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Abstract: In the present study, we investigated the antiviral activities of 17 flavonoids as natu-
ral products. These derivatives were evaluated for their in vitro antiviral activities against HIV
and SARS-CoV-2. Their antiviral activity was evaluated for the first time based on POM (Pe-
tra/Osiris/Molispiration) theory and docking analysis. POM calculation was used to analyze the
atomic charge and geometric characteristics. The side effects, drug similarities, and drug scores
were also assumed for the stable structure of each compound. These results correlated with the
experimental values. The bioinformatics POM analyses of the relative antiviral activities of these
derivatives are reported for the first time.

Keywords: plant compounds; flavonoids; inhibition of the ACE2 protein; docking; POM (Petra/
Osiris/Molinspiration) analyses

1. Introduction

The renin-angiotensin-aldosterone system (RAAS) is one of the human body’s main
systems and is of crucial importance in the regulation of most physiological and patho-
physiological conditions, including vascular tone and blood pressure (BP), remodeling
of the vascular wall and heart muscle, mechanisms of development and progression of
atherosclerosis, glomerulosclerosis, and other pathologies [1–5]. Hyperactivity of the local
(tissue) RAAS, the components of which are synthesized directly in various organs and
tissues (heart, kidneys, eyes, adipose tissue, pancreas), can cause Kahn, Liddle, and Bartter
syndromes, ischemic nephropathy, and diabetes mellitus [5,6]. This system was especially
promising in 2020 after the discovery that one of the receptors of the SARS-CoV-2 virus is
the angiotensin-converting enzyme 2 (ACE2), binding to which promotes the transport of
the virus into the host cell [7,8]. Due to the widespread prevalence of COVID-19 around
the world, the question of a detailed study of one of the key links in the pathogenesis of
coronavirus infection, involving the ACE2 protein, is especially relevant. A detailed study
of the enzyme, which is a receptor on the surface of various tissues and normally converts
angiotensin II into angiotensin, has led to ambiguous conclusions. Being non-tissue-specific,
the receptor is widely distributed in the heart, kidneys, small intestine, ovaries, thyroid
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gland, and adipose tissues. In addition to its direct bioregulatory function, it suppresses
inflammation, mainly in lung tissue, participates in the transport of amino acids, and
supports the vital activity of the intestinal microbiome. Thus, the ACE2 protein plays
an essential role in several metabolic processes in the body. Simultaneously, along with
performing many positive functions, the ACE2 protein promotes binding and transport to
the host cell of the SARS-CoV-2 virus, which makes it possible to consider it a target for
influencing coronavirus infection [9–15].

The use of inhibitors that affect the renin–angiotensin system may be a promising ther-
apeutic strategy for combating coronavirus infection. Preliminary data on the use of ACE2
inhibitors, drugs containing this receptor in circulatory form, and angiotensin receptor II
blockers indicate their effectiveness and the possibility of improving the condition and
prognosis of patients with coronavirus infection taking ACE2 inhibitors [10,11].

Thus, when developing drugs to combat coronavirus infection, inhibitors of the ACE2
protein can be considered a promising group of compounds for the creation of new antiviral
agents. The search for effective ACE2 blockers among various natural compounds can be
conducted empirically using traditional viral models. However, this approach requires
a large amount of work and considerable material costs. Therefore, in the first stage of
assessing the potential capabilities of compounds, it seems appropriate to simulate their
activity by molecular docking using computer programs. The promising structures selected
based on the results of such a study can then be studied in more detail using appropriate
experimental models, which will reduce both material costs and development time [16–18].

In the present work, computer docking and POM analyses of several polyphenolic
and triterpenoid compounds were carried out and their possible effect on angiotensin
converting enzyme 2 (ACE2), which contributes to the transport of the COVID-19 virus
into the host cell, was evaluated. The POM theory was of great help in the identification of
two antiviral pharmacophore sites (O δ−, O′ δ−, O′′ δ−) that are regenerated from parent
flavonoids and their metabolites.

2. Results and Discussion
2.1. Docking Analysis

The choice of the ACE2 protein model was associated with the possible determina-
tion of the mechanism of action of the ligand on either orthosteric or allosteric sites of
ACE2 protein activity. Therefore, the Native Human Angiotensin Converting Enzyme-
Related Carboxypeptidase (ACE2)-1R42 model was chosen to analyze possible inhibition
(Figure 1) [19].
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A computer simulation of the interaction of 50 plant compounds of various chemical
natures with the ACE2 protein was carried out, and the binding activity of the studied
structures with the protein was evaluated. The analysis considered the position at which
the binding energy of the protein to the ligand was the best (lowest in kcal/mol).

