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Abstract: How to efficiently activate peroxymonosulfate (PMS) in a complex water matrix to de-
grade organic pollutants still needs greater efforts, and cobalt-based bimetallic nanomaterials are
desirable catalysts. In this paper, sea urchin-like NiCo2O4 nanomaterials were successfully prepared
and comprehensively characterized for their structural, morphological and chemical properties via
techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning elec-
tron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), among others. The sea urchin-like
NiCo2O4 nanomaterials exhibited remarkable catalytic performance in activating PMS to degrade
phenol. Within the NiCo2O4/PMS system, the removal rate of phenol (50 mg L−1, 250 mL) reached
100% after 45 min, with a reaction rate constant k of 0.091 min−1, which was 1.4-times higher than
that of the monometallic compound Co3O4/PMS system. The outstanding catalytic activity of sea
urchin-like NiCo2O4 primarily arises from the synergistic effect between Ni and Co ions. Addi-
tionally, a comprehensive analysis of key parameters influencing the catalytic activity of the sea
urchin-like NiCo2O4/PMS system, including reaction temperature, initial pH of solution, initial
concentration, catalyst and PMS dosages and coexisting anions (HCO3

−, Cl−, NO3
− and humic

acid), was conducted. Cycling experiments show that the material has good chemical stability. Elec-
tron paramagnetic resonance (EPR) and quenching experiments verified that both radical activation
(SO4

•−, •OH, O2
•−) and nonradical activation (1O2) are present in the NiCo2O4/PMS system. Fi-

nally, the possible degradation pathways in the NiCo2O4/PMS system were proposed based on gas
chromatography–mass spectrometry (GC-MS). Favorably, sea urchin-like NiCo2O4-activated PMS is
a promising technology for environmental treatment and the remediation of phenol-induced water
pollution problems.

Keywords: PMS activation; non-radical activation; radical activation; sea urchin-like NiCo2O4;
synergistic effect

1. Introduction

Recently, the increasing water pollution caused by the discharge of large quantities of
industrial wastewater has aroused concern and worry. In particular, industrial wastewater
containing phenol and Rhodamine B is considered persistent, difficult to degrade and
composed of hazardous organic pollutants [1,2]. This can adversely affect the quality of
human life by way of the food chain and environmental cycles. Therefore, developing
economical and efficient technologies is urgent to remove these organic pollutants from
water bodies. Among the many wastewater treatment technologies, advanced oxidation
processes (AOPs) based on peroxymonosulfate (PMS) are considered as promising tech-
nologies for the degradation of organic pollutants because of their simplicity, high efficiency,
good reproducibility and reduced secondary pollution [3].
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Previous studies have explored various strategies for the degradation of organic pollu-
tants in water by PMS-based AOPs [4–6], where most of the degradation mechanisms have
been attributed to independent radical or non-radical pathways. The radical pathway refers
to the fact that PMS can generate reactive free radicals with high redox potentials, including
SO4

•− and •OH, through certain external conditions (acoustic, optical, electrical, thermal,
transition metals and their oxides, etc.), which can lead to the complete mineralization
of organic pollutants [7–9]. The non-radical pathway relies on reactive oxygen species
other than free radicals and oxidative processes, such as 1O2, and direct electron transfer
from organic electron donors to the PMS on the catalyst surface [10]. The radical path-
way and non-radical pathway each have advantages and disadvantages. Radical-based
AOPs with high oxidation potentials have excellent degradation performance, but side
reactions and the corresponding by-products usually occur due to the non-targeted attack
of free radicals [11,12]. In contrast, the non-radical pathway is more selective for certain
organics, such as electron-donating compounds [13]. However, effective degradation by
non-radical processes only occurs for electron-donating contaminants (e.g., aniline) and
not for electron-absorbing contaminants (e.g., benzoic acid) [13]. It has been shown that the
simultaneous action of radical and non-radical pathways on pollutants is more effective
than single pathway treatment due to the synergistic effect. Therefore, the design of a
catalyst that can efficiently activate PMS with the presence of both radical and non-radical
pathways is very promising in the field of PMS-based AOPs.

The literature suggests that cobalt is the most powerful element for PMS activation in
AOPs [14,15]. Several stable cobalt oxides (e.g., CoO and Co3O4) are frequently used as
activators for PMS [16,17]. Nevertheless, the leaching of toxic divalent cobalt ions, the small
specific surface area and few active sites limit the practical application of monometallic
cobalt oxides [18]. The introduction of other polyvalent transition metal elements may
alter the morphology and structure of the material in comparison to monometallic cobalt
oxides, which not only helps to improve the catalytic performance of the materials but also
reduces the leaching of cobalt ions [19,20]. Therefore, it is a wise strategy to improve the
above defects and maintain the excellent catalytic activity by introducing other transition
metal elements.

