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Abstract: Cancer is ranked among lethal diseases globally, and the increasing number of cancer cases
and deaths results from limited access to effective therapeutics. The use of plant-based medicine
has been gaining interest from several researchers. Carvacrol and its isomeric compound, thymol,
are plant-based extracts that possess several biological activities, such as antimalarial, anticancer,
antifungal, and antibacterial. However, their efficacy is compromised by their poor bioavailabil-
ity. Thus, medicinal scientists have explored the synthesis of hybrid compounds containing their
pharmacophores to enhance their therapeutic efficacy and improve their bioavailability. Hence, this
review is a comprehensive report on hybrid compounds containing carvacrol and its isomer, thymol,
with potent anticancer and antibacterial agents reported between 2020 and 2024. Furthermore, their
structural activity relationship (SAR) and recommended future strategies to further enhance their
therapeutic effects will be discussed.
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1. Introduction

Several processes such as dysfunctional signalling transduction, the production of
genomic instability, the evasion of immune destruction, metastasis and aberrant gene
expression, and angiogenesis contribute to the development of uncontrolled cell growth
known as cancer [1,2]. The lack of effective therapeutics for the treatment of cancer has been
a great challenge to public health systems globally [1]. The complexity of cancer treatment
is a major contributing factor to the significant progress made so far in the development
of anticancer agents [1,3]. Due to the limitations associated with treatment strategies,
such as chemotherapy, immunotherapy, and surgery, that are used to treat cancer, more
than 10 million deaths were reported in 2020 [4–6]. More metastatic cancer cases were
reported in 2020 because early cancer diagnosis was compromised by the emergence of
COVID-19 [7–9].

Similarly, bacterial infections are also a major burden to the public health system
globally. The issue of antibiotic resistance is a risk factor that compromises the efficacy of
most antibacterial drugs [10–12]. More than 700,000 patients die yearly due to a lack of
effective treatments, with an estimated 10 million lives being lost due to antibiotic-resistant
pathogens each year. Furthermore, this has the potential to put a serious strain on the global
economy, as it is estimated that trillions of dollars will be lost due to antibiotic resistance
by 2050 [11,12]. There is an urgent need for effective therapeutics to be developed to treat
cancer and bacterial infections.

Plant-based compounds such as thymol and carvacrol (Figure 1) are being explored
for the development of new medicines with limited side effects [5,13–15]. Fifty percent
of available drugs in the market are produced from natural products [13]. Therefore, the
extraction and development of natural compounds are interesting areas of research. Car-
vacrol and its derivatives belong to the monoterpene class of natural products [4,16]. This
class of natural compounds possesses antifungal, anticancer, antioxidant, antiparkinsonian,
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anti-anxiety, and antibacterial activities [4,5,13,17–19]. They have been used in the design
of hybrid compounds.
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The concept of hybridization is an effective and exciting strategy to develop new
therapeutics [20,21]. It involves forming a single-entity drug from the combination of two
or more pharmacophores. This strategy is characterized by promising advantages, such
as increased patient compliance, multiple targets, reduced drug–drug interaction, etc. It
is a promising drug design strategy that is effective in overcoming limitations such as
drug resistance and drug–drug interactions, which are common with most chemothera-
peutics [20,21]. Based on the aforementioned features of hybridization, several medicinal
scientists have investigated the anticancer and antibacterial activity of carvacrol and thy-
mol when hybridized with other pharmacophores. In this review, an update on carvacrol-
and thymol-based hybrid compounds developed as potential antibacterial and anticancer
therapeutic agents reported between 2020 and 2024 is presented.

2. Carvacrol and Thymol Synopsis

Carvacrol (1) and thymol (2) (Figure 1) are isomeric compounds from the monoter-
penoid phenol family [22]. These essential oils are extracted from several groups of aromatic
plants such as the Lamiaceae family, Thymus, Satureja, Origanum, Thymbra, Lippia pep-
perwort, Corydothymus, and Wild bergamot [23]. They are liquid phenolic monoterpenes
that exist in the mentioned aromatic plants with boiling and melting points in the range
of 236–237 °C and 3–4 °C, respectively. They have also been synthesized by multiple
biotechnological techniques. They are very soluble in diethyl ether, acetone, and ethanol
but are not soluble in water [24,25].

