descriptors were calculated for the AChE and BACE1 data sets, respectively.

In the next step, the data were rationally divided into training and test sets based on
k-means cluster analysis (k-MCA). The number of variables included in the k-MCA and
the number of clusters were optimized considering Fisher’s ratio and significance level
(p < 0.05). The AChE data set was divided into seven clusters with 1385 cases in the training
set (approximately 70%) and the remaining 590 cases in the test set. For the BACE1 data
set, five clusters were identified and then the data set was divided into training and test
sets with 1085 and 464 compounds, respectively.

3.3. Development and Validation of Machine Learning Models

To capture the non-linear structure–activity relationships and to improve the in-
terpretability of the QSAR models, several decision trees learning algorithms were em-
ployed [61], including general classification and regression tree (CART), chi-square auto-
matic interaction detection (CHAID), and random forest (RF) [21]. The configurations of
each model are described below:

- CART tree was constructed using the impurity Gini-based binary classification tree
algorithm implemented in IBM SPSS Statistics v.22.0 [61]. For the AChE-CART model,
a maximum tree depth of 9 and a minimum number of 150 cases in the parent node
and 40 in the child node were configured. In the case of BACE1-CART, the model
was built with the following parameters: maximum tree depth of 5 and a minimum
of 100 cases in the parent node and 20 cases in the child node. For both models, the
tree pruning technique was used to avoid overfitting and the prior probability in all
categories was reset to the same value before running the models.

- The CHAID model was created by splitting data into mutually exclusive and exhaus-
tive subsets with the best description of the dependent variable. A major difference
between the CART and CHAID algorithm is that CART produces binary splits that
imply two possible outcomes, whereas CHAID can generate multiple branches of
a single root/parent node [61]. The parameters of AChE-CHAID models were set
as follows: maximum tree depth: 3, minimum number of cases in parent node: 60,
minimum number of cases in child node: 18. For the BACE1-CHAID model, the
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following parameters were set as follows: maximum tree depth: 3, minimum number
of cases in parent node: 100, minimum number of cases in child node: 45.

- RF is a multiple classifiers system (MCS) consisting of a collection of tree-structured
classifiers. Significant improvements in classification accuracy have been achieved by
growing an ensemble of trees and having them vote for the most popular class [62]. In
this work, the RF models were built based on variables selected from the CART and
CHAID algorithms. The RF algorithm implemented in Statistica 11.0 was used. The
importance of selected variables was evaluated by a normalized importance scale. As
a result, 172 and 117 variables were selected for the AChE-RF and BACE1-RF models,
respectively. The hyper-parameters set for the AChE-RF model included a size of 200
trees, a number of predictors of 8, a subsample proportion of 0.5, a maximum number
of levels of 5, a minimum number of cases of 50, a maximum number of nodes of
100, and a minimum number of subordinate nodes of 10. The BACE1-RF model had
the following parameters: 200 trees, the number of predictors is 7, the proportion of
subsample is 0.45, the maximum number of levels is 5, the minimum number of cases
is 50, the maximum number of nodes is 100, and the minimum number in child nodes
is 10.

After the classifiers were developed, the three best models were combined based on a
majority voting mechanism. The best models for each target were selected based on their
performance in 10-fold cross-validation (10-fold CV). They were then externally validated
based on the test sets. The performance of the models was evaluated using the statistical
parameters calculated from the confusion matrix, including accuracy, precision, sensitivity,
F1-score, and MCC [63]. In addition, the area under the ROC curve was computed for
each model. The confusion matrix used to calculate the statistical parameters is shown in
Table 8.

Table 8. Confusion matrix for the calculation of statistical parameters 1.

Active Inhibitor
(Predicted)

Inactive Inhibitor
(Predicted)

Total
(Experimental)

Active inhibitor
(Experimental) Tp Fn Tp + Fn (TPE)

Inactive inhibitor
(Experimental) Fp Tn Fp + Tn (TNE)

Total (Predicted) Tp + Fp (TPP) Fn + Tn (TNP) TPE + TNE = TPP + TNP
1 Tp, true positive; Fn, false negative; Fp, false positive; Tn, true negative; TPP, total positive predicted; TNP, total
negative predicted; TPE, total positive experimental; TNE, total negative experimental.

