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Abstract: Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature
degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops
efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most
investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or
soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily
derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is
notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The
main problems include that the surface of the substrate is multifaceted, its chemical and physical
properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence,
methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on
starch granule degradation are obtained on a long-term enzyme-action basis from which initial
rates cannot be derived. In this review, we discuss these various aspects and future possibilities for
developing experimental procedures to describe and understand interfacial enzyme hydrolysis of
native starch granules more accurately.

Keywords: starch; starch granules; amylase; enzyme kinetics; interfacial catalysis

1. Introduction

The staggering interest and developments in areas such as green chemistry, food
digestion related to health impacts and recyclable materials have stimulated research
into enzymatic hydrolysis of insoluble biopolymers, such as starch and lignocellulose.
Enzymatic hydrolysis of native starch in a heterogeneous environment of solid interfaces is
a reality in many biological and industrial processes, such as transitory starch degradation
in plants [1], dietary digestion by animals [2], malting and fermentation processes [3],
enzymatic modification for improving physical and functional characteristics [4], and
low-temperature protocols for the production of glucose syrups or bioethanol [5].

Starch is commonly found in the form of granules ranging from 1 to 100 µm in size
within leaves and non-photosynthetic tissues. The latter is typically considered storage
starch, which is a vital source of nutrition for human consumption and is widely used in
various industrial applications. The functional properties of storage starch vary significantly
depending on its complex multi-level structure (Figure 1). Hydrolytic degradation of starch
in the human gastrointestinal tract (GIT) occurs in consecutive oral, duodenal and small
intestinal stages, leading to various maltooligosaccharides, maltose and glucose. However,
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the starch portion passing through the small intestine and entering the colon is defined
as Resistant Starch (RS), providing an important energy source for the colonocytes and
is beneficial for a healthy gut (Figure 2). Several enzymes are involved in the process of
hydrolysis of starch to glucose in the GIT, such as salivary (HSA) and pancreatic (HPA)
amylases hydrolyze starch in the oral and small intestine, respectively. These activities
mainly provide maltooligosaccharides that are readily converted to glucose by the two
brush border maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) heterodimeric
enzyme complexes in the small intestine resulting in the uptake of glucose there [6]. RS
is degraded by the complex ecosystem of microbes in the colon by producing starch-
degrading enzymes, including α-amylase for α-1,4, type I pullulanase for α-1,6 and type
II pullulanase for degradation of both α-1,4 and α-1,6 linkages [7]. High and controlled
degradative resistance of the dietary fiber RS forms a general concept for its nutritional
value. It is not clear, however, if the resistance of different types of RS stems from a slow
turnover of the hydrolysis of glucosidic bonds, weak binding of enzymes, limited substrate
accessibility for enzyme hydrolysis or a combination of these effects. Such knowledge is
imperative for the development of new functional RS dietary fiber.
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Figure 1. The multi-level structure of the starch granule as depicted by the blocklet [8] and backbone
organization [9]. (a) Starch granule, (b) growth rings as a repeating layered structure with a period of a
few hundred nanometers, containing a semi-crystalline region (high crystallinity) and an amorphous
region (low crystallinity), (c) spherical blocklets with a diameter between 10 and 300 nm in the
semi-crystalline regions, (d) left-handed amylopectin super-helix consisting of alternating crystalline
lamellae (containing the linear parts of the chains) and amorphous lamellae (containing most of the
branch points) which stack with a periodicity of ~8–11 nm (e), and molecular structure of (f) amylose
and (g) amylopectin.
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Figure 2. Maize starch granular morphology with different amylose content: 0% (A); 27% (B); and
72% (C).

Enzyme kinetics provides the experimental link between structure and function in
biocatalysis. Contrary to homogeneous catalysis, where substrate and enzyme are both in
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solution, the hydrolysis of insoluble solid substrates (e.g., starch granules) constitutes a
heterogeneous (interfacial) catalytic process that is challenging because the molar concen-
tration of the substrate cannot be defined unambiguously [10]. Classical Michaelis–Menten
(M-M) kinetics typically measures catalysis in dilute solution, which is not characteristic
of most natural situations. In particular, it is unclear whether conventional M-M theory
can be applied, which requires a large excess of substrate. In this review, we discuss these
various aspects and possible ways forward to build experimental systems to describe and
understand interfacial enzyme hydrolysis of native starch granules more accurately. For
example, as inspired by the hydrolysis of cellulose fibers by cellulases [11], we suggest
a new kinetics approach to analyze granular starch degradation, which introduces an
important factor that enumerates sites (in units of mol/g substrate) available for enzyme
attack in the substrate suspension.

2. The Starch Granule

The starch granule is an exceptionally well-organized and compact polysaccharide
energy source [12]. It forms the main component of most plant foods [13] and is thereby of
tremendous importance for human wellbeing. The world annual production of raw starch
reached a volume of 120.4 Mt in 2020 and is projected to reach 168.9 Mt by 2027 (https:
//www.reportlinker.com/p05485911/Global-Starch-Industry.html?utm_source=GNW, ac-
cessed on 20 December 2022).

The starch granule is a semi-crystalline multi-level entity with specific structural
features, defined at the molecular level mainly by the essentially linear α-1,4 glucan amylose
(AM) and the branched α-1,4;α-1,6 glucan amylopectin (AP) [14], at the 8–11 nm level by
crystalline and amorphous lamellar and at the 0.1 µm scale by alternating amorphous and
semi-crystalline growth rings. Finally, the size of the entire starch granule is 1–100 µm
depending on the botanical origin [9] (Figure 1).

Models and representations of these different structural levels are continuously dis-
cussed (e.g., [15]). One important point is the currently debated description of the molecular
structure of amylopectin as either the so-called cluster model [16–18] or as the more recent
building block backbone model [9]. Both models agree that the double helices are oriented
perpendicularly to the surface of the starch granules. While the cluster model entails a
radial tree-like clustering organization of the branch chains in the amylopectin molecule,
the backbone model suggests that long backbone chains are tangential to the direction of
the double-helical structures of branch chains (Figure 1e). Accordingly, the long chains
of the backbone structure form two-dimensional sheets on which non-clustered branched
building blocks are attached from which shorter crystal-forming chain segments protrude
in the perpendicular direction (in the building block backbone model, Figure 1), or the
long chains have essentially the same orientation as the double helices and can penetrate
several layers of double helices (in the cluster model). These segments are suggested to be
randomly distributed from each other and have sufficient inter-branch space of less than
nine glucose residues (degree of polymerization (DP) < 9 (5–8)) [9] to allow parallel double
helices to be formed and crystallize. One such backbone/double-helix segment layer consti-
tutes a 9-nm thick lamella, which creates a structural entity yielding concentric structures in
the starch granule. The branching of amylopectin, the ratio and the chain length of amylose
and amylopectin all play important roles in the granular architecture [9,14,19]. Amylose
seems to be interspersed into the granular matrix, mainly in amorphous regions. However,
little is known about how different molecular structures affect granular architecture and
thelolytic susceptibility.

