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Abstract: A highly efficient low-cost adsorbent was prepared using raw and chemically modified
cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First,
cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline
hydrolysis and bleaching with sodium chlorate (NaClO3). Then, the bleached cellulose pulp was
chemically modified with acrylonitrile monomer in the presence Fenton’s reagent (Fe+2/H2O2)
to carry out grafting of acrylonitrile onto cellulose by atom transfer radical polymerization. The
developed adsorbent (acrylonitrile grafted cellulose) was analyzed by X-ray diffraction analysis
(XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Both
raw cellulose and acrylonitrile grafted cellulose were used for chromium removal from wastewater.
The effects of metal ion concentration, pH, adsorbent dose and time were studied, and their values
were optimized. The optimum conditions for the adsorption of Cr(VI) onto raw and chemically
modified cellulose were: metal ion concentration: 50 ppm, adsorbent dose: 1 g, pH: 6, and time:
60 min. The maximum efficiencies of 73% and 94% and adsorption capacities of 125.95 mg/g and
267.93 mg/g were achieved for raw and acrylonitrile grafted cellulose, respectively. High removal
efficiency was achieved, owing to high surface area of 79.92 m2/g and functional active binding cites
on grafted cellulose. Isotherm and kinetics studies show that the experimental data were fully fitted
by the Freundlich isotherm model and pseudo first-order model. The adsorbent (acrylonitrile grafted
cellulose) was regenerated using three different types of regenerating reagents and reused thirty
times, and there was negligible decrease (19%) in removal efficiency after using it for 30 times. Hence,
it is anticipated that acrylonitrile could be utilized as potential candidate material for commercial
scale Cr(VI) removal from wastewater.

Keywords: cellulose; bagasse; grafting co-polymerization; water treatment; chromium

1. Introduction

Increase in human population and rapid industrialization have led to the addition of
various pollutants into the environment which affect living organisms [1]. Heavy metals
(HMs) are added to the environment by different industries such as fertilizers production,
pesticides production, untreated sewage, and petrochemical industry [2,3]. Even small

Molecules 2024, 29, 2207. https://doi.org/10.3390/molecules29102207 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29102207
https://doi.org/10.3390/molecules29102207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-2472-0195
https://orcid.org/0000-0002-5030-4729
https://orcid.org/0000-0002-2992-1765
https://orcid.org/0000-0001-9190-5806
https://doi.org/10.3390/molecules29102207
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29102207?type=check_update&version=1


Molecules 2024, 29, 2207 2 of 16

amounts of heavy metals are harmful and cause anemia, damage to kidneys, intestines,
liver, and can even lead to cancer [4–6]. The most toxic HMs are chromium, lead, mercury,
cadmium, and arsenic, which cause several disorders in humans and animals [7–10].
Various industries, such as electroplating and the leather, textile, and tanning industries
discharge chromium into the environment [11–14]. Chromium exists in nature in different
oxidation states, among which the oxidation states of three Cr(III) and six Cr(VI) are more
common. Cr(VI) is more toxic than Cr(III) and produces numerous infections such as
malignant lung disease, chronic respiratory disease, irascibility and liver damage [15,16].

Various methods could be used for chromium removal, such as coagulation, membrane
separation, filtration, electrocoagulation, reverse osmosis, electrodialysis, ultrafiltration,
chemical precipitation and adsorption [17–25]. Most of these approaches are not useful,
owing to lower removal efficiency, high energy consumption, high operational cost, the
use of large quantities of chemicals and the production of secondary waste [20,26,27].
Adsorption is a more useful method because of high removal efficiency, low operational
cost and simple operational design [28–31]. Different adsorbents are used for the removal
of HMs, such as activated carbon, porous materials, ion exchangers, etc., but the high cost
of commercial adsorbents is an obstacle in its use for wastewater treatment. Agriculturally
based materials like fruit peels [32], rice husks [33], sawdust [34], bagasse [35], sugar beets,
and soybean hull [36–38] have also been utilized for decontamination of HMs. However,
agricultural by-product-based adsorbents have lignin and pectin, which cover the porous
structure of cellulose and decrease its adsorption capacity. To tackle this challenge, the
lignin and pectin can be removed by treating these materials with acid/alkali, followed
by bleaching [39,40]. The cellulose fibers thus obtained are free from viscous and peptic
compounds and have hydroxy, carbonyl, amine, etc. groups which can bind metal ions by
electrostatic force of attraction or intermolecular force of attraction [41–43].