The performance parameters of each ML model were calculated using the follow-
ing equations:

Accuracy =
Tp + Tn

TPP + TNP
(1)

Precision =
Tp

TPP
(2)

Sensitivity =
Tp

TPE
(3)

F1− score =
2Tp

TPP + TPE
(4)

MCC =
(Tp× Tn)− (Fn× Fp)√

TPE× TPP× TNP× TNE
(5)

where accuracy is the rate of correct prediction of the model; sensitivity is the rate of com-
pounds correctly classified as active inhibitor relative to the total number of actual inhibitors;
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precision is the rate of compounds correctly classified as inhibitors relative to the total num-
ber of predictive inhibitors; the F1-score is the harmonic mean of precision and sensitivity;
and the Matthews correlation coefficient (MCC) is another robust measure of classification
performance. A coefficient of +1 represents perfect prediction, 0 represents average random
prediction, and −1 represents worst possible prediction.

In order to apply the QSAR models, the applicability domain (AD) must be defined
according to the organization for economic cooperation and development (OECD) princi-
ples [64]. There are several approaches to generate AD, including range-based methods,
geometric methods, distance-based methods, and probability-density-distribution-based
methods [65]. In this study, we used distance-based methods, which compute the distance
of the query compounds from a defined point in the descriptor space of the training data.
Here, we employed the 3-nearest neighbors (3-NN) algorithm using Euclidean distance to
define the AD [65]. A new compound is predicted by the model to be within the AD if and
only if:

Di ≤ Dk + 0.5× Sk (6)

where Di is the average of the distances between compound i and its three nearest neighbors
in the training set; Dk is the average Euclidean distance between each compound of the
training set and its three nearest neighbors in the descriptor space; and Sk is the standard
deviation of the distances between each compound of the training set and its three nearest
neighbors in the descriptor space.

3.4. Rule-Based Query Selection and Virtual Design of Dual-Target Inhibitors

For the virtual design of novel dual-target inhibitors, a rule-based query was used
for the first time. In this approach, representative compounds are selected to define key
fragments. To this end, query molecules are used as templates for the virtual design, taking
into account three main aspects of the selected molecules: (i) they must have strong activity,
(ii) they must be representative of the group of virtually designed structures, and (iii) they
must be positively predicted in all three ML models (CART, CHAID, and RF). To select the
query that satisfies the above criteria and increases the probability of successful design, this
rule-based approach was used. The procedure is as follows:

First, the CART and CHAID models are used to filter and the compounds in the active
and test sets with the highest prediction accuracy are selected. In the second step, the
previously filtered-out cases are checked in the remaining RF models. In the next step,
all cases predicted to be active according to this step-by-step rule are used to perform a
k-means cluster analysis (k-MCA). The best clusters are chosen based on the following
criteria: (i) the activity of the compounds in the selected cluster is slightly equal, with few
outliers; (ii) the clusters with the best activity (the lowest IC50 average); and (iii) the number
of compounds in the selected cluster is greater than 9 (not included). After this selection,
the compounds within the cluster are ranked based on their IC50 values and distance
measurements calculated using the k-MCA. In this sense, some representative compounds
(2 or 3) with the highest activity against each target are selected, which should be located in
the center of the cluster, i.e., far from the edge of the cluster and with a distance different
from the maximum and minimum distance of the cluster. Then, these compounds are
fragmented based on the structure–activity relationships extracted from the best rules of the
current work and previously published research. At this stage, the standard Murcko-type
decomposition algorithm implemented in RDKit was applied to extract the molecular
framework and side chains of all the molecules [50]. Accordingly, the framework focuses
on the ring systems and the linker atoms connecting the ring systems. The side chains
include the remaining part of the molecule (non-linker, non-ring atoms). In the RDKit
package, the Murcko scaffolds are defined based on the graph framework, which only
considers the connectivity but not atom type, hybridization, and bond order [66]. Therefore,
we had to verify the fragment structures from the most frequent Murcko scaffolds of the
decomposition matrix. Since the frameworks are the most important substructures affecting
activity, they are considered for the design of new inhibitors. We therefore assembled the
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most frequent frameworks among Murcko scaffolds in the clusters of both AChE and
BACE1 inhibitors and then generated their derivatives by adding the side chains to the
designed compounds. The activity of these new derivatives is finally predicted by all QSAR
models. Only compounds that were actively predicted by all three models were considered
as dual-targeted inhibitors.