These isomeric compounds have been used as preservative and biomedical applica-
tions, owing to their anaesthetic, antimicrobial, antifungal, antioxidant, anti-inflammatory,
anticancer activities, etc. (Figure 2). Additionally, they have been used in perfumery and
cosmetics [24–28]. They are effective in reducing the rate of food spoilage and pathogenic
bacteria growth [25,26]. The presence of a free hydroxyl group and the phenol ring con-
tributes to the antibacterial and antioxidant activities of carvacrol and thymol [29,30].

The mechanism of action of these two aforementioned essential oils involves multi-
targeting actions [31]. Therefore, their modes of action might depend on the pathogens
and tumours targeted. The antibacterial action of these two isomeric compounds has been
linked to their significant effects on the cytoplasmic membrane’s structural and functional
characteristics (Figure 3). In essence, their mode of action is associated with the destruction
of the bacteria cell membrane [29,32]. On the other hand, several studies have confirmed
that the primary mechanism of action of carvacrol and thymol involves the decrease in
cancer cell viability and their capability to induce apoptosis through both intrinsic and
extrinsic routes (Table 1) [33–36]. Additionally, they produce more reactive oxygen species
(ROS), which interrupt the DNA of cancer cells [33–36].
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Table 1. Mechanism of action and limitations of carvacrol and thymol.

Carvacrol and Thymol Antibacterial Anticancer

Mechanism of action

• Cell membrane interruption [37]
• Inhibition of efflux pump
• Inhibition of membrane-bound

ATPase [38]
• Inducing permeability [38]

• Apoptosis induction [39]
• Production of reactive oxygen

species (ROS) [27]
• Alteration of mitochondrial

membrane [40]
• Cell growth inhibition [40]

Limitations

• Drug resistance
• Increased toxicity
• Poor water solubility
• Low stability [41,42]

• Drug resistance
• Increased toxicity
• Poor water solubility [42]
• High hydrophobicity [41]

Carvacrol and thymol are regarded as safe compounds, and they possess several
biological activities. Thus, their ability to simultaneously target several cells, pathogens,
strains, etc., due to their vast mechanism of action is one of the advantages these two
isomeric compounds when used in health applications [27,37–42]. However, their use is
compromised by several limitations, such as drug resistance, toxicity in high doses, poor
solubility in water, and poor drug delivery, which lead to poor bioavailability, low stability,
and high hydrophobicity [24,41,42]. The use of high concentrations of these isomeric
compounds results in mutagenicity and genotoxicity. Additionally, skin and eye irritation
are side effects associated with carvacrol and thymol [24]. Thus, finding an alternative
approach to improve their use in health applications is an interesting topic that needs to be
addressed.

The hydroxyl functional group contributes to the antibacterial activity of the two
phenolic compounds. In contrast, the anticancer structural activity relationship of these
two compounds is still debatable [24,42]. These compounds have been applied in several
therapeutic applications, including antibacterial and anticancer treatments. However,
their efficacy in both combination therapy and monotherapy is compromised by some
limitations, e.g., poor bioavailability, etc. [43–45]. Hence, better strategies to improve their
therapeutic effect are a pressing need. Thus, the development of hybrid drugs using these
two isomeric compounds may result in new therapeutic agents that can overcome their
shortcomings [20]. Hybrid drugs are a cocktail of drugs developed through a combination
of two or more drugs into a single drug molecule with reduced toxicity, dual targets, fewer
side effects, and improved biological activities [20].