2.1. Nano-Level Structures

At the nano-level, the starch granule is assembled to contain mainly one of two differ-
ent double-helical crystalline systems, namely the A- and B-type crystalline polymorphs, as
determined by wide-angle X-ray scattering (WAXS) [19]. For storage starches, the A-type
polymorph is typically found in cereal grain starches, while the B-type is found in tuber
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and root starches as well as in high-amylose (>50%) starches. Pulses (the edible seeds of
plants in the legume family) may have a mixture of the two, a so-called C-type starch. High
amylose starches also tend to have a third polymorph termed the Vh-type polymorph,
made of single helices, typically complexed with lipids [20]. As deduced from small angle
X-ray scattering (SAXS), the thickness of the crystalline lamellae (mainly containing the
double-helices) is 4–6 nm, and the thickness of the amorphous lamellae (containing the
main parts of the branch linkages and amylose) is 3–6 nm. 13C NMR analysis indicates that
much of the amylopectin in the lamellae is in a double-helical arrangement [21]. As visible
in light and electron microscopy, the starch granule has alternating 0.1–1 µm thick layers or
“growth rings” of different crystallinity. At the level of whole granules, i.e., 1–100 µm, the
growth rings are deposited in a mainly concentric manner [22]. However, the relationship
between the different structural levels is still obscure, and the outer shapes/morphologies
of starch granules cannot yet be deduced from the underlying structural levels. That
is, starch molecules packed in the structures on multiple scales have varying degrees of
compactness and, thus, show structural heterogeneity. Such heterogeneity has been ob-
served both among different starch granules within the same plant and within the same
starch granule.

2.2. Blocklet Structures

Very little is known about the starch granular surface structures, which precludes our
understanding at the molecular level of the interactions between the degrading enzymes
and the granules. However, an interesting layer of structures appears at the organizational
level between the lamellar and growth ring structures, namely the so-called ellipsoidal
blocklets [23,24]. As described above, a blocklet comprises several semi-crystalline lamellae
(Figure 1c). Blocklets can be observed by Atomic Force Microscopy (AFM) and Scanning
Electron Microscopy (SEM) as protruding nodules of different sizes (10–500 nm in diameter)
on the surface of starch granules [25–28]. Their size varies between species, ranging from
40 to 100 nm in wheat [27], 10 to 300 nm in potato [29,30], 130 to 250 nm in pea [31],
and 10 to 30 nm in corn starch granules [25]. An important hypothesis is that differently
structured blocklets form the growth rings so that the more amorphous growth rings consist
of smaller and/or less ordered blocklets, while the more crystalline granular layers are
formed by larger and/or more perfectly packed blocklets [23]. Even though the blocklet
hypothesis remains to be validated, the observed structures can be decisive in delineating
the variations in the surface characteristics of starch granules from different plants, i.e., the
surface boundary where biosynthesis occurs and hydrolytic enzymes attack.

2.3. Starch Granular Topography and Morphology

The inner structure of starch is highly evolutionarily conserved. However, it is still
unclear how this leads to the vastly different starch granule morphologies and sizes found
in various plant genotypes and organs [32]. For example, among the storage starches, very
small starch granules, 0.3–2 µm, are found in quinoa, amaranth and cow cockle [33,34].
Oat, rice and buckwheat have 2–10 µm starch granules [32,35]. Medium-sized (5–30 µm)
include granules from cassava, barley, corn and sorghum and large starch granules (up to
100 µm) are found in tubers such as potatoes and canna [36,37]. Bimodal size distributions
are characteristic of temperate cereals such as wheat [38] and barley [39]. In mutant
plants, especially where the amylose content (AC) exceeds 50%, a significant variation in
granular morphology, such as elongated, hollow and aggregated granules, is observed
(Figure 2C) [40,41]. It has been suggested that the heterogeneous starch granules within
high amylose starches exist in different structures, leading to different properties. For
example, aggregate and elongated granules in high amylose maize starches were found
to have higher AC and greater thermal and hydrolysis resistance compared to normally
shaped granules in these genotypes [40,42]. The size, morphology and number of starch
granules can also differ greatly within a single species across different organs and tissues.
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For example, potato leaf starch granules are smaller than 5 µm, while tuber starch granules
range from 10 to 110 µm [43,44].

Notably, many, but not all, types of starch granules have pores on their surface,
extending as channels that reach an internal cavity at the granular hilum [45]. Such pores
can be observed on the entire surface of corn, sorghum and millet starch granules or along
the equatorial groove of wheat, rye and barley starch granules [46]. No porous structures
are detected on starch granules of tapioca, rice, oat, canna and arrowroot. Generally, pores
were thought to be unique features of starches with A-type crystallinity [47], causing
the channels to penetrate into the center of the granules and forming hollow cavities
(Figure 2A,B) [48], which are natural features formed during the granules’ development
around radially oriented microtubules in the amyloplast [49]. However, the results from
mutant and transgenic rice starches have also shown the presence of pores on the B-type
crystallinity starch surface [50]. Pores are usually randomly distributed and vary from
starch to starch in terms of location, dimensions and extent [47,51,52]. For instance, pores
in maize and rice starch granules display diameters in the range of 100 to 200 nm, while
pore diameters in wheat are 2 to 3 nm [53]. While channels are native features of granules,
their composition and biological significance remain largely unknown [49].

The organization of amylose and amylopectin within starch granules also remains
poorly understood. Previous studies have proposed that, for high amylose maize starches,
amylose is more concentrated at the periphery than the core, while the opposite is observed
for normal and waxy starches [54]. However, such AM distributions can be complex
depending on genotypes and mutations in the genes coding for target starch metabolizing
enzymes [55–57]. Such knowledge, such as the degree of branching and chain length
distribution on the surface, is crucial for starch hydrolysis, as the flexible glucan chains on
the granule surface are considered a primary factor influencing the susceptibility of starch
to amylolysis [58].

Proteins constitute about 0.1–0.8% (w/w) in cereal, tuber and legume starch gran-
ules and are not removed during normal starch fractionation, such as wet milling [59].
Moreover, lipids and proteins may impair the degradation of the starch granule both di-
rectly by reducing contact between digestive enzymes and starch and indirectly through
reduced swelling of the starch granule during gelatinization as well as gelatinization tem-
perature [60–62], even though a typical pure starch granule only contains a small amount
of protein (0.1–0.8%) and lipid (0.1–0.7%). All such factors (multi-level starch structures
and non-starch compounds) are collectively important for digestibility [63], as discussed
further below.