Chemical modification of cellulose fibers with a suitable ligand can enhance their
interaction with HM ions, thus increasing their removal efficiency [44–47]. Therefore, it is
necessary to modify natural cellulosic materials to improve their adsorption efficiency and
their propensity to bind heavy metals [48]. Natural cellulosic materials have a high content
of hydrogen bonding within the cellulosic chains, which prevents their interaction with
metal ions [48,49]. Grafted cellulose has additional side chains which can bind the adsorbate
molecules and thus the removal efficiency of grafted cellulose is higher than that of non-
grafted or raw cellulose [50,51]. Several researchers have used sugarcane bagasse as an
adsorbent, either in raw form or chemically modified form, for the removal of heavy metals,
dyes and other pollutants. Ezeonuegbu et al. [52] utilized sugarcane bagasse for the removal
of Pb(II) and Ni(II) from wastewater and obtained removal efficiencies of 89.31% and 96.33%
for lead and nickel, respectively. Gusmano et al. [53] utilized modified sugarcane bagasse for
the removal of etherdiamine from aqueous solution, and adsorption capacities of 869.6 and
1203.5 mg/g were obtained for succinic anhydride modified sugarcane bagasse and EDTA
dianhydride modified sugarcane bagasse, respectively. In another study, Al-Mokhalelati
et al. [54] used chemically modified sugarcane bagasse for the removal of methylene blue
from aqueous solutions and obtained 98% removal efficiency for MB. Similarly, Jiang
et al. [55], utilized sugarcane bagasse modified with polyethylenimine for the removal of
Cu(II) from aqueous solution and adsorption capacities up to 107.5 mg/g were reported.
The removal efficiency of raw sugarcane bagasse is not high enough to remove heavy metal
ions, dyes or other organic pollutants at low concentration, owing to the presence of several
other compounds such as pectin, lignin, etc., in addition to cellulose. To remove these peptic
compounds and enhance the removal efficiency of sugarcane bagasse, it was subjected
to acid hydrolysis, alkaline hydrolysis, and bleaching. After hydrolysis and bleaching,
clean white cellulose fibers were obtained, which were functionalized with acrylonitrile
to incorporate a nitrile group. The insertion of the nitrile group further enhances the
interaction of cellulose with heavy metals, dyes and other pollutants; therefore, chemical
modification of cellulose was carried out.
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2. Results and Discussion
2.1. Characterization
2.1.1. Surface Morphology

Figure 1 shows the SEM images of raw sugarcane bagasse and acrylonitrile grafted
cellulose (GC) isolated from sugarcane bagasse at different magnifications. The SEM images
of raw sugarcane bagasse (Figure 1(A1,B1,C1)) show a cluster of fibers that are stuck
together, which could be owing to the presence of viscous substances (lignin & pectin). The
SEM images in Figure 1(A2,B2,C2) show that after chemical treatment and grafting, the
surface morphology of sugarcane bagasse has been changed extensively. The change in
surface morphology of sugarcane bagasse after hydrolysis and bleaching is owing to the
removal of peptic compounds and lignin, and the breaking down of long cellulose fibers
into shorter ones. The SEM images in Figure 1(A2,B2,C2) show that the morphology of
acrylonitrile grafted sugarcane bagasse is smoother than the raw bagasse, owing to chemical
treatment and the attachment of nitrile monomer onto the cellulose surface. Similar changes
in the surface morphology of cellulosic adsorbents were reported by Ali et al. [51].
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Figure 1. SEM images of raw sugarcane bagasse (A1,B1,C1), and grafted sugarcane bagasse (A2,B2,C2)
in different resolutions.