In recent years, a broad range of cobalt-based bimetallic catalysts have been widely
used in AOP because of their excellent catalytic activity. Yu et al. [21] successfully synthe-
sized MgCo2O4 spinel via a hydrothermal method and tested its catalytic performance for
PMS activation using bisphenol A (BPA) as the target pollutant. The results showed that
the MgCo2O4/PMS system could effectively degrade 99.6% of BPA within 10 min at pH 7.2.
In this case, the tetrahedral Mg2+ may make MgCo2O4 more stable and promote the redox
cycle of Co2+/Co3+, which ultimately leads to the degradation of BPA through both radical
and non-radical pathways. A.Q.K. Nguyen et al. [22] reported that CoWO4 nanoparticles
synthesized by adjusting the PH during hydrothermal synthesis can efficiently degrade
4-chlorophenol by activated PMS. The experimental results showed that the excellent per-
formance of the CoWO4 catalyst (CoWO4-10) synthesized at pH 10 is attributed to its large
specific surface area, the good charge transfer properties and the synergistic effect between
Co and W ions. Ultimately, the organic compounds were rapidly degraded relying on
both free radical and non-free radical pathways. In addition, NiCo2O4 is also an excellent
semiconductor material for various catalytic applications, and its higher conductivity helps
in electron transfer [23–25].

Based on the above factors, sea urchin-like NiCo2O4 was rapidly synthesized via a sim-
ple hydrothermal method and thermal treatment for the catalytic degradation of phenol in
water by activated PMS. The effects of important factors, such as catalyst and PMS dosage,
initial solution concentration, initial pH, reaction temperature and coexisting anions and
humic acid (HA), on the catalytic activity of sea urchin-like NiCo2O4 were explored. The
synergistic effect of Co2+-Co3+/Ni3+-Ni2+ in the sea urchin-like NiCo2O4 promoted the
generation of more reactive oxygen species (ROS). The quenching experiments verified
that both radical and non-radical pathways participated in the activation of PMS. Addition-



Molecules 2024, 29, 152 3 of 17

ally, the GC-MS explored the intermediate products of the degradation of phenol in the
NiCo2O4/PMS system. The present study suggests that sea urchin-like NiCo2O4-activated
PMS is a promising technology for environmental treatment and remediation in response
to phenol-induced water pollution problems.

2. Results and Discussion
2.1. Characterizations of the Sea Urchin-like NiCo2O4 Catalysts

The sea urchin-like NiCo2O4 was rapidly synthesized using a simple hydrothermal
and thermal treatment method (Figure 1a). The crystal phase compositions of the syn-
thesized NiCo2O4, Co3O4 and NiO were characterized by XRD (Figures 1b and S1a,b).
The synthesized NiCo2O4 exhibits characteristic diffraction peaks, where the diffraction
peaks at 31.2◦, 36.7◦, 38.4◦, 44.6◦, 55.4◦, 59.1◦, 65.0◦ and 77.0◦ correspond to the (220), (311),
(222), (400), (422), (511), (440) and (533) crystalline planes of NiCo2O4 (JCPDS 73-1702),
respectively. Similarly, the XRD patterns of the synthesized Co3O4 and NiO corresponded
to their standard spectra. These results indicated that NiCo2O4 bimetallic oxides as well as
monometallic oxides of Co and Ni were successfully prepared [26].
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Figure 1. (a) Schematic diagram of the preparation for the sea urchin-like NiCo2O4 catalysts. (b) XRD
pattern of the sea urchin-like NiCo2O4. (c,d) The SEM images of the sea urchin-like NiCo2O4. (e,f) The
TEM images of the sea urchin-like NiCo2O4. (g) TEM image of the sea urchin-like NiCo2O4 (inset:
selected area electron diffraction pattern). (h) EDS element content image. (i) EDS mapping images
of sea urchin-like NiCo2O4.
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The morphology and structure of the sea urchin-like NiCo2O4 were described using
SEM and TEM. According to Figure 1c,d, the synthesized NiCo2O4 appears as sea urchin-
like microspheres with uniform size (~8 µm). The microspheres are composed of an orderly
combination of needle-like structures with a solid interior, and the needle-like structures
constituting the sea urchin-like NiCo2O4 microspheres are formed by nanoparticles. Ac-
cordingly, TEM images of NiCo2O4 (Figure 1e,f) further confirmed that the microspheres
were composed of an orderly combination of a needle-like structure with a diameter of
about 200 nm, which was accumulated by nanoparticles. The BET results (Figure S1c,d)
further verified that NiCo2O4 is a mesoporous material based on the obvious H3 hysteresis
loop, and its specific surface area is 40.15 m2 g−1. Obviously, the unique structure and large
surface area can provide a certain number of reaction sites for the surface reactions, and
the sea urchin-like structure can maintain the structural stability of the material [26–28].
As a comparison, the morphologies of monometallic oxide NiO and Co3O4 are micro-
sphere structures with relatively uniform size and rod-shaped, respectively (Figure S2).
Furthermore, according to the TEM image of NiCo2O4 (Figure 1g), the lattice stripes with a
spacing of 0.242 nm correspond to the (311) crystalline surface of NiCo2O4. Selected-area
electron diffraction in the inset of Figure 1g also shows well-defined diffraction rings, which
coincide with the aforementioned XRD results of the NiCo2O4 material. EDS analyses
determined the presence of nickel and cobalt metals (Figure 1h). Additionally, the EDS
mapping image of the sea urchin-like NiCo2O4 material showed a uniform distribution of
Ni, Co and O (Figure 1i), indicating the successful synthesis of bimetallic oxides.