3. Action of Hydrolase on Granular Substrates
3.1. Hydrolase Mechanisms on Granular Substrates

Enzymatic hydrolysis of starch granules is a complex and heterogeneous catalytic
process [64] that depends on the interplay among the widely different granule surfaces
and matrix structures described above, the substrate recognition and catalysis by the hy-
drolase. Importantly, at the granular starch surface, a fraction of glucan chains may be
accessible, which potentially provides efficient binding sites and substrates for starch-active
enzymes [56,57]. The rate of hydrolysis can be controlled by three main factors: (i) diffusion
of the enzyme toward the granule surface; (ii) adsorption onto structures at the granule
surface; and (iii) catalytic glycoside bond hydrolysis (Figure 3). Specific interactions be-
tween a given enzyme and sites on the granule surface lead to the formation of diverse
enzyme–starch complexes (Figure 3(A2,B2)) in which substrate chains adopting productive
binding configurations are hydrolyzed, followed by product release. Binding and disso-
ciation at the granular surface are considered favorable for amylases that contain either
carbohydrate-binding modules (CBMs), referred to as starch binding domains (SBDs) [65],
or so-called surface binding sites (SBSs) [66–68] or both, substantially increasing the affinity
to granular starch. The lower affinity to the starch model β-cyclodextrin (Kd = 0.38 mM)
of the SBD of CBM family 20 (CBM20) as determined for phosphoglucan, water dikinase,
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compared to a fungal glucoamylase (Kd = 0.0075 mM) [69,70] suggested the involvement
of dynamic interactions comprising several binding, dissociation and re-binding events.
Thus, SBDs assist adsorption at the surface (Figure 3(A2,B2), red frames). Some SBD-
containing enzymes may dissociate rather fast from the starch surface (Figure 3(B3), green
frames), while others remain bound via the SBD (Figure 3(B3), blue frames) [71]. Although
this situation, which illuminates the so-called Sabatier principle, has been demonstrated
for cellulose hydrolases [10], a similar analysis for granular starch is only emerging [72].
Accordingly, there are two possible situations during heterogeneous catalysis, namely,
desorption-limited catalysis and adsorption-limited catalysis. In the adsorption-limited
situation, stronger binding between the enzyme and substrate leads to higher activity:
compare Figure 3(A2,B2). However, for desorption-limited catalysis, higher affinity will
lead to lower activity due to a too-strong binding of the enzyme [73].
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Figure 3. Heterogeneous catalysis by amylases without (A) or with (B) SBD attacking blocklets on
the starch granule surface during diffusion (1), adsorption (2) and catalysis (3). Red frames: Enzyme
adsorption. Blue frame: Amylases remaining attached. Green frame: Fast dissociation.

3.1.1. Diffusion Mechanism on the Granular Starch Surface

Diffusion is crucial in interfacial biocatalysis, and the maximum reaction rate depends
on a balance between the rate and extent of adsorption and the rate of surface diffusion.
Adsorption-limited reactions occur due to an insufficient enzyme population, while high
surface (e.g., granular starch) concentrations reduce surface diffusion and enzyme en-
counter with catalytic sites. This reduction in surface diffusion results from hindered
lateral mobility and increased electrostatic interaction strength between the enzyme and
substrate [74].

Enzyme surface diffusion is hindered as surface concentration increases, which has
been well-documented. For instance, for the digestion of granular starch, starch granules
with a smaller size show a larger surface area, which can become a hindrance to enzyme
diffusion. Potato starch’s diameter of ~60 µm creates a greater hindrance to enzyme
diffusion than the small granule fraction of wheat starch, which has a diameter of ~10 µm
and higher binding affinity [75]. Another factor contributing to hindrance in enzyme
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diffusion is electrostatic interaction, which could arise from starch binding domains and
surface binding sites of the enzymes, as explained in Section 3.1.2.

3.1.2. Starch Binding Ability
Starch Binding Domains

Among the 97 different CBM families in the CAZy database (http://www.cazy.org/,
accessed on 20 December 2022) [76], SBDs constitute CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58,
68, 69, 74, 82 and 83 [77] and furnish many starch-active enzymes with the enhanced starch
binding ability [78]. Structurally, SBDs are recognized as individual immunoglobulin-
like fold domains [77,79] of about 100 amino acid residues, except for CBM74, which has
about 300 amino acid residues [80]. Functionally, many SBDs are expected to increase the
enzyme affinity for granular starch and thereby promote its degradation [77]. SBDs are
also hypothesized to bind onto and disentangle interacting α-glucan chains on the starch
granule surface, facilitating enzyme hydrolysis [81]. SBDs indeed recognize structures
on the granular surface, bringing the catalytic domain (CD) into close contact with the
substrate [82], including guiding its α-glucan chains to the active site [81,83].

Surface Binding Sites

Surface binding sites (SBSs) are typically identified in crystal structures and then
characterized by their aid in site-directed mutagenesis and various biochemical analyses.
Functionally, SBSs play essential roles in a range of carbohydrate-active enzymes [84–86].
As opposed to SBDs, SBSs are integral to the structure of the CD, appearing as a binding
site containing one or two aromatic carbohydrate binding residues, mostly tryptophans
and tyrosines [87]. Thus, SBSs can be found on CDs of amylolytic enzymes at a certain
distance from the active site or on other domains intimately associated with the CDs [85].
For example, the SBSs in barley α-amylase 1 (AMY1) confer a Kd of 0.64 mg/mL on barley
starch granules [68]. SBSs have been identified in several different enzymes involved in
starch degradation, such as α-amylases [85], glucoamylase [88] and pullulanase [89].

3.1.3. General Mechanism of Granular Starch Hydrolysis

In vitro digestion tests have been developed for the dietary degradation of starch
utilizing two different enzymes to account for and simulate salivary, pancreatic and small
intestinal starch degradation, namely, porcine pancreatic α-amylase (PPA) and glucoamy-
lase (GA) (also named amyloglucosidase (AMG)) from Aspergillus niger [90]. In some
cases, either PPA [91] or AMG [92] have been used alone. From a mechanistic point of
view, all α-amylases share the same type of active site cleft, containing two aspartic acids
(Asp) and one glutamic acid (Glu) as catalytic residues. One of the Asp residues is the
catalytic nucleophile, Glu is the proton donor and the second Asp residue is a transition
state stabilizer [93]. The catalytic mechanism differs according to whether the anomeric
configuration of the substrate is retained or inverted in the product. Inverting catalysis
involves a single displacement and retaining catalysis involves a double displacement
mechanism via the formation and hydrolysis of a covalent intermediate [94]. Enzymes
from glycoside hydrolase (GH) families are classified as inverting or retaining enzymes,
and while α-amylases and related enzymes are retaining, glucoamylases and β-amylases
are inverting enzymes [95].