The interaction activity of the analyzed drugs was compared with that of standard
drugs used to inhibit ACE2. Computer analysis of the selected compounds revealed that
the energy used for the ligand binding to the protein ranged from −7 to −10 kcal/mol
(Table 1).

Table 1. Binding energy of the selected ligands with the studied protein.

No. Ligand
Binding
Energy

(kcal/mol)

1 Rhamnetin (3,3′,4′,5-Tetrahydroxy-7-methoxyflavone) −8.1

2 Patuletin (3,3′,4′,5,7-Pentahydroxy-6-methoxyflavone) −7.7

3 Isorhamnetin (3,4′,5,7-Tetrahydroxy-3′-methoxyflavone) −7.7

4 Tamarixetin (3,3′,5,7-Tetrahydroxy-4′-methoxyflavone) −7.8

5 Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) −7.6

6 Corniculatusin (3,3′,4′,5,7-Pentahydroxy-8-methoxyflavone) −8.2

7 Dillenetin (3,4-Dimethoxy-3,5,7-trihydroxyflavone) −7.5

8 Nobiletin (3′,4′,5,6,7,8-Hexamethoxyflavone) −7.8

9 Hesperidin (7-Rhamnoglucoside) −9.6

10 Baicalein (5,6,7-Trihydroxyflavone) −8.1

11 Ayanin (5,3′-Dihydroxy-3,7,4′-trimethoxyflavone) −7.4

12 Azaleatin (3,3′,4′,7-Tetrahydroxy-5-methoxyflavone) −7.6

13 Ombuin (4′,7-Dimethoxy-3,3′,5-trihydroxyflavone) −7.8

14 Pachypodol (4′,5-Dihydroxy-3,3′,7-trimethoxyflavone) −7.2

15 Retusin (5-Hydroxy-3,3′,4′,7-tetramethoxyflavone) −7.3

16 Rhamnazin (Dimethoxyflavone) −7.8

17 Eupatolitin (3,3′,4′,5-Tetrahydroxy-6,7-dimethoxyflavone) −7.8

18 Captopril −6.5

19 MLN4760 −7.4

20 Lisinopril −8.0

21 Amlodipin −7.3

Based on the fact that the selected standard comparison drugs used to inhibit ACE2 in
order to reduce pressure had binding energy ranging from −6 to −8 kcal/mol (captopril,
MLN4760, Lisinopril, Amlodipin), we determined the cut-off value of the binding energy
of the protein to the ligand as −7.4 kcal/mol. The use of this threshold value allowed us to
identify 17 compounds with potentially high inhibitory properties in relation to the ACE2
protein (Table 1).

Compounds with a binding energy of the protein to the ligand below the selected
cut-off value were divided into two equal groups, the first of which mainly interacted with
the second allosteric activity center of the ACE2 protein and the second of which mainly
interacted with the third allosteric activity center (Tables 2 and S1).
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Table 2. Features of the interaction of ACE2 protein with the ligand.