The chemical composition and surface electronic valence states of the sea urchin-like
NiCo2O4 catalyst were further studied by XPS experiments, as shown in Figure 2. The
XPS full spectrum in Figure 2a shows that the sample contains Ni, Co and O and no
miscellaneous peaks of other elements, which is in perfect agreement with the XRD test
results. The XPS fine spectrum after Ni fitting (Figure 2b) shows two satellite peaks and
four binding energy fitting peaks at 854.2 eV, 855.9 eV, 872.2 eV and 874.1 eV. Among them,
two main peaks at 854.2 eV and 872.2 eV proved the presence of Ni2+, while two main peaks
at 855.9 eV and 874.1 eV proved the presence of Ni3+. Similarly, the XPS fine spectrum of
Co (Figure 2c), likewise, shows two satellite peaks and four binding energy-fitted peaks
at 779.3 eV, 780.9 eV, 794.9 eV and 795.5 eV. The two main peaks at 780.9 eV and 795.5 eV
prove the presence of Co2+, while the two main peaks at 779.3 eV and 794.9 eV prove the
presence of Co3+. Based on the above experimental results, it can be speculated that on the
surface of the sea urchin-like NiCo2O4 catalyst, the interaction of Ni and Co with different
valence states can generate additional electron holes, which is conducive to the transfer of
electrons, thus improving the catalytic activity of the sea urchin-like NiCo2O4 material [28].
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2.2. Catalytic Performance

To evaluate the catalytic activity of the sea urchin-like NiCo2O4 catalyst, phenol was
selected as the contaminants of this experiment. The degradation of phenol by PMS au-
toxidation and the adsorption of phenol by different kinds of catalysts were investigated
through controlled experiments. As shown in Figure 3a, under the condition of PMS
alone, the removal of phenol was less than 1% in 90 min, which indicated that PMS had
no obvious degradation effect on phenol, and the degradation effect of PMS autoxidation
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was negligible. The absence of PMS, NiO, Co3O4 and sea urchin-like NiCo2O4 catalysts
all showed similar adsorption effects on phenol, which were less than 1%, and the above
results indicated that the adsorption effect of the catalysts was also negligible. In ad-
dition, three catalytic degradation systems, NiO/PMS, Co3O4/PMS and sea urchin-like
NiCo2O4/PMS, were explored for phenol degradation under the same experimental condi-
tions. The complete degradation of phenol in the sea urchin-like NiCo2O4/PMS system
was 45 min, the complete degradation of phenol in the Co3O4/PMS system was 60 min and
the removal of phenol in the NiO/PMS system was only about 2.5% in 90 min. The above
experimental results show that the introduction of Ni substantially enhances the catalytic
activity of pure cobalt oxides. This is mainly due to the synergistic effect between Ni and
Co, which accelerates the electron transfer rate and, thus, improves the catalytic activity of
the material [29]. Additionally, the mineralization of phenol and RhB reached 67.5% and
62.7%, as displayed in Figure S3a,b, respectively, indicating that significant quantities of
organic compounds were degraded to inorganic carbides in the NiCo2O4/PMS system. In
summary, the sea urchin-like NiCo2O4 exhibits the best catalytic activity.
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Furthermore, the kinetics for the degradation of phenol using different catalyst/PMS
systems also confirmed the remarkable catalytic performance of the NiCo2O4/PMS system
(Figure 3b). The degradation rate constants of the sea urchin-like NiCo2O4/PMS system
(k = 0.09139 min−1) were 1.4-times and 450-times higher than those of the Co3O4/PMS
system (k = 0.06465 min−1) and NiO/PMS system (k = 0.00020 min−1), respectively. The
result suggests that the doping of Ni plays an important role in activating PMS to degrade
phenol. Moreover, Table S1 lists the catalytic properties of some catalysts in the literatures
compared with the NiCo2O4 catalyst in this work for phenol degradation [30–33]. As can
be seen from the table, the sea urchin-like NiCo2O4/PMS system shows excellent catalytic
performance in phenol degradation. Overall, the great catalytic activity of the sea urchin-
like NiCo2O4 was attributed to the synergistic effect between nickel and cobalt, which
accelerated the electron transfer rate and accelerated the phenol degradation reaction [34].