3.2. Dietary Starch Granule Digestion

Starch can provide a very important component in the diet, and most consumed human
starchy food is cooked and, thereby, gelatinized. However, most of the starch granule
structure is retained in several low-moisture foods, such as muesli, biscuits and some fruits
and vegetables [96]. In addition, animal feed, which also attracts attention, contains mainly
raw, unprocessed starch, and the importance of such structures has been demonstrated in
feed systems [97]. Native starch granule digestion is of interest in light of the increasing
recognition of its nutritional advantages due to its higher resistance than gelatinized starch

http://www.cazy.org/
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to human and animal amylolytic enzymes and conversion by gut microbiota to compounds
beneficial to the host, such as short-chain fatty acids. Understanding the factors that
determine the extent of enzyme degradation of granular starches is essential for developing
starch-based food and feed with controlled digestibility [2].

3.2.1. Starch Hydrolysis in the Digestive System

Starch digestion in human GIT is a complex biochemical process. It can be divided into
oral, duodenal and small intestinal phases, leading to the release of maltooligosaccharides
and eventually glucose (Figure 4).
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A classification scheme based on rapidly digestible starch (RDS), slowly digestible
starch (SDS) and resistant starch (RS) has been established for nutritional purposes. RDS
and SDS are defined as the portions of total starch that are hydrolyzed after incubation with
an excess of pancreatic amylase and AMG at 37 ◦C for 20 min and an additional 100 min,
respectively [99]. The non-hydrolyzed residue remaining after 120 min of incubation
is classified as RS. However, it has been argued that the 20-min cutoff point used to
differentiate between RDS and SDS is too simplistic and lacks physiological significance [99].
RS, on the other hand, is a physiological concept that refers to the portion of starch that
reaches the large intestine rather than a precise physical entity [99]. Once RS is transferred
to the colon, it can be metabolized by the colonic microbiota [100,101].

RS is metabolized by the human gut microbiota (HGM), providing a range of health
benefits, e.g., via the production of short-chain fatty acids [102]. Microbiotal amylases in the
colon have been demonstrated to act potently on RS and generate fermentation products,
notably butyrate [101], that serve as energy for colonocytes and strengthen the gut barrier,
but also other short-chain fatty acids [6]. While mammalian amylolytic enzymes are well
characterized, the HGM hydrolases and their action on RS remain understudied. However,
RS hydrolytic activity was found in Ruminococcus bromii [103], and notably compelling
RS-degrading activity was identified in Bifidobacterium adolescentis [104]. Hence, efficient
degradation of RS by HGM enzymes forms the foundation of RS health-promoting effects.

RS granules constitute an important principle for enhancing the nutritional value of
starch through microbial fermentation. High amylose starch (AC > 50%), due to its thermal
stability and amylolytic resistance, is considered a good natural source of RS [105]. Such
resistance is considered to stem from the dynamic competition between digestion and gran-
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ular re-organization [72,106]. Still, the mechanisms, product structures and functionalities
remain to be validated for different starch types. Notably, the structural re-organization
significantly complicates investigations into the interfacial enzymatic hydrolysis of starch.

3.2.2. Glycoside Hydrolases Involved in Human Starch Digestion

Several different hydrolytic activities participate in starch digestion in human GIT.
The GH families 13, 14, 15, 31, 57, 119 and 126 are associated with starch degradation [107].
GH13 is among the highly abundant enzyme families within gut bacteria and is most often
associated with the initial bacterial processing of starch [108]. Here, we mainly focus on the
enzymes applied for starch digestion using in vitro testing protocols.

α-Amylase

α-amylases (EC 3.2.1.1) are endo-acting enzymes catalyzing the hydrolysis of internal
α-1,4-linkages in starch to mainly generate maltose and maltooligosaccharides [109]. The
majority belong to the glycoside hydrolase family 13 (GH13) [110]. They are found in
most organisms, including bacteria [111], archaea [112], fungi [113], plants [114] and
animals [115–118]. Notably, α-1,6-linkages in α-glucan chains of AP and glycogen are not
hydrolyzed by α-amylases, which release maltose, maltotriose [119], a small amount of
glucose [120] and branched α-limit dextrins as final products from starch substrates. In
humans, the initial degradation of starch is catalyzed by the human salivary α-amylase
(HSA) [115], which varies from person to person because of genetic variation [121]. As a
consequence, individuals with higher HSA levels show faster digestion of starch compared
with individuals with lower HSA levels [122]. Hence, following HPA-catalyzed hydrolysis,
starch is sometimes not fully degraded, depending on the starch structure. According to the
definition of RS, i.e., ingested starch reaching the colon, the main step to quantify RS in vitro
is to quantify the remaining starch after the removal of the material digested by α-amylase
and glucosidase. PPA is mostly used to mimic starch’s upper gut digestion [36,123,124].
The use of PPA to replace HPA for in vitro tests is reasonable since the two enzymes show
very high amino acid sequence similarity, including the conservation of surface binding
sites 1 and 2 and three catalytic site residues (Asp197, Glu233 and Asp300) and between
their three-dimensional structure [116,125] (Figure 5).
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and PPA (1PIF (Blue) [127]; 1PIG (Violet) [127]). (A) Full-length structures. (B) Surface binding site 1
(SBS1, red) in PPA (PBD: 1PIG) in complex with maltose (Green), (C) Surface binding site 2 (SBS2,
red) in PPA (PBD: 1PIG) with maltose as a ligand (Green) and (D) Active site with catalytic residues
in stick representation.
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Three binding sites for maltooligosaccharides are seen in the crystal structures of
PPA and HPA. The two SBSs located at a distance from the active site [126,128] are here
named SBS1 (Figure 5B) and SBS2 (Figure 5C). SBS1 in HPA, containing two aromatic
residues (Tyr276 and Trp284), and SBS2 (Trp388) are responsible for the granular starch
binding (Figure 5B), which has also been identified in barley α-amylase [68] and pancreatic
α-amylase [127]. In addition, Ragunath et al. found that the aromatic residue multiple
mutants in HSA (W134A/W203A/Y276A/W284A/W316A/W388A) exhibited an 87%
reduced ability to hydrolyze granular starch compared with the HSA wild-type [129].

Glucoamylase

As mentioned above, four brush border disaccharidase activities, found as two het-
erodimeric enzymes (MGAM and SI), belong to GH31 [130,131] and are involved in the
degradation of starch-derived maltooligosaccharides in the small intestine [132]. These
enzymes can act on oligosaccharides produced by α-amylases or directly on starch gran-
ules [133]. A widely adopted setup is to use a fungal glucoamylase (GA), also called
amyloglucosidase (AMG), to simulate these disaccharidases in combination with porcine
pancreatic α-amylase (PPA) to mimic in vitro starch digestion, which is found to give results
in line with the findings from ileostomy studies after a fixed time of digestion [134,135].
GA (AMG) (EC 3.2.1.3) catalyzes the hydrolysis of α-1,4- and α-1,6-linkages, releasing
β-D-glucose from the non-reducing ends of starch and oligosaccharides. It belongs to
GH15 [136] and is found mostly in filamentous fungi [137,138] and in some bacteria [139].
Its specific activity on α-1,6- is only 0.2% of that on the α-1,4-linkages [140].