No. Hydrogen Bonds Van der Waals Force

Allosteric Site
Surrounding
Amino Acids

Residues

1 Asp206, Trp566, Asn210 Asn397, Lys562, Ala99, Ala396,
Glu208, Pro565, Leu95, Val212, Val209 2

2 Tyr196, Glu564, Ala396, Lys562,
Glu208

Leu95, Pro565, Asp206, Glu98, Gly205,
Gln98, Gln102, Tyr202 2

3 Gly208, Tyr196, Gly205, Lys502 Asp206, Ala99, Leu392, Leu95 2

4 Tyr385, Asp350, Asp382,
Aka348

His378, Arg393, Phe390, Phe40,
Asn394, His401 3

5 Asp206, Asn210, Trp566 Asn397, Lys562, Ala396, Gln208,
Val212, Leu95, Val209, Pro565 2

6 Asp206, Asp210, Trp566 Ala396, Asn397, Lys562, Gln98, Pro565,
Val209, Gln208, Leu95, Val212 2

7 Trp566, Lys562
Val209, Gln564, Pro565, Leu95, Gln98,
Asp206, gln208, Gly205, Tyr196,
Tyr202, Gln102

2

8 Asn210
Val212, Val209, Leu95, Pro565, Lys562,
Gln205, Asp206, Tyr202, Tyr196,
Gln208, Gln91, Lys94, Gln102

2

9 Ala248, Gln402, Glu375,
Tyr385, Asp350, Ser47, Ser43

Trp69, Gly68, Phe40, Asp382, Asn394,
Trp349, His401, His378, Thr347 3

10 Trp566, Ala396, Asp206 Lys562, Leu95, Val209, Asn210, Pro565,
Glu564, Asn397 2

11 Tyr196 Trp203, Gln102, Tyr202, Gly205,
Asp206, Gln98, Leu95, Lys562, Glu208 2

12 Asp509, Ser511, Tyr199, Tyr196,
Gln102

Tyr510, Trp203, Asp514, Asp206,
Tyr202 2

13 Asp350, Asp382, Ala348 Arg393, Phe390, Phe40, Asn394,
His401, His378, Tyr385 3

14 Lys562, Tyr196 Trp566, Pro565, Val209, Gln208,
Leu392, Leu95, Ala99, Glu208 2

15 Tyr196 Tyr202, Trp203, Asp206, Gly205, Leu95,
Glu564, Lys562, Gln208, Gln98, Ala396 2

16 Trp566, Ala396, Gln102 Asn210, Val209, Asp206, Lys562,
Pro565 2

17 Trp566, Glu564, Lys562, Gln98,
Tyr196 Pro565, Leu95, Asp206, Gln102, Tyr202 2

The RAAS is of paramount importance in the regulation of most physiological and
pathophysiological conditions, from the level of blood pressure (BP) to the mechanisms
of development and progression of atherosclerosis [1–4]. Therefore, the main enzymes of
this system, as a rule, can affect both orthostatic and allosteric regulation. This feature of
angiotensin-converting enzyme type 2 (ACE2), which has an orthosteric and three allosteric
sites of activity [20,21], creates both pros and cons in the search for new compounds
affecting this protein using computer modeling methods.

Highly conserved amino acid residues Lys 31, Glu35, Asp38, Met82, and Lys353 were
identified in the ACE 2 structure, four of which were located in the N-terminal part of the
ectodomain of the enzyme responsible for interaction with the COVID-19 S protein [22].
Therefore, ligand binding to amino acids ACE2 30–41 a.r.; 82–84 a.r.; 353–357 a.r. will
directly affect the possibility of S protein SARS-CoV-2 attachment to ACE2 during invasion
of the host cell. At the same time, it was found that the spike protein from SARS-CoV-2
attaches to ACE 2 in a place other than the active site of the peptidase ACE2 [23], which
somewhat reduces the possibility of using statins to alter the course of coronavirus infection.

The search for compounds affecting the orthosteric site of ACE2 showed that these
are mainly short peptides or drugs, based on the use of monoclonal or polyclonal antibod-
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ies [20,21]. Simultaneously, the presence of three allosteric sites located on both sides of
the orthosteric site and having an additional field for interaction with amino acids creates
additional opportunities for identifying new compounds capable of suppressing the sorp-
tion of SARS-CoV-2 on the surface of competent cells. In our study, 17 compounds that can
effectively interact with the ACE 2 molecule were identified. Analysis of the ability to form
hydrogen bonds or bind via Van der Waals forces with enzyme molecules showed that the
studied compounds were clearly divided into two main groups. The first includes a group
of flavones that can interact with sites from one to several amino acids of the allosteric site
of the ACE2 molecule. The second group of compounds not only interacts with amino
acids of the allosteric site of the enzyme molecule but is also able to form bonds of various
origins with amino acids of the orthosteric site of ACE2.

Thus, it was shown that computer modeling makes it possible not only to detect
whether a ligand is able to interact with a particular protein but also to evaluate the mecha-
nism of action of such compounds. The results obtained can be used for the preliminary
assessment of the activity of compounds in the development of new effective drugs.

2.2. POM Analyses

POM Theory (Petra/Osiris/Molinspiration), which was proposed by a group led by
Taibi Ben Hadda in collaboration with the American NCI and TAACF, has led to great
success in the pharmacology and drug-design fields of antibacterial, antifungal, antiviral,
and antiparasitic agents [24–92].

Here, we treated a series of natural products 1–17 with the goal of identifying their
antiviral pharmacophore sites according to the POM organigram. The identification of
pharmacophore sites for these compounds was derived from the physical and chemical
properties of the tested compounds using a bioinformatics POM platform (Figure 2).
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2.2.1. Osiris Calculations of Compounds 1–17

The results of the pharmacokinetic properties and bioactivity score analysis are shown
in the supplementary information, Figure S1 and Table S2. The drug score was very
encouraging (30% < DS < 75%). The toxicity risks and molecular characteristics of 1–17
were estimated. All structures examined were found to be non-tumorigenic and non-toxic-
reproductive, but mutagenic. It seems that only 2 of the 17 compounds were safe, and the
majority of compounds 1–17 exhibited side effects. This led us to find more indications of
metabolites with better scores.

2.2.2. Molinspiration Calculations of Compounds 1–17

The result of the Molinspiration analysis is presented in the supplementary informa-
tion, Table S3. These bioactivity scores could be categorized as active (if the score was
>0), moderately active (if the score was −5.0 to 0.0), or inactive (if the score was less than
−5.0). Corroboration of all bioactivity parameters showed that the majority of the flavonoid
derivatives were biologically active against all of the enzymes involved (Table S4).