2.1.2. XRD Analysis

Figure 2 shows the X-rays diffraction results of unmodified cellulose (A) and acryloni-
trile grafted cellulose before adsorption (B) and after adsorption (C). In Figure 2, the XRD
spectra of unmodified cellulose (A) and grafted cellulose before adsorption (B) show only
small peaks at 13◦ and 13.2◦, respectively, while the rest of the spectrum has no prominent
peak in the range of 20–25◦, as can be seen in Figure 2A,B. The results verify that following
surface functionalization, the cellulose’s crystallinity index (CrI) remains unchanged. The
XRD spectra of grafted cellulose (Figure 2B) and unmodified cellulose (Figure 2A) showed
no discernible variation in the XRD spectrum width. The primary crystalline cellulose I
peak remained unaltered during grafting reactions, according to the XRD data. However,
upon Cr(VI) adsorption, the XRD spectrum of the grafted cellulose showed noticeably
wider widths than those of the ungrafted samples and had a sharp peak at 22.72◦ at 2θ
value, indicating that Cr(VI) ions adsorbed onto GSB (Figure 2C). The XRD result of GSB
confirms Cr(VI) adsorption on GSB, and the peaks at 22.72◦ correspond to Cr2O3 having a
tetragonal crystalline phase, according to the inorganic crystalline library [56,57].
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Figure 2. XRD analysis of unmodified cellulose isolated from SB (A), grafted cellulose isolated from
SB before adsorption (B) and grafted cellulose isolated from SB after Cr(VI) adsorption (C).

2.1.3. FTIR Analysis

The FTIR analysis results of unmodified cellulose (UGC) and grafted cellulose isolated
from sugarcane bagasse (GC) are presented in Figure 3A and B, respectively. The FTIR
spectrum in Figure 3A shows that the peaks at 2870 cm−1 and 3391cm−1 are representing
the C–H and O–H bond stretching vibration frequencies, respectively. In Figure 3B, which
represents acrylonitrile grafted cellulose, the intensities of these peaks are very low, which
shows that most of these groups have been modified with a CN group after grafting
co-polymerization. Similarly, a prominent peak at 1656 cm−1 in Figure 3B accounts for
the nitrile (–CN) group and confirms the insertion of a nitrile group onto the surface
of the cellulose. There are some other minor peaks at 1690 cm−1 which represent the
vibration frequency of water molecules (Figure 3A). In Figure 3B, another peak can be seen
at 1510 cm−1, which represents the carboxyl group stretching vibration [41], while this
peak does not exist in raw sugarcane bagasse [42].
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2.2. Effect of Various Parameters on Cr(VI) Removal
Effect of Metal Ion Concentration