2.3. Influence of Reaction Parameters on Phenol Removal
2.3.1. Effect of Catalyst and PMS Dosages

Firstly, the effects of the dosages of sea urchin-like NiCo2O4 in the catalyst/PMS for
the phenol removal rate were investigated. According to Figures 4a and S4a, the higher
the amount of sea urchin-like NiCo2O4 present in the system, the higher the k value of the
phenol degradation reaction, which accelerated the effective degradation of the pollutant.
As the catalyst dosage was increased from 0.1 g L−1 to 0.2 g L−1, the phenol removal rate
increased from 75% to 100% in 50 min. As the catalyst content in the system continued to
increase to 0.3 g L−1, phenol was completely decomposed in 35 min. Based on Figure S4a,
the k value increased from the initial 0.05139 min−1 to 0.0745 min−1 and 0.09859 min−1
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when the dosage of sea urchin-like NiCo2O4 was increased from 0.1 g L−1 to 0.2 g L−1 and
0.3 g L−1. The higher value of k may be attributed to the fact that more catalysts provided
more reactive active sites, which accelerated the PMS activation and, hence, promoted the
decomposition process of phenol [35]. In summary, a 0.2 g L−1 catalyst concentration was
selected for subsequent study based on the practical application and economic efficiency.
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Figures 4b and S4b show the influence of the dosage of PMS on phenol degradation. In
the sea urchin-like NiCo2O4/PMS system, the removal rate of phenol increased sequentially
from 92.7% to 98.5% and 99.4% within 40 min as the PMS concentration was increased
sequentially from 1 g L−1 to 2 g L−1 and 3 g L−1. The degradation kinetic constants of
phenol revealed that the k value increased sequentially from the initial 0.07384 min−1 to
0.09139 min−1 and 0.10416 min−1 (Figure S4b). Normally, an increase in PMS concentration
increases the amounts of active substances in the sea urchin-like NiCo2O4/PMS system,
which, in turn, improves the efficiency of pollutant degradation. However, the degradation
efficiency of phenol and the kinetic constant k of the reaction changed very little when the
PMS concentration was increased from 2 g L−1 to 3 g L−1. This was caused by the fact that
the non-activated PMS reacts with active species (SO4

•− and •OH) by self-bursting, thus
becoming a limiting factor for the degradation reaction [36]. Therefore, an optimum PMS
concentration of 2 g L−1 was determined as the actual dosage in this study.

2.3.2. Effect of Initial Phenol Concentration

Figures 4c and S4c show the effect of different initial concentrations of phenol (between
20 mg L−1–75 mg L−1) on the degradation process. Both the degradation efficiency of
phenol and the rate constant of the reaction decreased with an increasing phenol concen-
tration. At a low phenol concentration (20 mg L−1), 100% degradation of phenol could be
achieved within 25 min. As the concentration of phenol further increased to 50 mg L−1 and
75 mg L−1, the time required for its complete degradation increased to 50 min and 70 min,
respectively. The corresponding k values decreased from 0.14122 min−1 to 0.07450 min−1
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and 0.05621 min−1, respectively. The main reason is that the number of active species
is certain and, thus, a longer degradation time is needed with a higher concentration of
phenol solution. In addition, more intermediates adsorbed on the catalyst surface are
generated in highly concentrated phenol solutions, thus preventing PMS from binding to
the catalyst active sites.

2.3.3. Effect of Initial pH

The activation efficiency of PMS in advanced oxidation techniques (AOPs) is depended
on the initial pH of the solution. According to Figures 4d and S4d, the effect of different
pH values on phenol degradation was ascertained. As the pH increased from 2.3 to
3.6, 6.4, 7.6 and 8.7, the phenol removal decreased sequentially, and the k value of the
degradation reaction decreased sequentially from an initial value of 0.13892 min−1 to
0.12461 min−1, 0.09139 min−1, 0.06666 min−1 and 0.06238 min−1, respectively. The result
indicated that the degradation reaction was biased towards acidic conditions. In addition,
according to the results of previous studies, the interaction between the catalyst surface
and phenol molecules can be improved by adjusting the solution pH, which can accelerate
the decomposition of pollutants through the formation of a variety of active substances on
the catalyst surface [37,38]. The surface of sea urchin-like NiCo2O4 is positively charged
within acidic solutions, which effectively attracts HSO5

− near the material to generate more
SO4

•− [37]. However, HSO5
− cannot be stabilized in alkaline environments and reacts as

shown in Equation (1), resulting in a greatly reduced phenol removal rates [39].

2HSO5
− + 2OH− → 2SO4

2− + O2 + H2O (1)

2.3.4. Effect of Temperature

The effect of reaction temperatures (25 ◦C, 30 ◦C and 35 ◦C) on the phenol removal
was investigated in the sea urchin-like NiCo2O4/PMS system. As shown in Figure 4e,
the time required for the complete degradation of phenol was reduced to 45 min, 25 min
and 20 min at 25 ◦C, 30 ◦C and 35 ◦C, respectively. According to Figure S4e, the rate
constant k of the reaction increases significantly with increasing reaction temperature,
and the k value at 35 ◦C (k = 0.15630 min−1) is more than twice of the k value at 25 ◦C
(k = 0.06364 min−1). The experimental results showed that phenol and PMS molecules were
more active at higher temperatures and, thus, provide more opportunities for the PMS to
collide with the active sites of the catalyst [40]. In addition, the activation energy (Ea) of the
reaction is obtained using the Arrhenius equation (Equation (21)). The Ea in the sea urchin-
like NiCo2O4/PMS system was calculated to be 68.89 kJ mol−1 by fitting the equation
(ln k = −8.286/T + 25.135, R2 = 0.871). The Ea value in the system is greater than that of the
diffusion-controlled reaction (10−13 kJ mol−1), suggesting that the degradation of phenol
in the system is attributable to the surface-mediated inner chemical reaction instead of the
mass transmission [41]. Therefore, higher temperatures would increase the activation of
PMS by sea urchin-like NiCo2O4 to produce more reactive oxygen species, thus improving
the catalytic degradation efficiency.