2.2.3. Atomic Charge Calculation of Compounds 1–17

According to the results of the calculations of atomic charge shown in the supplemen-
tary information, Figure S2, it is clear that most compounds 1–17 have an (O δ−, O′ δ−,
O′′ δ−) antiviral pharmacophore site. Because of this, most hits are related to antiviral
agents rather than antifungal or antibacterial agents. As a result, it was identified as a
pharmacophore site with antiviral properties for compounds 1–17 (Figure 3).
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2.2.4. Identification of Antiviral Pharmacophore Sites

The flavonoids 1–17 have been described as subjects of opening/closing ring C and
present moderate to good antiviral activity scores, according to the results of the experi-
mental and theoretical POM calculations (Figure 3).
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3. Materials and Methods

Molecular modeling of the interaction of the analyzed compounds with the ACE
2 protein was carried out using a computer analysis of the ligand-binding activity to the
target. Such modeling makes it possible to place the ligand in the preferred binding
site of the protein and to evaluate the specificity and binding efficiency by determining
the interaction energy of the components. The information obtained through molecular
docking can be used to predict the free binding energy and stability of the complexes. The
main goal of molecular docking is to obtain a protein–ligand complex with an optimized
conformation and lower binding free energy.

For the practical application of molecular docking, a data bank is required to search for
a target with the appropriate PDB format and a methodology for preparing the ligand in
the form of a PDB file. Various programs are available in which the ligand can be converted
to the PDB format. In our case, ligand preparation was carried out in the PyMol program
2.5.2 (https://pymol.org/2/, accessed 2 February 2022) [93–99]. Before direct modeling,
the target and the ligand were prepared. To do this, the established structure of the selected
protein underwent significant changes and was converted to the PDBQT format using
the AutoDock Tools program 1.5.6. Subsequently, each ligand was also converted to the
PDBQT format. The computer simulation itself was carried out using the AutoDock Vina
program 1.1.2 (http://vina.scripps.edu/, accessed 2 February 2022), as well as external tools
such as AutoDock Tools (http://mgltools.scripps.edu/downloads, accessed 2 February
2022) [98,99].

In this program, the protein combines with one of the ligands to form a protein–
ligand complex. After entering the data, the program automatically generates a grid of
the active center of the protein after which an algorithm is prescribed in the command
line to determine the active sites of the ligand. As a result, the AutoDock Vina program
1,1,2 identified nine active ligand positions, with the best position being in the region with
the lowest binding energy (BE) in kcal/mol. Visualization of the protein–ligand complex
itself can be performed using various programs. We performed 2D visualization of the
ACE2 protein with a ligand in the LigPlot+ program 2.2.5. This program allows for better
visualization of the connection between the protein and ligand. This determines the amino
acids that are directly linked to the ligand (https://www.ebi.ac.uk/thornton-srv/software/
LigPlus/download2.html, accessed 2 February 2022) [98,99].

For a comparative study, 54 compounds were used, including four compounds used
as blockers of the ACE2 protein at elevated pressure. The choice of compounds was
determined based on previous studies (data are not presented) showing high efficacy of
glycoside derivatives of flavonoids, methoxtflavonoids, and triterpene compounds.

4. Conclusions

We conducted a computational docking and POM study to identify the pharma-
cophore sites of 17 flavonoids, known as anti-viral agents. All flavonoids were successfully
analyzed in silico for antiviral activity prediction, POM calculation, molecular docking,
and pharmacokinetic properties. The insertion of various aliphatic and aromatic groups
into the basic flavonoid structure can considerably improve its biological and antiviral
activities. Antiviral prediction indicated that aliphatic/aromatic (1–17) derivatives exhibit
potential antiviral effects. These findings were rationalized through molecular docking,
which revealed the excellent antiviral efficacy of flavonoid derivatives. Many derivatives
have shown outstanding binding energy and binding interactions with biotargets. Most
flavonoid derivatives exhibited good potential in silico to inhibit HIV. The derivatives
were unraveled in a stable binding conformation in the docked pocket, engaged by both
hydrophobic and hydrophilic interactions. Future in vitro and in vivo studies are needed
to determine whether these derivatives can be used to treat SARS-CoV-2 and HIV. The
POM study confirmed the predominant antiviral profile of most compounds in series 1–17.
This is highly encouraging to screen the antiviral hits as potential antiviral candidates.

https://pymol.org/2/
http://vina.scripps.edu/
http://mgltools.scripps.edu/downloads
https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download2.html
https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download2.html
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28093766/s1, Table S1a: 2D and 3D visualization of
ligand binding to the protein under study; Table S1b: 2D and 3D visualization of ligand binding to the
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