3. Carvacrol- and Thymol-Based Hybrid Compounds with Anticancer Activity

The development of novel therapeutics using plant-based molecules is one interesting
area of research for medicinal scientists due to their biologically friendly properties and
the non-toxicity of plant-based molecules to normal cells [18,46]. Thus, using them for the
development of hybrid drug molecules can overcome their limitations and is a promising
drug design strategy. Demirbolat et al. validated the hybrid synthetic approach through the
synthesis of a series of carvacrol hybrid molecules (Figure 4) [1]. The hybrid compounds’
cytotoxic effect was tested on several cancer cells, including NIH/3T3, PC-3, MCF-7,
K562, A549, and SH-SY5Y [1]. The findings displayed promising percentage proliferation
inhibition rates which ranged between −39.03% and 40.62% against MCF-7 cancer cell lines.
However, only compound 3 with a benzene ring and sulfonamide group on the triazole
moiety displayed an IC50 value of 12.8 µM, which revealed a significant cytotoxic effect
when compared to that of doxorubicin (49.05 µM). The rest of the synthesized molecules
were found to be inactive with IC50 values greater than 100 µM against the MCF-7 cancer
cell line. Furthermore, compound 3 promoted apoptosis in a dose-dependent manner. The
toxicity studies from the in-silico studies of hybrid 3 showed that the compound exhibited
no tumorigenic or mutagenic effects. This compound did not display an anticancer effect
against PC-3, although its isomeric partner (thymol hybrid derivatives) from the previous
study by the same group [47] displayed an IC50 of 5.96 µM against the same cancer
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cell in vitro. Hence, further studies are recommended [1]. The SAR of these hybrids
synthesized by Demirbolat et al. displayed no consistent trend. However, the results of the
percentage inhibition of proliferation depicted that the introduction of the benzene ring,
sulfonamide group, and halogens to the triazole moiety influenced the anticancer activity
of the compound. Therefore, further structural elucidation is paramount.
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Laamari et al. synthesized thymol hybrids and evaluated their anticancer effect on
four different cancer cell lines (MCF-7, A-549, MDA-MB-231, and HT-1080) [9]. Most of
the synthesized compounds displayed moderate levels of cytotoxicity in comparison with
those of the reference drug, with IC50 values in the range of 7.10–50 µM. The cytotoxic effect
of compound 4 (a combination of thiosemicarbazone and thymol) was significant when
compared to that of other compounds in the series against almost all of the selected cancer
cell lines with IC50 values between 7.10 and 19 µM. Specifically, against HT-1080 cancer cells,
compound 4 (Figure 5) exhibited comparable anticancer activity to that of the control drug
(6.21 µM) with IC50 values of 7.10 µM. The mode of action of the compound against A-549
and HT-1080 includes the induction of early and late apoptosis via cell cycle arrest in the
G2/M-phase and caspase-3/7 activation. However, in vivo results were recommended to
further validate the anticancer activity of this compound. Notably, replacing the hydrogen
molecule with the methyl group on the side chain of the thiosemicarbazone improved the
anticancer activity of this hybrid [9].
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Laamari et al. further synthesized p-methoxy thymol pyrazole hybrids via 1,3-dipolar
cycloaddition methods. Four different human cancer cells used in their previous study
were used to test the anticancer effect of these hybrids [9], and the same control drug was
used [18]. All the compounds displayed moderate anticancer effects with IC50 values rang-
ing from 22.17 to 62.72 µM against all selected cancer cell lines [18]. The p-methoxy thymol
pyrazole hybrids showed better cytotoxic effects when compared to other thymol pyrazole
hybrids. The ether group on the thymol moiety influenced the improved anticancer activity.
Hence, hybrids 5a and 5b (Figure 6) were regarded as the most active compounds against
the A-549 and HT-1080 cell lines. Notably, the cytotoxicity IC50 values further improved
in the range of 17.28–22.17 µM and 11.40–23.79 µM with an extended incubation period
against the most sensitive cell line (A-549), respectively. Therefore, the anticancer effect of
these hybrid drugs was time and structure dependent. However, further validation studies
are recommended [18].
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Almalki et al. synthesized thymol hybrid compounds after they displayed good
druglikeness and pharmacokinetics properties in silico [48]. The synthesized hybrids 6a–m
(Figure 7) displayed significant antiproliferative results when compared to the reference
drugs (doxorubicin (IC50 = 1.2 µM) and 5-fluorouracil (IC50 = 18.74 µM)) with no obvious
trends when evaluated against HCT-116, MCF-7, and HepG2 cancer cell lines. The hybrids
displayed selective anticancer effects on the cancer cell lines, with compounds 6b–f being
the most potent compounds against MCF-7 with IC50 values in the range of 1.1–4.9 µM.
Hybrids 6b and 6d inhibited the growth of HepG2 cell lines with IC50 values of 1.8 µM and