The adsorption efficiency depends upon the concentration of adsorbate ions/molecules
in a medium. The accumulation of analyte molecules/ions onto the surface of an adsor-
bent depends upon the available surface area and the number of active sites or functional
groups. To explore the metal ion concentration effect on the removal efficiency of raw,
unmodified and grafted sugarcane bagasse, Cr(VI) solutions of 50–300 ppm were checked
during batch experiments while adsorbent dose, pH, time and temperature were held
constant. In flasks, 100 mL chromium solutions of 50, 100, 150, 200, 250 and 300 ppm were
taken, each with 1 g of adsorbent and pivoted at 300 rpm for 2h at 25 ◦C. After 2 h filtration
was carried out to remove the adsorbent, the C(VI) ion concentration was determined by
AAS. The same procedure was performed for raw sugarcane bagasse. Figure 4 shows that
70%, 82% and 94% removal efficiencies were obtained for raw sugarcane bagasse (RSB),
un-grafted cellulose obtained from sugarcane bagasse (UGC) and grafted cellulose (GC),
respectively, at lower concentrations, i.e., 50 ppm, and the removal efficiency decreased
with increasing concentration. The removal efficiency of adsorbents declined with the
increase in concentration and reached 35%, 48% and 65% at concentrations of 300 ppm
for RSB, UGC and GC, respectively. Active sites on the adsorbent were sufficient to bind
the metal ions when the concentration was low. By raising the concentration of HMs
above the optimum values, then the adsorbent cannot adsorb more molecules, and thus,
the removal efficiency decreases. The removal efficiency decreases at high concentrations
owing to the saturation of active sites with metal ions, and no further ions can be picked
up by adsorbents. The removal efficiency of GSB is higher than un-grafted cellulose (UGC)
and raw sugarcane bagasse (RSB) at both lower and higher concentrations. The GC has
94% and 65% removal efficiency at 50 ppm and 300 ppm, respectively, while the removal
efficiency of unmodified cellulose (UGC) is 82% and 48%, and for RSB, 70% and 35% at
50 ppm and 300 ppm concentration, respectively, which indicates the superior performance
of GC over UGC and RSB. The finding of the current study matches well with other similar
studies [46,47].
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Figure 4. Effect of HM concentration on the removal efficiency of Cr(VI) by raw sugarcane bagasse
(RSB), un-grafted cellulose (UGC) and grafted cellulose (GC) extracted from sugarcane bagasse.

2.3. Effect of Adsorbent Mass

In batch experiments, different quantities (0.1, 0.3, 0.5, 1, 2 and 3 g) of raw sugarcane
bagasse (RSB), un-grafted cellulose (UGC) and grafted cellulose (GC) were taken in separate
flasks, and 100 mL Cr(VI) solution (50 ppm) was taken in flasks. The pH was maintained
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at 4, and the flasks were agitated at 300 rpm for 60 min and filtered, and Cr(VI) was
measured by AAS. Figure 5 shows the relationship of the adsorbent dose and removal
efficiency of RSB, UGC and GC. The results show that at 0.1 g adsorbent dose, removal
efficiencies of 38%, 50 and 67% efficiency were obtained for RSB, UGC and GC, respectively.
Figure 5 shows that Cr(VI) removal was enhanced with the increase in adsorbent mass from
0.1 g and reached maximum values of 70%, 81% and 94% for RSB, UGC and GC, respectively.
Figure 5 shows that there was no change in % removal when the adsorbent quantity was
increased beyond 1.0 g and a straight line was obtained. The removal efficiency was
lower when the adsorbent quantity was lower than the optimum dose because the mass
of adsorbent was inadequate for capturing metal ions, and thus, low removal efficiency
was recorded for RSB, UGC and GC. Initially, the percentage removal efficiency (%R) was
increased because the number of active sites was high enough for the capturing of Cr(VI)
ions. By enhancing the adsorbent mass from 1 to 3 g, no further increase was observed in
removal efficiency because the number of active sites of adsorbent at this quantity (1 g) was
high enough for picking Cr(VI) ions (50 ppm concentration). A similar trend was observed
in other studies on heavy metal removal [50].
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Figure 5. Effect of adsorbent mass (g/L) on Cr(VI) removal by raw sugarcane bagasse (RSB), un-
grafted cellulose (UGC) and grafted cellulose (GC) extracted from sugarcane bagasse.