As mentioned earlier, both temperature and the catalyst have a large effect on the
Ea during the catalytic degradation reaction of phenol. The activation energies for the
degradation of phenol by several catalytic systems are listed in Table S2 [42,43]. The data
shown in Table S2 indicate that the activation energy of the sea urchin-like NiCo2O4/PMS
system for phenol degradation is lower than that of most of the catalyst/PMS systems in
the literature, which suggests that the sea urchin-like NiCo2O4/PMS has the advantage of
good catalytic degradation of phenol.
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2.3.5. Influences of Inorganic Ions and Humic Acid

Large amounts of inorganic anions and humic acids (HAs) are universally present in
natural aquatic systems. Undoubtedly, they may affect the degradation process of pollutants
due to the reaction with free radicals. To investigate the practical value of the NiCo2O4/PMS
system in environmental aquatic systems, the effects of inorganic anions (HCO3

−, Cl−,
NO3

−) and HA on the degradation performance of phenol were systematically investigated
in this experiment. The specific experimental results and analysis are as follows.

Effect of coexisting HCO3
−: according to Figure 5a, the complete degradation time

of phenol was shortened from the initial 45 min to 40 min and 8 min with increasing the
concentration of HCO3

− in the system from 0 mM to 1 mM and 5 mM, respectively. There-
fore, HCO3

− can promote the activation of PMS to cause more ROS, thereby promoting the
degradation of phenol [44,45].
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Figure 5. Influences of (a) HCO3
−, (b) Cl−, (c) NO3

− and (d) HA on phenol removal efficiency in
sea urchin-like NiCo2O4/PMS system. Conditions: (phenol) = 50 mg L−1, (catalyst) = 0.2 g L−1,
(PMS) = 2 g L−1, T = 25 ◦C.

Effect of coexisting Cl−: the phenol removal rate was significantly enhanced with
the increase in the Cl− concentration from 0 mM to 5 mM, and the time for complete
degradation was shortened from 45 to 30 min (Figure 5b). According to the literature, Cl−

can activate PMS to generate HOCl (Equation (2)), which can selectively react with electron-
rich phenols to accelerate phenol degradation. The degradation of phenol is also facilitated
by the reaction between Cl− and •ClOH− to form •Cl2− (Equations (3) and (4)) [46,47].
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Cl− + HSO5
− → SO4

2− + HOCl (2)

Cl− + •OH → •ClOH− (3)

Cl− + •ClOH− → •Cl2− + OH− (4)

Effect of coexisting NO3
−: As shown in Figure 5c, NO3

− only shows a slight inhibitory
effect on the phenol degradation process. The complete degradation time of phenol was
prolonged from 45 min to 50 min when the concentration of NO3

− was increased from 0 mM
to 5 mM, which indicated that the presence of NO3

− had a slight inhibitory effect on the
degradation process of phenol. The reason could be that NO3

− reacts with reactive species
(SO4

•− and •OH) (Equations (5) and (6)) [37] to produce less reactive NO3
• (2.0–2.2 V

vs. NHE).
NO3

− + SO4
•− → NO3

• + SO4
2− (5)

NO3
− + •OH → NO3

• + OH− (6)

Effect of coexisting HA: HA, as an important component of natural organic substances,
cannot be ignored in the actual pollutant management process. Therefore, the effect of HA
on phenol degradation was also investigated in this study (Figure 5d). With increasing
the HA concentration (0 mg L−1 to 85 mg L−1) in the sea urchin-like NiCo2O4/PMS
degradation system, the removal efficiency of phenol was gradually inhibited. It can
be seen that the presence of HA has a serious inhibitory effect on the degradation of
phenol, and this inhibitory effect becomes more and more obvious with the increase in
HA concentration, which is attributed to the following reasons: (1) HA usually acts as a
radical scavenger competing for the active radicals. (2) HA is more readily adsorbed onto
the surface of the catalyst through its own hydroxyl and carboxyl groups and blocks the
reaction sites [44,48].

On the whole, both HCO3
− and Cl− can promote phenol degradation, the presence

of NO3
− has almost no effect on the phenol degradation, and HA can inhibit phenol

degradation in the sea urchin-like NiCo2O4/PMS system. Research has shown that non-
radical reactions are lower in sensitivity to co-existing anions in water compared to free
radical reactions, indicating that the nonradical pathway participated in the reaction in the
sea urchin-like NiCo2O4/PMS system [49].

2.4. Reusability and Stability of the Sea Urchin-like NiCo2O4

The stability and reusability of catalysts are crucial in practical applications. Therefore,
the reusability of the sea urchin-like NiCo2O4 catalyst and the crystal phase composition
before and after use were further investigated (Figure 6). According to Figure 6a,c, the
catalytic activity of sea urchin-like NiCo2O4 showed an overall decreasing trend after
five cycling experiments, which may be attributed to the adsorption of some intermediates
on the catalyst surface, which could not be removed by filtration and washing with water.
Subsequently, after the fourth cycle, the material was recalcined at 300 ◦C for 4 h, and the
degradation efficiency of the catalyst was found to increase from 53.6% to 85.6%, indicating
that calcination helps to remove the adhering substances on the catalyst surface and fully
expose its active sites. Furthermore, Figure 6b shows the variation in the k value for each
cycle reaction, which is consistent with the trend of the phenol removal rate in each cycle.
The above results reveal that the sea urchin-like NiCo2O4 material can be efficiently recycled
several times after recalcination. In addition, comparing the XRD patterns of the used and
fresh catalysts (Figure 6d), no obvious change in the XRD curves was found, which further
confirmed the good chemical stability and durability of the sea urchin-like NiCo2O4.
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2.5. Catalytic Mechanism and Phenol Degradation Pathway