1.4 µM, respectively. Against HCT-116 cell lines, only compound 6d showed promising
results with an IC50 value of 2.6 µM. These antiproliferative results were comparable to
those of doxorubicin but were 15–20-fold more active than 5-fluorouracil [48]. The SAR
of these hybrids revealed that the number and position of substituents influenced the
anticancer effect [48]. The biological activity of the hybrids was not enhanced for the
meta- and para-substituted hybrids when compared to the ortho-substituted hybrids with
improved cytotoxicity. Increasing the number of substituents reduced their cytotoxic effects
when compared to the monosubstituted hybrids. The introduction of a sulfone group also
reduced the cytotoxic effect of the hybrids [48].
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Carvacrol hybrids (Figure 7) were reported by Sisto et al. [49]. In vitro cytotoxicity
tests were performed on gastric adenocarcinoma cell lines. Among seventeen carvacrol
hybrid derivatives, five showed a loss of activity, as their cell viability was inferior to that
of carvacrol. All the hybrids exhibited poor activity compared to that of the control drug,
5-Fluorouracil. The SAR trend was unclear. However, a direct substitution to the hydroxyl
functional group of carvacrol resulted in a significant loss of biological activity (Figure 8).
The introduction of the benzyl moiety specifically with 3-CH3, 4-SO2CH3, 4-CF3, and
4-SOCH3 on the meta- and para-positions improved the biological activity of the hybrid
compounds. In essence, the position of the substitution influenced the activity of these
hybrid derivatives. Hence, further optimization was recommended [49].
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Szostek et al. synthesized thymol–ciprofloxacin hybrids (Figure 9), which were evalu-
ated against four cancer and one normal human cell lines [50]. The cytotoxic effects of most
of the hybrids were moderate against all of the cancer cell lines. Compound 7a–b displayed
a promising anticancer activity against the cancer cells with IC50 values less than 52 µM. No
significant cytotoxic effect was visible on the normal human cell lines. The selective index
(SI) values of hybrid 7a–b were in the range of 1.9 to 3.4, revealing insignificant anticancer
activity when compared to the control drug, doxorubicin, with SI values in the range of
0.14–1.11. However, unlike doxorubicin, which displayed cytotoxicity against all of the
used cell lines, including normal cells, compounds 7a and 7b were cytotoxic towards only
the cancer cell lines. There was no obvious SAR trend in these compounds. Therefore, these
compounds are recommended for further studies [50].
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Carvacrol hybrid compounds synthesized by Mbese et al. [51] were potent anti-
cancer compounds with IC50 values between 0.47 and 16.57 µM. Specifically, compound 8
(Figure 10) displayed significant results against MCF-7 and MCF-12A with IC50 values of
0.47 and 0.75 µM, respectively. The improved anticancer activity was attributed to the
incorporation of artesunate via an ester linker into the carvacrol moiety. Hence, hybridizing
carvacrol with other anticancer pharmacophores is a promising approach. However, further
studies are recommended [51].
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Valverde Sancho et al. synthesized hybrid compounds through the combination
of carvacrol, eugenol, and cinnamic acid and tested their antibacterial and anticancer
properties [52]. Among the synthesized compounds, carvacrol and thymol hybrids (9a–d)
showed potent anticancer effects with LC50 values in the range of 50.39–71.95 µg/mL.
Compound 9a (Figure 11), which was synthesized through a combination of thymol and
benzoic acid, was the most significant anticancer agent with an LC50 value of 50.39 µg/mL.
Notably, a combination of Thyme vulgaris essential oils and Cinnamomum verum extracted
compounds resulted in effective therapeutic agents [52]. The SAR of these hybrids did not
follow a significant trend. However, the incorporation of cinnamic acid and benzoic acid
moieties into thymol and carvacrol via ester linkers improved their anticancer activity [52].
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Vasconcelos et al. reported carvacrol derivatives with cytotoxic effects against SH-
SY5Y and HEK-293 cancer cell lines [53]. Most of the hybrids exhibited an anticancer
effect that was 10-fold more effective than carvacrol (IC50 = 374.1 µM) with IC50 values
between 9.79 and 64.72 µM [53]. Notably, compounds 10a–c (Figure 12) were the most
active anticancer hybrids with a selective index of more than 3.0 compared to that of
carvacrol (0.93), suggesting that the derivatives have more anticancer properties compared
to the parent drug. Additionally, SAR indicated that the nitro position favouring para
positions and the type of halogen present were influential on the anticancer effect of these
compounds. Due to its promising anticancer effect, in vivo mechanistic studies and clinical
trials were suggested for compound 10c [53].
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Figure 12. Carvacrol hybrids 10a–c synthesized by Vasconcelos et al.