A C-terminal SBD of CBM20 is found in GA from Aspergillus niger [137] and an N-
terminal SBD of CBM21 in GA from Rhizopus oryzae [141]. Because Aspergillus niger GA is
typically used to mimic the process of in vitro digestion of starch, only the CBM20 from A.
niger glucoamylase will be discussed here.

Two binding sites are observed in the three-dimensional structure (PDB ID: 1ACZ) of
CBM20 from A. niger GA (SBDGA) complexed with β-CD [83]. These binding sites differ
with respect to function and structure. Binding site 1 contains two tryptophan residues
(Trp543, Trp590) and is small and rigid, with an easily accessible planar aromatic face
binding to carbohydrates. By contrast, binding site 2 has two tyrosine residues (Tyr527,
Tyr556) and is longer and more flexible, possibly guiding the substrate chain to the active
site of the CD [83]. Apart from these conserved tryptophans and tyrosines in the two
binding sites, there are additional conserved residues that can assist the binding process.
A hydrogen bond is present between Lys 578 and maltose in binding site 1. Both binding
sites are important for granular starch binding [70,83].

Apart from α-amylase and glucoamylase, there is a series of enzymes that are involved
in starch degradation both in nature and in industry, such as isoamylase (EC 3.2.1.68, GH13
and 176) [142], β-amylase (EC 3.2.1.2, GH14) [143,144], α-glucosidase (EC 3.2.1.20, GH13,
31, 76, 97 and 122) [133], pullulanase (EC 3.2.1.41, GH13 and 57) [145] and cyclodextrin
glycosyltransferase (CGTase, EC 2.4.1.19, GH13) [146]. The different substrate specificities
of these enzymes on a schematic amylopectin segment are shown in Figure 6.

3.3. Starch Granule Structure and Digestion

Susceptibility to amylases is seemingly very dependent on the structure of the granular
surface, as described above (Section 3.1) [75]. A number of starch granular µm- and nm-
scale features have been connected to the susceptibility to amylolytic enzymes. Obviously,
amylolytic activity is related to the starch granules’ surface area. Hence, the smaller
granules (larger surface area per unit weight) should provide a better substrate than larger
ones for both binding and catalysis [147]. However, it should be noted that surface catalysis
is a complex process, which is not only determined by granular size [99].
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Irrespective of which structural representations that are applied as models for starch
granules, e.g., the blocklet and the backbone models, the double-helical chain arrangement
forms the foundation of the crystallinity, and despite their tight packing, both these and the
amorphous parts of the granule are targets for amylolytic cleavage. However, the number
of binding sites available in double-helical structures is limited due to the densely-packed
crystalline matrix providing protection for glucosidic linkages from access by enzymes [148].
This effect is evident from the substrate contact where the interaction of a stretch of at
least four exposed glucose units is needed between the active site of PPA, which has five
substrate binding subsites, and starch [148]. Generally, the less crystalline parts of the
starch granules are more readily degraded by amylases than their crystalline counterparts.
However, these observations do not apply to high-AM starches, which typically exhibit
lower crystallinity than normal starches while also displaying high enzyme resistance [149].
Moreover, the two main crystalline polymorphs found in starch granules show different
resistance to amylolysis; the B-type typically being more resistant to enzymatic hydrolysis
than the A-type crystalline polymorph for non-mutant crop genotypes [150,151]. However,
such resistance is suggested to be more likely due to the distribution of B-type crystallites
within the granules and their influence on the local granule organization, such as larger
“blocklets” than A-type, rather than the presence of B-type crystallinity per se [99,150]
Hence, the crystalline type or amount of crystallinity itself cannot fully explain the enzyme-
resistant properties of granular starch. It is likely that the dense packing of the starch
chains, hindering enzyme accessibility or catalytic action, is the key factor in determining
enzyme resistance, regardless of whether it occurs in the crystal region or the amorphous
region [152].

The flexibility of the protruding chains on the surface of starch granules and their
chain length are considered crucial factors determining the susceptibility of starch to
amylolysis [58]. As shown for pure amylopectin (waxy) rice starch, flexible polysaccharide
chains protrude from the granular surface, which are hydrated and highly mobile. Such
chains are readily attacked by hydrolytic enzymes and increase with gelatinization [58].

It has been suggested that the hydrolysis of starch granules is primarily dictated by
the supramolecular structural (crystalline, blocket and granular surface) characteristics
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of the granule rather than internal features such as AC and relative crystallinity [153].
These supramolecular structures vary among different types of starch and also within
starch granules from the same botanical origin. For example, PPA binds rapidly to a
surface with highly disordered α-glucan chains (supposedly no visible blocklet structure),
while binding to granules with ordered crystalline surfaces (supposedly large blocklets)
is slower (the observed binding rate constant (kobs) values are 22 × 10−3 for pea mutant
starch and 2.0 × 10−3 s−1 for potato) [154]. Moreover, it has been clearly shown that
some regions on the periphery surface of the granule are much more resistant to different
α-amylases than others, which have been identified as blocklets [155]. Hence, structural
heterogeneity within a starch granule population, preferential binding of enzymes to
specific regions of a single granule [156], as well as different hydrolysis resistance for
starches with different morphologies within high amylose starches exists, as discussed
above [40]. However, more knowledge is needed on the surface characteristics, such as
blocklets and flexible/amorphous surface patches and chain length distributions, and how
they influence enzyme recognition and amylolytic reaction.

An additional layer of complexity is added by taking into account the proteins associ-
ated with starch granules, as these can prevent amylolytic attack. Thus, the removal of such
bound protein (typically amounting to 0.1–0.8%) enhances the in vitro digestibility of starch
(the hydrolysis rate coefficient (k, min−1) 2- to 3-fold) [62,157,158], demonstrating their
physical protective role against amylolytic enzymes [158]. Lipids present another important
non-starch component in the starch granule, influencing the starch digestibility by forming
starch–lipid complexes, thereby reducing the contact between enzyme and substrate [159].
In conclusion, the µm-scale features of the starch granule and its interaction with lipids and
proteins, as well as the nature of the amylase, are decisive for its hydrolytic susceptibility.