To investigate the catalytic mechanism, a series of quenching experiments was per-
formed to determine the types and contributions of reactive oxygen species in the sea
urchin-like NiCo2O4/PMS system. As reported in the literature [50], it is known that
MeOH is usually used to scavenge SO4

•− and •OH, and TBA is a bursting agent for
•OH. From Figure 7a, phenol was completely removed after 45 min without adding any
quenching agent, whereas the degradation of phenol was only about 90% and 29% with
the addition of 0.5 M and 10 M MeOH, respectively. Correspondingly, the k value was
reduced from 0.09139 min−1 (not added) to 0.02639 min−1 (added 0.5 M methanol) and
0.00387 min−1 (added 10 M methanol) (Figure 7b). When 0.5 M TBA was added to the
sea urchin-like NiCo2O4/PMS system, the removal of phenol remained almost constant,
although the k value of the degradation reaction decreased slightly. With increasing the con-
centration of TBA to 10 M, the phenol removal rate reduced to about 53%, and the k value
decreased to 0.00855 min−1 (Figure 7a,b). The results showed that the addition of either a
TBA or MeOH quencher significantly inhibited phenol degradation, and the inhibition of
phenol degradation gradually increased with the increase in the concentration of the TBA
or MeOH quencher, indicating that both SO4

•− and •OH were involved in the activation
of PMS. In addition, EPR experiments (Figure 7c) further verified that both SO4

•− and
•OH were generated in the NiCo2O4/PMS system based on a typical seven-line EPR sig-
nal [46]. Notably, phenol degradation is still not completely inhibited within 10 M MeOH,
suggesting that other ROS are also involved in the degradation reaction. For this reason,
p-benzoquinone (p-BQ) and lev histidine (L-His) were used as O2

•− and 1O2 bursting
agents, respectively, to determine whether they were involved in the phenol degradation
process [51,52]. As shown in Figure 7a,b, both the phenol removal rate and degradation
rate constant k decreased dramatically after the addition of 2 mM p-BQ and 50 mM L-His,
which suggests that O2

•− and 1O2 also play an essential role in phenol degradation.
Based on the above XPS analysis of the catalyst (Figure 2) and quenching experiments

(Figure 7a), the possible reaction mechanism of phenol degradation by sea urchin-like
NiCo2O4-activated PMS can be proposed as follows. First, the ≡Co and ≡Ni ions combine
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with H2O as Lewis acid/base sites to form ≡Co-−OH and ≡Ni-−OH. Subsequently, the
≡Co2+-−OH and ≡Ni2+-−OH species on the surface of the urchin-like NiCo2O4 activate
PMS to form surface-bound SO4

•− (Equations (7) and (9)). Meanwhile, the formed ≡Co3+-
−OH and ≡Ni3+-−OH react with PMS to regenerate more ≡Co2+-−OH and ≡Ni2+-−OH
species (Equations (8) and (10)), respectively. Furthermore, according to the XPS analysis,
redox reactions occur between Co3+/Co2+ and Ni3+/Ni2+ on the surface of the sea urchin-
like NiCo2O4 material (Equation (11)), which may enhance the electron transfer effect and
accelerate PMS activation. The action of these two redox pairs is similar to the Fenton
reaction based on the Harber–Weiss cycle [53]. Namely, the synergistic effect between the Ni
and Co can facilitate the activation of PMS to generate SO4

•−. Based on the analysis of pre-
vious studies [54,55], the partial SO4

•− directly participates in the decomposition of phenol,
and the remaining SO4

•− can react with H2O/OH− to form •OH (Equations (12) and (13)).
Subsequently, a portion of •OH directly participates in the decomposition process, and the
remaining •OH is involved in the generation of O2

•− (Equations (14)–(17)). Finally, the
nonradical species of 1O2 comes from the O2

•− (Equation (18)). Since the above reactions
proceed in a cyclic manner, phenol in solution is under constant assault by the radical
pathway based on the ROSs (SO4

•−, •OH, O2
•−) and nonradical pathway (1O2) until they

are completely decomposed to CO2 and H2O (Equation (19)). The reaction mechanism of
phenol degradation in the sea urchin-like NiCo2O4/PMS system is shown schematically in
Figure 7e.

≡ Co2+ − −OH + HSO5
− →≡ Co3+ − −OH + SO4

•− + OH− (7)

≡ Co3+ − −OH + HSO5
− →≡ Co2+ − −OH + SO5

•− + H+ (8)

≡ Ni2+ − −OH + HSO5
− →≡ Ni3+ − −OH + SO4

•− + OH− (9)

≡ Ni3+ − −OH + HSO5
− →≡ Ni3+ − −OH + SO5

•− + H+ (10)

Ni2+ + Co3+ → Ni3+ + Co2+ (11)

SO4
•− + H2O → •OH + SO4

2− + H+ (12)

SO4
•− + OH− → •OH + SO4

2− (13)
•OH + OH− → O•− + H2O (14)

•OH + O•− → HO2
− (15)

•OH + HO2
− → OH− + HO2• (16)