2.4. Effect of Time

The Cr(VI) removal by raw sugarcane bagasse (RSB), un-grafted cellulose (UGC)
and grafted cellulose (GC) at different times is shown in Figure 6. Chromium solution
(50 ppm) was taken in seven conical flasks (100 mL in each flask) and stirred for 10, 20,
30, 60, 120, 150 and 180 min for each adsorbent. Initially, when the adsorption time was
increased, the Cr(VI) removal efficiency was increased, until 120 min. At 120 min, the
removal efficiency reached maximum values of 67%, 81% and 94% for RSB, UGC and GC,
respectively. Increasing adsorption time to 180 min does not change the removal efficiency,
and the same efficiency was recorded because that adsorption equilibrium was achieved
within 120 min. The removal efficiency was not enhanced beyond 120 min because the
active sites of the adsorbent were occupied by metal ions within 120 min. The rate of metal
ions removal was faster at the beginning owing to the large number of vacant active sites
on the adsorbent [58].
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cellulose (UGC) and grafted cellulose extracted from sugarcane bagasse (GC).

2.5. Effect of pH on the Removal of Cr(VI)

Figure 7 shows the adsorption of Cr(VI) onto raw sugarcane bagasse (RSB), un-grafted
cellulose (UGC) and grafted cellulose obtained from sugarcane bagasse (GC) at various
pH values. The removal efficiency is low at pH 2–4, and increases sharply to a maximum
value of 94% at pH 6. Further elevating the pH beyond 6 decreases the Cr(VI) removal,
which reached a minimum value of 17 and 20% for raw and grafted sugarcane bagasse,
respectively, at pH 12. At pH more than 6, the Cr(VI) removal decreased owing to OH−

ions present in the medium, which interact with adsorbent instead of CrO2
−2 ions and

occupy the positively charge sites on the adsorbents. Similarly, at pH below 6, abundant
H+ ions interrupt the ability of Cr(VI) cations to adsorb over raw and GC, and thus, the
efficiency of metal ion removal decreases [59].
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2.6. Isotherm Study

Isotherm models show the process of adsorbate accumulation on the adsorbent’s
surface and provide the information about the type of adsorption: chemical or physical,
monolayer or multilayer, etc. [60]. The experimental data of Cr(VI) accumulation on raw
sugarcane bagasse (RSB), un-grafted cellulose (UGC) and grafted cellulose (GC) isolated
from sugarcane bagasse was computed by the Freundlich model and Langmuir model [61].

2.6.1. Freundlich Model

The Freundlich isotherm model in linear form can be represented as given in Equation (1).

ln q = lnK
1
n

Ce (1)

According to this model, the adsorption takes place over a heterogeneous surface,
forming multiple layers of adsorbate molecules, and increases with the increase in concen-
tration of an adsorbate. The adsorption data of Cr(VI) adsorption onto RSB & GSB was
computed by the Freundlich isotherm model. The numerical values of “q” and “Ce” were
calculated and lnqe was plotted against lnCe. From the linear plot, the values of 1/n (slop),
K (L mg−1) and “n” were calculated as given in Equation (1). The results in Figure 8A
show that the adsorbents (RSB, UGC and GC) are effective for Cr(VI) removal [62]. The
numerical values of “1/n”, KF and R2 obtained from Cr(VI) removal on RSB and GSB are
presented in Table 1. The “1/n” values for RSB, UGC and GC are 42.45, 64.30 and 124.36,
respectively. The values of the Freundlich constant (KF) of 2.821, 4.72 and 9.786 and R2 of
0.97, 0.97 and 0.98 were recorded as shown in Table 1.
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Table 1. Numerical values of Freundlich & Langmuir isotherm model for raw sugarcane bagasse
(RSB), un-grafted cellulose (UGC) and grafted cellulose (GC) isolated from sugarcane bagasse.

Adsorbent
Freundlich Model Langmuir Model

1/n KF (mg/g) R2 qmax (mg/g) K (L/mg) R2

RSB 42.45 2.8210 0.97 125.95 4.5808 0.91

UGC 63.30 4.7237 0.97 202.37 4.1733 0.89

GC 124.36 9.7863 0.98 267.93 3.9563 0.84
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2.6.2. Langmuir Isotherm Model

This model predicts the homogeneous surface of adsorbent with a limited number of
active sites, and the adsorption of adsorbate molecules/ions is monolayer. Equation (2)
shows the mathematical form of the Langmuir isotherm model.