4. Kinetics of Heterogeneous Systems
4.1. Analyzing the Digestive Rate and Efficiency of Granular Starch Degradation

Several attempts have been made to quantify reaction rates of granular starch digestion,
especially for α-amylase [117,160,161]. Most protocols include measurements of the extent
of hydrolysis over relatively long periods with data fitted as first-order rates of hydrolysis
to the Michaelis–Menten (M-M) kinetics model, the latter requiring data for initial rates of
hydrolysis. For in vitro digestion of starch or starch-containing foods using α-amylase in
combination with AMG over a long period (normally > 120 min), the rate of the reaction
typically decays logarithmically with time and hence, the data plot of the concentration of
product formed (or quantity of starch digested) against time is linear when plotted on a
logarithmic scale (LOS). This substrate decay process fits the standard first-order equation
(Equation (1)):

Ct= C∞

(
1 − e−kt

)
(1)

where t is the digestion time (min), Ct is the fraction of digested starch at digestion time t,
and k is the digestion rate constant (min−1). The value of k can be obtained from a logarithm
of the slope (LOS) plot to avoid using the imprecise value of maximum digestion extent,
C∞ (Equation (2)) [162].

In(dC t /dt) =− kt + In(C ∞ k) (2)

This LOS analysis has been shown to provide reliable linear fits to digestion data ob-
tained from a range of different starch types [153]. The primary substrate structural factors
that may affect starch digestion include the particle size (hence, the exposed surface area) of
the granule, the presence of pores/crevices in the granule surface, and the supramolecular
structure of the carbohydrate chains exposed on the surface of the granule, especially the
relative proportions of amorphous and ordered α-glucan chains (the bulk crystallinity
of the starch granule and the surface ordering extent of starch), as discussed above [75].
Several studies have demonstrated relationships between starch granule architecture (e.g.,
granule size, pore size and damaged starch content) and the parameters derived from
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first-order kinetics, including the digestion rate (k) and maximum digestion extent (C∞)
(Equation (1)).

The dimensions of native starch granules are critical with respect to controlling diges-
tion by α-amylase. In general, small starch granules are degraded faster (higher k value)
than large granules. Compared with the densities of crystalline and amorphous lamellar
regions, the presence of granular pores and channels and length of amylopectin “spacers
arms” (the link between the double-helices and the amorphous “backbone” of clusters) and
branches are more likely to affect enzymatic susceptibility [2]. However, not all the pores
facilitate access to a given hydrolase to the inner granule, and such accessibility needs a
sufficiently wide pore size (0.4–0.5 µm2), while small pores (0.05–0.3 µm2) limit granule
hydrolysis [163]. In addition, it has been found that the activity at the initial time point of
the binding of the enzyme onto the starch granules, as well as surface features (e.g., degree
of starch damage), are the primary determinants for the digestion rate and extent (k and
C∞ value) rather than the molecular and crystalline structure [164]. However, it has been
demonstrated that in rice starch granules, the crystalline polymorph plays a critical role,
with B- and C-type being more resistant than A-type due to the higher content of longer
chains (DP > 14) present in the B- and C-polymorphic mutant and transgenic rice starch
granules compared to A-type granules [50].

However, the k value is normally obtained over a long time-course of degradation, and
the surface structure of the starch is likely notably changed during this period, including
generating and widening of channels, pores and etching of blocklets. Additionally, high
amylose starches are prone to molecularly reorganize during digestion [106]. Hence, to
determine kinetic parameters for initial catalytic events at the granular surface, assuming
that the granular surface is not significantly altered during hydrolysis, forms an important
principle for providing more precise information about amylase–starch granule interaction
and catalytic effectiveness.

4.2. Michaelis–Menten (M-M) Kinetics of Starch with Hydrolase

M-M kinetics provides a relationship between initial, linear reaction rates and substrate
concentration. The fundamental form of the M-M kinetics is as follows:

v = VmaxS0/(KM + S0) (3)

kcat = Vmax/E0 (4)

CE = kcat/KM (5)

where v is the initial enzyme reaction rate, KM is the M-M constant, i.e., the substrate
concentration yielding an initial rate of Vmax/2, as a guide to the substrate availability
for a given hydrolase [165]. Vmax is the maximum rate of the reaction, S0 is the initial
substrate concentration, kcat is the catalytic constant representing the turnover number of
the enzyme and kcat/KM is the apparent second-order rate constant describing catalytic
efficiency (CE) [166]. For native granular starches, the experimentally determined apparent
KM is relatively large since only a few of all α-1,4-linkages present in the total starch
chains are available for amylase binding and subsequent reaction. Hydrothermal treatment
increases the amount of highly accessible starch (gelatinized) and causes KM to decrease
significantly [166].

Several studies have demonstrated that the application of the M-M kinetic model is
useful for studying starch granule amylolysis in vitro. Several relationships have been
established between the kinetic parameters (KM, kcat and CE = kcat/KM) and starch granule
characteristics, including surface area and gelatinization enthalpies [165]. The surface
area of granules and the degree of order of the starch have an important effect on both
the CE and binding rates for amylase to the starch granules. Starch granules with larger
diameters (smaller surface area per unit weight) are poorer substrates for amylase, as
shown by lower catalytic efficiency, the initial rate of hydrolysis, binding rates and higher
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KM values [75,165,167,168]. However, the extent of granule swelling related to the surface
area showed a positive relationship with the affinity between starch granules and gran-
ular starch hydrolyzing enzyme [169]. In addition, as analyzed by differential scanning
calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy, a given hydrolase
preferentially binds to and catalyzes the degradation of starches having a larger fraction
of amorphous material [75,165]. In addition to the structural features of starch granules,
other factors, such as the presence of retrograded starch [170] and other polysaccharides,
such as cellulose [171], can inhibit the activity of amylase, resulting in a decrease in CE.
However, the underlying mechanism is still unknown. In addition, surface barriers, such
as surface protein, are also considered as an innate physical barrier against starch–amylase
binding, and such protein can even exert inhibitory effects on the porcine pancreatic
α-amylase [172]. Wang et al. [173,174] suggested that the access, i.e., binding of enzymes
to starch (mainly influenced by the degree of starch gelatinization and porosity), rather
than the catalytic hydrolysis, is the rate-determining step for starch digestion. However,
supporting experimental data are limited.

Classical M-M kinetics must generally be applied with caution for the amylolytic
hydrolysis of granular starch, which is classified as interfacial catalysis. It is characterized
by being a two-phase system with a heterogeneous interface, and the reaction steps include
diffusion of enzymes to the solid surface, adsorption/binding of enzymes and catalysis
of glucosidic bond hydrolysis [152]. A number of concerns have been raised about the
practice of applying the conventional or adapted M-M approaches to analyze initial rates
for heterogeneous systems, such as that of cellulases acting on insoluble cellulose [11].
The fundamental requirement for the quasi-steady-state assumption (QSSA) of the M-M
approach is that the substrate is in large excess with respect to the enzyme. However,
for a heterogeneous system, this is difficult to fulfill experimentally since the true molar
concentration of the substrate cannot be defined unambiguously. As an effect, it can be
argued if the traditional M-M approach can be applied at all to interfacial reactions between
starch granules and amylases.