3.5. Docking Simulations

Molecular docking simulations were performed for all the compounds against the
enzymes AChE and BACE1. For this purpose, human BACE1 (beta secretase) in complex
with cyclohexanecarboxylic acid (PDB ID: 4O2B) and recombinant human AChE in complex
with donepezil (PDB ID: 4EY7) were retrieved from the Protein Data Bank [45,67]. They
were prepared for docking assays according to the standard protocol implemented in the
ICM Pro (x64) software [46]. During protein preparation, all the water molecules were
removed, all hydrogens were optimized, HisProAsnGlnCys geometry was optimized, the
MMFF forcefield was adjusted, and the binding site of colchicine was predicted using
ICMpocketfinder [18,28]. The 2D structures of the designed compounds were created
using ChemDraw 20.1.1, then imported into the ICM Pro software and converted to 3D
conformations for docking. Before docking the synthesized compounds, the co-crystallized
ligands were removed and redocked into the binding sites of AChE and BACE1. The
conformational sampling is based on the biased probability Monte Carlo (BPMC) proce-
dure. The ICM scoring function is of GBSA/MM type [46] and is weighted according
to the following parameters: (i) internal force-field energy of the ligand, (ii) entropy loss
of the ligand between bound and unbound states, (iii) ligand–receptor hydrogen bond
interactions, (iv) polar and non-polar solvation energy differences between bound and
unbound states, (v) electrostatic energy, (vi) hydrophobic energy, and (vii) hydrogen bond
donor or acceptor desolvation. For each ligand, 50 conformations were generated, and
the conformations with best binding scores and key interactions similar to those of the
native ligands were selected for further studies. Docking results were then visualized using
BIOVIA Discovery Studio Visualizer 2021.

4. Conclusions

AzD has a complex pathophysiology involving aggregation of multiple proteins,
including those involved in neurotransmission, the oxidative stress response, and neuroin-
flammation. Multi-target drug design may be a promising approach to identify potential
drug candidates against AzD. In this context, a rational drug design method was proposed
in this study with the aim of discovering potential dual AChE and BACE1 inhibitors against
AzD. To develop the activity rules of each target, classification trees were constructed based
on large databases of bioactive compounds from the ChEMBL chemical library. The best
rules for predicting inhibitory activity against each target were identified and can be ef-
fectively used for chemical characterization and virtual screening of novel inhibitors. In
total, we obtained four AChE inhibition rules based on eight structural indices with a
prediction accuracy of 76.5–88.9%. Similarly, three BACE1 inhibition rules were obtained
with six chemical features, which had a very good accuracy of 75.3–98.1%. Then, a virtual
assay was performed integrating all the activity rules and QSAR models. In this way, we
were able to identify dual-targeted inhibitors from the original data set of >3500 bioac-
tive compounds with experimental data from the ChEMBL database. Some structures
were determined to have activity against the AChE and BACE1 enzymes for the first time.
Docking simulations on the dual inhibitors identified in this assay clearly demonstrated
their ability to bind with the catalytic domains of both enzymes. These results confirmed
the applicability of the elaborated rule-based and QSAR models for screening active dual
AChE and BACE1 inhibitors.

In the subsequent application, we focused on two small chemical spaces determined
by 67 AChE and 144 BACE1 inhibitors using the activity rules. Using a fragment drug
design approach based on a Murcko-type decomposition algorithm implemented in RDKit,
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192 active fragments of AChE inhibitors and 240 fragments of BACE1 inhibitors were
extracted and ranked according to their abundance in the active inhibitors against each
target. New dual inhibitors were designed by assembling the most abundant fragments.
These compounds were then filtered through all the QSAR models, taking into account
the applicability domain of each model. Finally, by integrating the results from QSAR and
docking simulations, the most active dual AChE and BACE1 inhibitors were identified.
In conclusion, the computational method developed in this study could be used for the
development of novel dual- and multi-target agents to treat AzD. The effectiveness of the
design would then be confirmed after synthesis in the next step by biological investigation
of the new compounds with cell- and animal-based models.
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