Ce

q
=

1
qmax

K +
Ce

qmax
(2)

where “Ce” is the equilibrium concentration and “qe” is the quantity of adsorbate adsorbed
per unit mass of adsorbent (g). The adsorption capacity is represented by “qmax (mg g−1)”
and KL (L mg g−1) is the constant of adsorption energy [24]. The qmax, K and KL (L mg g−1)
values were calculated from Ce/q versus Ce plot and linear regression. The values of “qmax”,
KL, R2 and (RL) were calculated using Equation (3) and a plot of 1/Ce vs. 1/qe as shown
in Figure 8B.

RL =
1

(1 + KLC0)
(3)

The values of “qmax”, KL and R2 were found by plotting 1/Ce vs. 1/qe and the data
are given in Table 1. The numerical values of qmax were 125.95 mg/g, 202.37 mg/g and
267.93 mg/g; of K (L/mg), 4.5808, 4.1733 and 3.9563; and of R2, 0.91, 0.89 and 0.84 for GSB,
UGC and GC, respectively (Table 1). The results suggest that the adsorption of Cr(VI) onto
RSB, UGC and GC fits more closely with the Freundlich model. The R2 of the Freundlich
and Langmuir models for RSB, UGC and GC are given in Table 1, which indicates that the
adsorption data of Cr(VI) is fitted will with the Freundlich isotherm model.

2.7. Adsorption Kinetics

The mechanism and rate-limiting step of reaction are determined from the kinetics
study. In the current study, batch adsorption experiments were conducted with differ-
ent times to find the optimum time where the equilibrium established and maximum
adsorption of Cr(VI) takes place over RSB and GSB. The kinetics results show that Cr(VI)
adsorption was slow at initial stages and reached equilibrium in 120 min, which indicates
that the adsorption was chemisorption, and the adsorbate interacts with the active sites of
the adsorbent by chemical interactions. Moreover, to find the rate-determining step, the
data were computed by various kinetics models [63].

2.7.1. Pseudo First-Order Model

The pseudo first-order kinetic model can be represented as

ln(qe − qt) = lnqe − K1t (4)

In Equation (4), “qt” and “qe” are the quantity of Cr(VI) ions adsorbed at specific time
and equilibrium, respectively, while “K1” is the constant [60]. Cr(VI) solutions of 100, 200,
300 and 400 ppm were taken in different containers, each containing 0.4 g of adsorbent
(GC), and the adsorption was checked from 10 min to 180 min. Adsorption capacity at a
specific time (qt) and equilibrium time (qe), and rate constant K1 (min−1), were calculated
from a (qe/qt) vs. (t) graph (Figure 9A).
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2.7.2. Pseudo Second-Order Model

Equation (5) shows the pseudo second-order kinetic model.

1
qt

=
1

k2q2
e
+

1
qe

(5)

In Equation (5), “K2” is the rate constant and “qt” and “qe” are the quantity of Cr(VI)
adsorbed at specific time (t) and equilibrium time, respectively. Cr(VI) solutions of 100, 200,
300 and 400 ppm were taken in different flasks containing GSB and the adsorption was
checked from 10 min to 180 min. The value of qmax at specific time (qt) and equilibrium
time (qe), and K2 (gmg−1 min−1) were calculated (t/qt) vs. t plot [64].