HO2• → O2
•− + H+ (17)

O2
•− + •OH → 1O2 + OH− (18)

SO4
•−/•OH/ O2

•−/1O2 + phenol → intermediates → CO2 + H2O (19)

To further investigate the degradation pathway of phenol in the sea urchin-like
NiCo2O4/PMS system, GC-MS was employed to measure the intermediates produced
during phenol degradation. A few compounds, like dihydroxy benzene and benzoquinone,
were initially determined (Figure S6). Furthermore, the UV spectrograms at different
time points during the phenol degradation process verified that some intermediate prod-
ucts were produced (Figure S5). Based on the present experimental results and previous
studies [56], possible degradation pathways for phenol were proposed (Figure 7d). First,
the para or neighboring sites of the hydroxyl (−OH) on the ring are assaulted by ROS
to produce dihydroxy benzene, which then continues to be oxidized by ROS to produce
p-benzoquinone, whose benzene ring and carbon–carbon double bond are destroyed by
ROS and converted into oxalic acid, which is finally broken down into CO2 and H2O by a
decarboxylation process. The high TOC removal rate (67.5%) in Figure S3a indirectly indi-
cated that the final products were transformed into CO2 and H2O, which finally achieved
the effective mineralization of the pollutants.
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Figure 7. (a) The effect of various radical quenchers (TBA, MeOH, p-BQ and L-His) on phenol degra-
dation in NiCo2O4/PMS system. (b) Histogram of rate constants for different quenching reactions.
(c) EPR spectra of DMPO-SO4

•− and DMPO-•OH at the first and the 10th minute. (d) Proposed de-
composition pathway of phenol. (e) PMS activation mechanism of the sea urchin-like NiCo2O4/PMS
system (conditions: (phenol) = 50 mg L−1, (catalyst) = 0.2 g L−1, (PMS) = 2 g L−1, T = 25 ◦C).

3. Materials and Methods
3.1. Chemicals and Materials

CoCl2·6H2O, NiCl2·6H2O, urea, peroxymonosulfate (PMS), phenol, Rhodamine B
(RhB), HCl, NaOH, NaHCO3, NaCl, NaNO3, humic acid (HA), tert-butanol (TBA), methanol
(MeOH) and acetonitrile (liquid chromatography pure) were provided by Shanghai Titan
Scientific Co., Ltd. (Shanghai, China). All the chemicals were analytical-grade reagents and
above and used without further purification. Deionized water was used in all experiments.
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3.2. Preparation of the Sea Urchin-like NiCo2O4 Catalysts

The sea urchin-like NiCo2O4 catalysts were prepared and synthesized by hydrother-
mal and thermal treatment method. To start with, 4 mmol of CoCl2·6H2O, 2 mmol of
NiCl2·6H2O and 6 mmol of urea were dissolved in deionized water and stirred well. The
mixed solution was then transferred to hydrothermal reactor and heated at 120 ◦C for 6 h,
and purple-pink powder was obtained. Finally, the sea urchin-like NiCo2O4 catalysts were
obtained by calcining the prepared purple-pink powder at 300 ◦C for 4 h under an air
atmosphere. For the purpose of comparison, nickel and cobalt monometallic oxides were
synthesized separately using the above method but without the addition of nickel and
cobalt sources.

3.3. Degradation Experiments

The catalytic degradation experiments were performed in a quartz reactor containing
250 mL phenol solution and placed on a magnetron stirrer equipped with a thermal sensor
and a waterbath kettle (the speed of the magneton was set to 500 rpm). Firstly, a quantitative
amount of catalyst was added to the phenol solution for half an hour to reach the adsorption
and desorption equilibrium of the material. A quantitative amount of the oxidant PMS was
then added to the contaminant solution to begin removal of the phenol. At the set time
interval, 1 mL of sample solution was taken out, filtered by 0.22 µm filter membrane and
quenched by the addition of 0.5 mL methanol, followed by UV and HPLC tests, respectively.
Experimental parameters of different inquiry experiments can be adjusted according to the
principle of a single variable. Diluted HCl and NaOH solutions were used to regulate the
pH value of the original solution. After the degradation reaction, the catalyst in the solution
was filtered and reused. With the degradation rate of phenol as the index, the stability and
reusability of the catalyst were tested. In addition, to compare the catalytic performance
of different catalysts, the same degradation experiments were carried out based on the
synthesized single metal oxide catalysts. In quenching experiment, different quenchers
were added to phenol solution. The hydroxyl radical (•OH) was quenched by TBA; •OH
and sulfate radical (SO4

•−) were quenched by MeOH. Super oxygen radicals (O2
•−) and

1O2 were quenched by para-benzoquinone (p-BQ) and L-Histidine (L-His), respectively.
The main reactive oxygen species (ROS) in the system were determined by comparing the
removal rates of phenol.