Interesting anticancer findings on two generations of coumarin–monoterpenes, includ-
ing thymol and carvacrol moieties, were reported by Zengin et al. [54]. The cytotoxic effect
of the hybrid compounds was studied using PC3, HT-29, HEK293T, and MCF-7 cell lines.
The different linkers explored in these hybrids did not induce a significant trend in their
anticancer activity. However, the hybridization of coumarin with monoterpenes is a promis-
ing approach to developing potent therapeutic agents. Thus, the hybrids were selective
towards the cell lines, with thymol (11a) and carvacrol (11b) hybrids (Figure 13) displaying
good anticancer activity after several evaluations, with 11a exhibiting an IC50 value of
2.48 µM against MCF-7 and 11b exhibiting values of 9.10, 9.40, and 12.01 µM against MCF-
7, PC-3, and HT-29, respectively. The IC50 values of the compounds revealed promising
anticancer activity, and they both induced apoptosis in MCF-7 and HT-29, respectively.
Hence, further studies on compounds 11a and 11b are recommended [54].
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Sahin et al. reported the anticancer activity of thymol hybrid compounds 12a–c
(Figure 14) [55]. The compounds were screened against several cancer cells. The hy-
brids 12a–c were selective towards cell lines exhibiting IC50 values, revealing a superior
anticancer activity to that of the control drug with some exceptions. Compound 12a
with the 5-methylthiophene group (IC50 value = 7.67 µM) and 12c with the 3-bromo-5-
chlorobenzylideneamino group (IC50 value = 12.39 µM) showed significant cytotoxic effects
when compared to cisplatin (IC50 value = 16.27 and 19.16 µM) against PC3 and DLD-1
cancer cell lines, respectively. The structural modification displayed no cytotoxic influential
trend in the hybrids’ anticancer effect [55]. Therefore, further studies on these hybrids
are paramount.
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Figure 14. Chemical structure of thymol-based hybrid 12a–c synthesized by Sahin et al.

The in silico pharmacokinetic and pharmacodynamic studies of the carvacrol–aldehyde
hybrid derivative 13 (Figure 15) reported by Bansal et al. displayed an anti-metastatic
effect [56]. The binding affinity energy of the hybrid drug was −5.3 kcal/mol with a good
interaction with metastasis-associated protein 1. It also displayed druglikeness properties
according to Lipinski’s rule of five. Therefore, further studies, such as in vitro and in vivo
studies, are recommended for this potent anticancer compound [56].
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Five thymol hybrids were synthesized by Yu et al., and their anticancer efficacy was
evaluated on different human cancer cells: Hep G2, A549, MCF-7, and HeLa [57]. Against
these human cancer cell lines, hybrid 14a–c (modified on the isopropyl side of thymol)
(Figure 16) displayed significant activity (i.e., IC50 values in the range of 6.24–11.96 µM)
which was comparable to that of cisplatin (IC50 values in the range of 6.20–10.95 µM). These
findings reveal that the anticancer efficacy of thymol can be enhanced via modifications,
promoting its application in the design of anticancer drugs [57].
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Khwaza et al. synthesized ursolic–carvacrol derivatives 15a–c (Figure 17) and eval-
uated them against three cancer cells, including MCF-7, MD-MBA-231, and HeLa [58].
The synthesized compounds displayed inferior anticancer results with IC50 values in the
range of 51.05–64.75 µg/mL when compared to 49 µg/mL of ursolic acid. Modifying
the hydroxyl group on the carvacrol moiety and the di-substitution of the hydroxyl and
carboxylic groups of the ursolic acid moiety compromised the anticancer activity of the
compounds [58]. Therefore, further structural elucidation is recommended. Summary of
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the anticancer activity, SAR, and mechanism of action of carvacrol and thymol hybrids
(Table 2).
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Table 2. Summary of the anticancer activity, SAR, and mechanism of action of carvacrol and thy-
mol hybrids.