2.7.3. Intra-Particle Diffusion

HM ions from the mixture/medium transfer to adsorbent by intraparticle diffu-
sion [65]. The mathematical form of the intra-particle diffusion model can be represented
as Equation (6).

qt = Kpt0.5 + C (6)

where qt (mgg−1) is Cr(VI) adsorbed at specific time (t), Kp (mgg−1 min0.5) is a constant
(diffusion within the particle) and C is the point of intersection. During batch experiments,
four standard solutions of Cr(VI) of specific concentration (100, 200, 300, 400 ppm) were
prepared, and adsorption over GSB was carried out for different time intervals (10 min to
180 min). The adsorption capacity at a specific time (qt) was plotted against the square root
of time (t0.5). A plot of (qt) vs. (t0.5) is given in Figure 9C [27]. The numerical values of
different constants of all three models, as well as their regression square (R2), are shown in
Table 2. The R2 value of the pseudo second-order model is 0.99, which the highest among
all three models.
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Table 2. Pseudo first-order, pseudo second-order model and “intra-particle diffusion model” values
for Cr(VI) adsorption onto GSB.

Concentration (ppm) First-Order Second-Order IPD Model

qe (mgg−1) K1 R2 qe (mgg−1) K2 R2 R2 Ki (mgg−1min−1)

100 188 0.644 0.938 176 0.0137 0.94 0.9713 2.0828

200 368 0.66 0.978 336 0.0242 0.95 0.9005 2.4641

300 546 0.637 0.936 480 0.0451 0.97 0.9281 3.2259

400 720 0.681 0.989 592 0.0550 0.99 0.9172 4.0492

2.8. Regeneration and Reuse of Spent Adsorbent (GSB)

The spent adsorbent (GC) collected from batch Cr(VI) adsorption experiments was
divided into three equal parts, each weighted 100 g, and each portion was treated with
0.1 M NaOH, 0.1 M H2SO4 and 1 M ethylenediaminetetraacetic acid (EDTA) solutions. In a
typical experiment, 100 g of spent GSB was added into a container containing 700 mL of 1 M
NaOH and stirred in a reciprocal shaker at 45 ◦C for 3 h, followed by filtration. The percent
recovery of chromium (VI) ions was determined from Equation (7). A similar method was
used for the desorption of chromium from spent adsorbent (GSB) using other desorbing
reagents, such as sulfuric acid and ethylenediaminetetraacetic acid (EDTA) solutions.

% Cr(VI) desorption = (Mass of Cr(VI) desorbed (mg/g))/(Mass of Cr(VI) adsorbed (mg/g)) × 100 (7)

The metal ion removal efficiency of regenerated GSB is presented in Figure 10. The
maximum Cr(VI) removal efficiency (average of 85.5%) was obtained for NaOH-treated
spent adsorbent (GC) after 30 cycles of regeneration and reuse, followed by H2SO4 (81.2%)
and EDTA (74.4%) regenerated adsorbent. The results suggest that grafted sugarcane
bagasse could be used many times after regeneration.
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3. Material and Methods
3.1. Adsorbent Preparation

Sugarcane bagasse was taken from Haripur, Pakistan, washed and dried. Then the
dried sugarcane bagasse was subjected to acid hydrolysis, alkali hydrolysis, bleaching
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and grafting with acrylonitrile [51]. The preparation of acrylonitrile grafted cellulose is
discussed below in detail and the illustration of cellulose extraction from sugarcane bagasse
is shown in Figure S1.

3.1.1. Acid Hydrolysis

Crude sugarcane bagasse (200 g) was taken in a flask and 2% 1 M HCl (500 mL) was
added into it. The contents were boiled for 3 h on a hotplate. After acid hydrolysis, the
material was washed several times.

3.1.2. Alkaline Hydrolysis

After acid hydrolysis, the sample was further hydrolyzed with sodium hydroxide
solution. Acid-hydrolyzed sugarcane bagasse was heated with 2% NaOH solution for 3 h
at 100 ◦C, followed by washing with distilled water until neutralized.

3.1.3. Bleaching

The cellulose pulp obtained after alkaline hydrolysis was treated with sodium chlorate
(0.1 mg) and glacial acetic acid (0.1 mL) at 40 ◦C. The reddish-brown color of cellulose
pulp disappeared after bleaching, and the white pulp obtained after bleaching was dried
and stored.