An additional complication is related to the lack of knowledge on in vivo ranges of
amylase and starch. It has been suggested that the concentration of human α-amylases
is in the range of 5 to 15 nM [166]. However, HPA is also suggested to be present at very
high concentrations in the lumen of the small intestine—10–65 mg/mL starch. With a
specific activity of 1000–9000 units/mL amylase, 1 unit of amylase activity catalyzing the
formation of 1 mg of maltose/h amounts to approximately a 105 times higher activity level
than the 5–15 nM maltose/h mentioned above [175]. Typically, also in living cells, enzyme
concentrations are comparable to those of the substrate, which means that a considerable
fraction of the available substrate can be bound to the enzyme [176]. Hence, in many
biologically relevant situations, enzyme kinetics in vivo operate under conditions where
the substrate is not in vast excess, particularly for starch granules that have a limited
attackable site. Therefore, the application of traditional M-M kinetics for starch granule
degradation can lead to inaccurate estimates of KM and Vmax parameters due to the dynamic
substrate concentration and uncertain quasi-steady-state assumption.

Notably, the brush border disaccharidases (α-glucosidases) in the intestinal villus can
have relevance to granular starch digestion in vivo (Section 3.1). These enzymes primarily
hydrolyze maltooligosaccharides derived from starch α-amylolytic action. However, it
has been suggested that these enzymes not only passively convert the end products of
α-amylase digestion to absorbable glucose but are capable of acting directly on granular
and polymeric starch [133]. Hence, analysis of the kinetics for brush border α-glucosidases
or the model enzyme AMG used in an in vitro digestion test is also physiologically relevant.
Following the small intestinal degradation of starch and uptake of glucose, degradation of
RS in the colon relies on hydrolysis by a group of gut microbes’ amylases [177] and further
fermentation into beneficial metabolites such as butyrate. While the mammalian hydrolases
are very well characterized, gut microbiotal starch hydrolases are less well studied. RS
hydrolytic activities are identified in so-called amylosomes in Ruminococcus bromii [103],
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and recently, strong RS-degrading activity was found in Bifidobacterium adolescentis [178].
The efficient degradation of RS by these microbial enzyme systems provides the foundation
for the health-promoting effects of RS along with other dietary fibers. Contrary to what
is observed for the effect of AM content on the action of PPA relevant to gastrointestinal
digestion [99], the influence of the AM content on the fermentation rates in the large
intestine was small. Thus, when wheat starches with different AM contents (37–93%) were
tested, similar fermentation kinetics and amylolytic enzyme activities (microbial α-amylase,
β-amylase, pullulanase and glucosidase) were found, irrespective of the AM content [179].
However, more types of RS substrate need to be analyzed, including partly degraded
granular starch.

4.3. Handling Interfacial M-M Kinetics at High Amylase Concentrations

Since the reaction between digestive enzymes and the starch granule occurs in a two-
phase system, the reaction mechanism involves a kinetically-significant adsorption step
as well as the actual catalysis, as discussed above. It has been suggested that hydrolysis
resistance in starch has two fundamental origins: binding-limiting, where binding to the
enzyme is the limiting factor; or hydrolysis-limiting after binding, where the hydrolysis
step itself is limiting after binding has occurred. Therefore, it is important to determine
which limitation, or combination, is responsible for resistance in a particular starch or
food [99].

Bright-field and fluorescence microscopy have enabled the observation of the binding
of active and inhibited hydrolases to starch granules, revealing several important findings:
(1) the surface structure and botanical origin of the starch granules affect amylase binding,
with maize starch granules showing more enzyme binding than potato starch granules;
(2) the surface of starch granules is heterogeneous as an effect of digestion, with certain
regions being more susceptible to enzymic degradation [156]; and (3) two catalytic patterns
have been observed for a given enzyme on different starch types, depending on whether
the granules have surface pores (an “inside-out” digestion pattern) or not (an “outside-
in” digestion pattern) [156]. Additionally, the two patterns have also been observed
for the same starch and different amylases, depending on the SBD engineering of the
amylases, i.e., whether there is a flexible linker between the CD and SBD or not [155].
While microscopy is a valuable tool for visualizing the location of enzymes during binding
and hydrolysis, it cannot provide quantitative information, such as the number of bound
enzymes, binding rates and binding affinity. Kinetic analyses, such as the Freundlich [154]
and Langmuir isotherms [72], have been applied for this purpose. Additionally, correlation
analysis between affinity and activity, based on the Sabatier principle, has also been used
to obtain more information about the binding and hydrolysis mechanisms [10]. However,
experimental details must be carefully considered to avoid changes to the starch granule
surface during binding analysis with hydrolases, such as reacting under non-hydrolyzing
conditions (e.g., low temperature (0 ◦C) or the addition of an inhibitor).

In classical M-M enzyme kinetics, measuring catalysis for two freely diffusible en-
zymes and substrate species provides an important experimental link between starch
structure and hydrolysis efficiency. However, as already mentioned, it is unclear whether
conventional M-M theory, which requires a large excess of substrate, is biologically fully
relevant for interfacial starch amylolysis. It was recently demonstrated that using micro-
crystalline cellulose from wood as the model solid substrate for cellulolytic enzymes, simple
steady-state kinetics can be applied to heterogeneous substrate systems [11] by varying the
enzyme concentration instead of the substrate concentration (Figure 7) and introducing a
factor kinΓmax (in the unit mol/g) which enumerates sites available for enzyme attack per
gram of substrate (Equation (6)). This approach requires experiments that include both
enzyme and substrate saturation (i.e., conventional and inverse M-M combined). When
combined with Langmuir isotherm data for enzyme adsorption to the surface of starch
granules, it is possible to calculate the density of attack and binding sites in relation to
different surface structures. Such data can provide important insights into the mechanisms
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of amylolytic reactions for a range of starch substrates, especially related to whether the
reaction is limited by binding or catalysis [11,72]. Moreover, starch granule degradation
efficiency at high enzyme concentrations in vivo (where all attack sites are complexed with
enzyme and free enzyme accumulates in the aqueous phase) could also be compared.

kinΓmax = KM/K1/2 (6)

where K 1
2

is the mass load at substrate half-saturation given by the conventional M-M, and
KM is the molar concentration of attack sites that gives enzyme half-saturation given by the
inverse M-M.
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Figure 7. Schematic principle of interfacial M-M kinetics at the excess substrate (left, conventional
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permission from Ref. [11]. 2023, Yu Wang).