Hybrid Type of Cancer Cells
Active Against SAR Mode of Action Reference

3 MCF-7
The introduction of the benzene ring,

sulfonamide group, and halogens influenced
the anticancer activity.

Promote apoptosis [1]

4 HT-1080 Replaced the hydrogen with a methyl group
improved the anticancer effect.

Induce early and late
apoptosis [9]

5a–b A-549/HT-1080 The ether group on the thymol moiety was
influential on the improved activity. - [18]

6a–m HCT-116/MCF-7/HepG2 The number and position of substituents
influenced the anticancer activity. - [48]

7a–b - No noticeable SAR trend. - [50]

8 MCF-7/MCF-12A The anticancer improvement was attributed to
the use of the ester linker. - [51]

10a–c SH-SY5Y/HEK-293 The type of halogen and the position of nitro
group influenced the cytotoxic effect. - [53]

11a–b MCF-7/HT-29 No significant trend. Induce apoptosis [54]

12a–c PC3/DLD-1
SAR displayed no significant trend. However,
the introduction of halogens compromised the

activity.
- [55]

14a–c Hep
G2/A549/MCF-7/HeLa

Modification of isopropyl side of thymol via
ester linkers promoted their anticancer activity. - [57]

15a–c MCF-7,
MD/MBA-231/HeLa

Destruction of hydroxyl group compromised
their anticancer activity. - [58]
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4. Carvacrol/Thymol Hybrid Compounds with Antibacterial Activity

The antibacterial effects of thymol and carvacrol include microbes encased in biofilms.
Their derivatives have drawn a lot of interest owing to their antibacterial, anti-HIV, an-
tifungal, and antiviral properties [59,60]. The evaluation of the antibacterial activity of
derivatives of thymol and carvacrol against a variety of bacterial strains revealed the impact
of structural modifications [61]. Since thymol and carvacrol consist of hydroxyl groups and
are structurally isomeric, they both exhibited comparable levels of inhibitory effects [62].

Mbese et al. synthesized carvacrol ester hybrids (Figure 18) and tested them against
different bacterial strains [51]. The hybrids displayed good antibacterial activity with
minimum inhibitory concentration (MIC) values in the range of 1.25–3.3 µg/mL. However,
they did not induce significant antibacterial effects when compared to the parent drug
(carvacrol). Moreover, compound 16 was the most active compound with MIC values in
the range of 0.10–0.68 µg/mL [51]. The 4-aminoquinoline scaffold was influential in the
antibacterial activity of this compound. Additionally, the modification of the hydroxyl
group resulted in the compromised antibacterial activity of the hybrids. Thus, collaborating
findings were reported by Ranjbar-Karimi Alireza [63]. Therefore, further studies of these
carvacrol–ester hybrids are essential [51].
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Thymol hybrid compounds 12a–c (shown in Figure 14) displayed improved antibacte-
rial effects which were comparable to those of their parent drug, thymol, against E. coli
with MIC values between 10.66 and 11 µM, as reported by Sahin et al. [55]. Compound 12c
with two halogens was reported as the most effective drug among the synthesized hybrid
drugs against the aforementioned bacterial strain. The introduction of halogens to the side
chain of the benzylideneamino moiety influenced the antibacterial activity of compound
12c. Therefore, thymol hybrids are a promising lead in a new generation of antibacterial
drugs [55].