3.1.4. Grafting Co-Polymerization

Bleached sugarcane bagasse (100 g) was placed in a conical flask; 0.5 g FeSO4, deion-
ized water (200 mL), hydrogen peroxide (1 mL) and acrylonitrile (0.3 mL) were added into
it and stirred at 40 ◦C for 1h, followed by washing with DW and drying. Soxhlet extraction
of the acrylonitrile grafted cellulose pulp in anhydrous toluene was performed at 100 ◦C to
eliminate the unreacted monomers.

3.2. Characterization

SEM provides information about the sorbent’s morphology and the surface area that can
be used for adsorption. An FT-IR spectrometer (TENSOR II, Bruker, Bremen, Germany) was
used to measure the functional groups. The crystallinity was confirmed by X-ray diffraction
examination utilizing an DW-XRD-Y300 X-ray diffractometer (Chongqing, China).

3.3. Adsorption of Cr(VI) on RSB and GSB

A standard solution of Cr(VI) (1000 ppm) was diluted to 50, 100, 150, 200, 250 and
300 ppm for use in batch adsorption experiments. Cr(VI) solution (100 mL) from every
dilution was taken in flasks, followed by the addition of 1 g adsorbent (RSB and GSB) and
pivoted at 300 rpm for 60 min. In the filtrate, the Cr(VI) ion concentration was measured by
ASS. Equation (8) was used to find out the adsorption capacity (qe).

qe =
V(C0 − Ce)

W
(8)

where “qe” is the mass of heavy metals, “V” is the volume of the solution in liters, “W”
is the mass of adsorbent in grams, C0 is the initial concentration of HMs and Ce is the
equilibrium concentration. The % removal efficiency was found using Equation (9).

Removal efficiency (%) =
(C0 − Ce)

C0
× 100 (9)

3.4. Isotherms Study

To find the mechanism of interaction of adsorbate with adsorbent, and the surface
heterogeneity of the adsorbent, the experimental data were computed by different isotherm
models, such as Freundlich model and Langmuir model. The linear regression was per-
formed using MS Excel 2020 and Origin pro 8.5 software.
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3.5. Adsorption Kinetics

A kinetics study was performed in order to check the time at which equilibrium is
established for Cr(VI) adsorption at different concentrations and to find the rate determining
step [48]. The experimental data (qe, qt, etc.) obtained at different concentrations and
different time were computed by first-order, second-order and intraparticle diffusion
models [49].

4. Conclusions

In conclusion, the developed adsorbents raw sugarcane bagasse (RSB) and nitrile
grafted sugarcane bagasse (GSB) can effectively remove Cr(VI) from wastewater. Cellulose
fibers were isolated from sugarcane bagasse, which is a cheap, abundant agricultural
byproduct. The removal efficiency of raw sugarcane bagasse, un-grafted cellulose and
grafted cellulose isolated from sugarcane bagasse were 73%, 82% and 94%, respectively.
The effects of concentration, pH, adsorbent amount, and time were checked, and the
optimum values were determined. The adsorption data of Cr(VI) were fitted with the
Freundlich isotherm model and follow the pseudo second-order kinetics model. The
spent adsorbent was regenerated using different regenerating reagents such as sulfuric
acid, sodium hydroxide and ethylenediamine tetra acetic acid, and reused for Cr(VI) ion
removal from wastewater. The removal efficiency of the regenerated absorbent was 85.5%
for NaOH-regenerated adsorbent, 81.2% for H2SO4-regenerated adsorbent and 74.4% for
EDTA-regenerated adsorbent after thirty cycles. The high removal efficiency of both newly
prepared and regenerated adsorbent (GC), as well as the low cost, suggest that it could be
utilized as an efficient alternative adsorbent for the water treatment. In -future, GC will be
utilized for the removal of other HMs and dyes to check its performance for the removal of
other analytes.
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