3.4. Characterizations

X-ray diffraction (XRD, D max/RB diffractometer, Rigaku Corporation, Tokyo, Japan)
with Cu Kα radiation (λ = 1.5406 Å) was carried out to measure the crystal structure and
purity of the materials. The microscopic morphologies and structural features of the syn-
thesized materials were obtained via scanning electron microscopy (SEM, Shimadzu S4800,
Hitachi Corporation, Hitachi, Japan) with an X-ray energy-dispersive spectrometer (EDS)
and transmission electron microscope (TEM, JEM-200CX, JEOL, Akishima, Japan). The
Brunauer–Emmett–Teller (BET) specific surface area, pore size distribution and pore vol-
ume of the catalysts were characterized via using a physisorption instrument (JW-ZK222).
The elemental composition and chemical valence states of the catalysts were recorded
by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, Waltham,
MA, USA). During the phenol’s degradation process, total organic carbon analyzer (TOC,
Shimadzu-VCSH, Kyoto, Japan) was used to determine the TOC content in the solution.
The concentration of phenol was determined by HPLC (Elite-EClassical 3100, Dalian, China)
on a C-18 HPLC column (5 µm, 4.6 × 250 mm) with an ultraviolet detection wavelength of
270 nm. Typically, acetonitrile and UP water were exploited as mobile phase (40% organic
phase and 60% aqueous phase). The flow rate was set to 1 mL min−1. The effects of the
catalysts on phenol degradation efficiency were monitored by ultraviolet-visible absorption
spectroscopy (UV–Vis, TU-1810PC, Beijing, China). In order to better identify the active
oxygen species (ROSs, SO4

•−, •OH, O2
•− and 1O2) during catalytic reaction, the effects of

ROS were determined by the free radical quenching experiments and electron paramagnetic
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resonance trials (EPR, brooke-a300). The intermediates produced at different time points
in the degradation process were identified by gas chromatography–mass spectrometry
(GC-MS, Shimadzu-QP2020, Kyoto, Japan).

3.5. Calculation Methods

The degradation kinetics of phenol was fitted by the quasi-first-order reaction equation,
and its apparent reaction rate constant k was calculated according to Equation (20):

ln (Ct/C0) = −kt (20)

where t is the reaction time, and Ct and C0 represent phenol concentration at time t and
initial phenol concentration, respectively [57]. With t as the abscissa and ln (Ct/C0) as the
ordinate, the slope obtained after fitting is the apparent reaction constant k of the system
(unit: min−1).

Furthermore, the reaction activation energy (Ea) during the phenol degradation reac-
tion could be calculated through the Arrhenius equation (Equation (21)).

ln k = −Ea/RT + ln A (21)

where k represents the reaction rate constant (min−1), Ea is activation energy (kJ mol−1), R
is the molar gas constant (8.314 J mol−1 K−1), T represents thermodynamic temperature (K)
and A is a constant [58].

4. Conclusions

In this study, the sea urchin-like NiCo2O4 microspheres were successfully synthesized
using a simple hydrothermal method followed by thermal treatment, applied for the phenol
degradation in the activation of PMS. Thanks to the synergistic redox cycle between Ni and
Co ion and its stable structure of the sea urchin-like NiCo2O4 microspheres, the catalyst
material showed good catalytic performances in activating PMS for the degradation of
phenol. In the sea urchin-like NiCo2O4/PMS system, phenol solution could be completely
removed within 45 min with a good mineralization rate, which is attributed to the acti-
vation of radical species. The sea urchin-like NiCo2O4 exhibits enhanced PMS activation
across a broad spectrum of PH values. In modeling environmental aquatic systems, both
HCO3

− and Cl− can promote phenol degradation, and the presence of NO3
− has almost

no effect on the phenol degradation in the sea urchin-like NiCo2O4/PMS system, which is
due to the participation of non-radical species. In addition, the sea urchin-like NiCo2O4
microspheres exhibited extraordinary reusability. The quenching experiments and EPR
experiments confirmed that both radical species (SO4

•−, •OH and O2
•−) and non-radical

species (1O2) are important reactive oxygen species in the sea urchin-like NiCo2O4/PMS
system. Furthermore, the degradation pathway of phenol was propounded based on the
detected intermediates via GC–MS. This study suggests that sea urchin-like NiCo2O4-
activated PMS is a promising technology for environmental treatment and remediation for
phenol-induced water pollution problems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29010152/s1, Figure S1: (a) XRD pattern of
(a) Co3O4. (b) NiO. (c) N2 adsorption/desorption isotherms of the sea urchin-like NiCo2O4. (d) pore
size distribution image of the sea urchin-like NiCo2O4; Figure S2: (a) The SEM images of (a,b)
Co3O4, (c,d) NiO; Figure S3: (a) TOC removal rate of phenol in NiCo2O4/PMS degradation system.
(b) TOC removal rate of RhB in NiCo2O4/PMS degradation system; Figure S4: First kinetic simulation
diagram of phenol degradation under the influence of reaction parameters. (a) catalyst dosages,
(b) PMS dosages, (c) initial phenol concentrations, (d) initial pH, (e) reaction temperatures; Figure S5:
The SEM image of used sea urchin-like NiCo2O4 catalysts; Figure S6: UV-vis spectral changes of
phenol in the sea urchin-like NiCo2O4/PMS degradation system; Figure S7: GC (a–c) chromatogram
for the phenol degradation in the sea urchin-like NiCo2O4/PMS system. (d–f) MS spectrum of
the intermediates from phenol degradation; Table S1: Comparison with other catalysts for phenol
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degradation; Table S2: Comparison of Ea for phenol degradation by different catalyst/PMS systems.
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