Notably, the relationship between the rate of glucosidic bond hydrolysis and enzyme
concentration is not exactly linear for a granular starch system since not all the enzyme
was able to bind to the surface, and not all the binding events are productive, as discussed
above. Such effects are important to quantify and need to be addressed. For cellulases,
it has been shown that not all binding sites are competent for catalytic conversion [11],
and hence, degradation can be limited by either enzyme adsorption, catalysis or both.
The method has been validated in great detail as applicable to cellulases (references here),
but its application for granular starch systems is in its infancy and just emerging [72].
Such combined kinetic/adsorption data, including the density of attack sites, adsorption
capacity and the ratio between them, will shed new light on the rate-determining step of
the starch digestion with respect to binding and/or catalytic action (Figure 8), as prospected
before [99], and provide an estimate of the overall efficiency for digestive enzyme and
granular starch. Moreover, it will provide unprecedented insight into the role of enzyme-
accessible surface features manifested for a range of different starch granules. In conclusion,
enzyme coverage at the granular surface and the ratios of binding and catalytic events
can provide data to explain the fundamental mechanisms underlying RS functionality for
different starch types and amylases.
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drolysis of starch in its gelatinized or granular states is different. Enzymatic hydrolysis of starch
granules is a heterogeneous catalytic process with an insoluble substrate acted on by a soluble
enzyme, while the hydrolysis of gelatinized starch is a well-defined homogeneous system where
both enzyme and substrate are in solution. Granule hydrolysis is controlled by adsorption, catalysis
and desorption. (1) The Sabatier principle states that optimal catalysis occurs when the catalyst and
reactant interact with intermediate affinity. However, this principle has not been used extensively
for bioanalytical heterogeneous catalysis yet, such as starch granules. (2) Conventional M-M theory,
which requires a large excess of substrate, is widely applied in homogeneous catalysis, while it has
limited applicability for studying catalysis on an insoluble starch granular substrate. A combined
“inverse M-M strategy” provides a description of granular starch interfacial enzyme reactions with
readouts revealing the density of enzyme attack sites on the substrate surface as probed by a given
enzyme. (3) The widely applied LOS analysis provides catalytic rates over extended time frames but
does not take into account initial rates. Especially for a granular starch system, the starch surface
is likely notably changed due to its long time reaction, generating an ill-defined catalytic process
(adapted with permission from Ref. [72]. 2023, Yu Wang).

5. Conclusions and Prospects

Interfacial enzyme reactions are natural for starch granules, but our understanding
of the kinetics remains far less developed than for enzyme reactions in solution. From a
nutritional perspective, native starch is an important source of RS, which is physiologically
useful for reducing risk factors such as obesity and type 2 diabetes [180]. However, the
widely varying susceptibilities of RS towards amylase adsorption and amylolytic attack
are only vaguely understood, and major obstacles include a lack of deeper analysis of
granular starch surface hydrolysis-related structural characteristics and reliable kinetics
approaches [99]. A better understanding of the structural basis for determining starch
digestibility could help design starch foods with enhanced nutritional outcomes. It is
hoped that more techniques will be developed for analyzing the surface of starch granules,
particularly to clarify the structural characteristics of regions that exhibit varying degrees
of resistance to enzyme degradation.

An in vitro digestion approach provides an efficient key experimental link between the
starch structure and nutritional function in vivo. Instead of only comparing experimental
data of starch digestion, the digestion curves can be modeled by kinetic equations (first-
order kinetics and M-M kinetics and their derivations (Section 4.3)). Such kinetic analysis
helps evaluate the role of starch structural features in determining starch digestibility. We
suggest that combined effects of the glucosidic scissile bond stability, weak substrate ad-
sorption, low substrate accessibility or a combination of these are responsible for the starch
granular-hydrolysis resistance difference (Figure 8). However, whether in vitro conditions
corroborate the assumption of substrate excess and hence, the ubiquitous QSSA is question-
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able for applying the conventional M-M kinetics to granular starch degradation [11]. The
LOS method, defined by a first-order equation, is widely applied and describes long-term
dynamic digestion well. However, this approach suffers from not taking into account
possible and likely, decreases in enzyme activity during the long incubation course applied
and the changing structure of the substrate surfaces. An inverse M-M kinetics model
developed for cellulases [11] provides initial rates and adsorption specific for given sub-
strate surfaces and enzyme activities, thereby providing a new manageable way forward
to gain insight into the impact of the structure of substrate surfaces available for enzyme
interaction and catalysis (Figure 8). We hope the information provided here can support the
development of new ways forward, carefully evaluating different kinetic and adsorption
methods for granular starch and starch-degrading enzymes to provide reliable relational
data on enzyme binding and catalysis and substrate structures for relevant research, e.g.,
nutritional assets of starch.
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77. Janeček, Š.; Mareček, F.; MacGregor, E.A.; Svensson, B. Starch-binding domains as CBM families–history, occurrence, structure,
function and evolution. Biotechnol. Adv. 2019, 37, 107451. [CrossRef]

78. Ueda, S. Fungal glucoamylases and raw starch digestion. Trends Biochem. Sci. 1981, 6, 89–90. [CrossRef]
79. Jespersen, H.M.; Macgregor, E.A.; Sierks, M.R.; Svensson, B. Comparison of the domain-level organization of starch hydrolases

and related enzymes. Biochem. J 1991, 280, 51–55. [CrossRef]
80. Valk, V.; Lammerts van Bueren, A.; van der Kaaij, R.M.; Dijkhuizen, L. Carbohydrate-binding module 74 is a novel starch-binding

domain associated with large and multidomain α-amylase enzymes. FEBS J. 2016, 283, 2354–2368. [CrossRef]
81. Southall, S.M.; Simpson, P.J.; Gilbert, H.J.; Williamson, G.; Williamson, M.P. The starch-binding domain from glucoamylase

disrupts the structure of starch. FEBS Lett. 1999, 447, 58–60. [CrossRef]
82. Armenta, S.; Moreno-Mendieta, S.; Sánchez-Cuapio, Z.; Sánchez, S.; Rodríguez-Sanoja, R. Advances in molecular engineering of

carbohydrate-binding modules. Proteins Struct. Funct. Bioinform. 2017, 85, 1602–1617. [CrossRef] [PubMed]
83. Sorimachi, K.; Le Gal-Coëffet, M.-F.; Williamson, G.; Archer, D.B.; Williamson, M.P. Solution structure of the granular starch

binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 1997, 5, 647–661. [CrossRef] [PubMed]
84. Cockburn, D.; Svensson, B. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional

diversity. Carbohydr. Chem. 2013, 39, 204–221.
85. Cockburn, D.; Nielsen, M.M.; Christiansen, C.; Andersen, J.M.; Rannes, J.B.; Blennow, A.; Svensson, B. Surface binding sites in

amylase have distinct roles in recognition of starch structure motifs and degradation. Int. J. Biol. Macromol. 2015, 75, 338–345.
[CrossRef] [PubMed]

86. Cockburn, D.; Wilkens, C.; Dilokpimol, A.; Nakai, H.; Lewińska, A.; Abou Hachem, M.; Svensson, B. Using carbohydrate
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