Khwaza et al. synthesized several hybrid drugs (Figure 17) and evaluated their an-
tibacterial activity against selected strains of bacteria [58]. Among the synthesized hybrids,
15a and 15b carvacrol hybrid drugs displayed remarkable antibacterial activities with MIC
values of 15.63 µg/mL against Proteus vulgaris and Proteus mirabilis. Additionally, these
compounds displayed comparable antibacterial activities to those of ursolic acid [58]. Ghod
Elahi et al. documented that modifying the carvacrol moiety can improve the antibac-
terial effect [64]. Modifying carvacrol with a peptide improved its antibacterial activity
against several bacteria strains, including Pseudomonas aeruginosa and Staphylococcus
epidermidis, revealing promising antibacterial activity with MIC values in the range of
0.5–1 µg/mL. However, further studies are recommended [64].

Kumar et al. documented the antibacterial activity of thymol hybrid derivatives
synthesized through a combination of thymol, cyclic amines, and sulfanilamides [65]. The
hybrids were evaluated against several bacterial strains, including S. aureus and E. coli.
Hybrids 17a–c with a cyclic amine moiety (Figure 19) displayed promising antibacterial
effects against S. aureus and E. coli. Hybrids 17a and 17b showed MIC values of 12.5 µg/mL
and 3.12 µg/mL, respectively, with hybrid 17c displaying an MIC value of 6.25 µg/mL
against S. aureus and E. coli. The presence of the aminomethyl group was responsible



Molecules 2024, 29, 2277 13 of 18

for the improved antibacterial activity of these compounds. These findings suggest that
thymol derivatives are potent antibacterial agents [65].
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Patil and Pawar synthesized various thymol ether hybrids and evaluated them 
against four different antibacterial strains [66]. Hybrid 18 (Figure 20) displayed a high 
antibacterial activity with a 5 mm zone of inhibition against P. valgaries, S. aureus, and B. 
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moiety was responsible for the improved activity [66,67]. 
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Figure 19. Chemical structures of thymol–cyclic amine hybrid compounds 17a–c.

Patil and Pawar synthesized various thymol ether hybrids and evaluated them against
four different antibacterial strains [66]. Hybrid 18 (Figure 20) displayed a high antibacterial
activity with a 5 mm zone of inhibition against P. valgaries, S. aureus, and B. subtilis.
However, this compound showed no significant effect against E. coli. Although the hybrids
were selective towards the antibacterial strains, the introduction of the thymol moiety was
responsible for the improved activity [66,67].
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1,2,3-triazole-thymol hybrid derivatives were synthesized by Addo et al. after they dis-
played promising antibacterial results when evaluated against several bacterial strains [68].
Most of the synthesized compounds displayed a similar or superior antibacterial activity
comparable to that of ampicillin, the control, depending on the bacterial strains used. An-
tibacterial studies of the compound without chlorine on the fourth position of the thymol
moiety against K. pneumonia revealed that the bacterial strain developed resistance. Thus,
replacing hydrogen with halogen improved the antibacterial activity of the compounds.
Moreover, compound 19 (Figure 21) with a mean zone inhibition of 24.7 mm was the most
active antibacterial compound among its counterparts, and it was also comparable to the
control drug with a 30 mm mean zone of inhibition [68].
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Bhoi et al. synthesized nine benzimidazole–carvacrol hybrids and evaluated them
against four different bacterial strains, such as E. coli, S. aureus, S. pyogenus, and P. aerugi-
nosa [69]. The hybrids displayed remarkable antibacterial activities against all four strains
compared to those of some of the control drugs that were used. However, they were selec-
tive towards the bacterial strains with MIC values between 12.5 and 250 µg/mL. Hybrid 20
(Figure 22) was the most active antibacterial compound with MIC values of 12.5 µg/mL
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(S. aureus), 25 µg/mL (E. coli), 50 µg/mL (S. pyogenus), and 25 µg/mL (P. aeruginosa), re-
spectively [69]. The position and the nature of the substituent, e.g., the introduction of
fluoroalkyl and alkyl groups on the benzimidazole moiety, influenced the antibacterial
activity of the hybrids. The trend was inconsistent and depended on the type of bacterial
strain used. Hybridizing natural products with azoles and the structural modification of
the hybrids can result in effective antibacterial agents that can overcome resistant bacte-
rial strains [68–71]. Summary of antibacterial activity, SAR, and mechanism of action of
carvacrol and thymol hybrids is shown in Table 3.
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Table 3. Summary of antibacterial activity, SAR, and mechanism of action of carvacrol and thy-
mol hybrids.

Hybrid Bacterial Pathogens Active
Against: SAR Reference

12a–c E. coli The introduction of halogens influenced the
antibacterial activity of these compounds. [55]

15a–b Proteus vulgaris/Proteus
mirabilis

Hybridizing carvacrol and ursolic acid via an ester
linker improved their antibacterial activity. [58]

16 E.coli/S. aureus Modification of the hydroxyl group of carvacrol moiety
resulted in compromised antibacterial activity. [51,63]

17a–c S. aureus/E.coli
The introduction of cyclic amine moiety with

aminomethyl groups into thymol improved the
antibacterial activity.

[65]

18 P. valgaries/S. aureus/B.subtilis The introduction of thymol moiety was responsible for
the improved activity. [66,67]

19 K. pneumonia Replacing hydrogen with halogen improved the
antibacterial activity of the compounds. [68]

20 E. coli/S. aureus/S. pyogenus/P.
aeruginosa

The introduction of fluoroalkyl and alkyl groups on
benzimidazole moiety influenced the antibacterial

activity of the hybrids.
[69]

5. Conclusions and Future Strategies

The development of new and effective antibacterial and anticancer therapeutics is
urgent. Thus, the use of plant-based bioactive molecules to develop new drugs is a
promising approach, as compounds extracted from traditional plants have some good
features, such as reduced toxicity levels and several biological activities. Drug resistance
has been a major issue in the treatment of various diseases, including cancer and bacterial
infections. Thus, the number of cases and deaths is increasing due to drug resistance issues.
The socio-economic burden as a result of cancer disease and bacterial infections has been
projected to be a major problem in the near future. Hence, exploring sustainable strategies
for drug development is crucial.

Carvacrol and thymol possess several biological activities. Hybrid drugs are promising
therapeutics with unique pharmacological features, making them effective drug molecules.
These two isomeric compounds are promising moieties that can be hybridized with other
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pharmacophores to develop antibacterial and anticancer agents with limited challenges.
Some research reports have shown that the antibacterial and antioxidant activities of
these isomeric compounds are attributed to their free hydroxyl group [29,30]. Hence, its
modification must be avoided [51,63].

However, the site of modification for these drugs is still debatable, as most researchers
are using the hydroxyl group as a site of modification. Moreover, most of the promising
hybrids reported in this review were combined via the hydroxyl group to form ester linkers,
and they displayed potential anticancer and antibacterial effects. Hence, in vivo studies of
these compounds are crucial to validate the biological activities and the modes of action of
the reported compounds. The reported compounds were selective towards some cancer
cell lines and bacterial strains. Thus, the structural activity relationship trends are not
consistent. However, in some compounds, the site of the substitution and the nature of the
substituent influenced the biological activities of these drugs. Hence, more studies must
be performed on these hybrids with more structural modifications using a wider range
of cancer cell lines and bacterial strains, as well as in vivo evaluations. Although hybrid
compounds are a promising and interesting approach to developing novel and effective
therapeutic agents, some structural modifications have resulted in ineffective compounds.
For instance, most of the hybrid compounds were characterized by high molecular weights,
which sometimes violate Veber’s and Lipinski’s rule [21,72]. Thus, antibiotic hybrid drugs
with molecular weights of more than 600 Da are a major concern for gram-positive bacteria,
due to the possibility of non-cellular uptake through the dual membrane of the bacteria.
Therefore, the molecular weights of the hybrid compounds must not be overlooked [21,72].
The modes of action of the parent drugs can be lost if the structural modifications are
performed on functional groups responsible for the parent drug’s mechanism of action.
Although hybrid compounds are dual-targeting drugs, hybrids can bind to one original
binding site of the parent drug with the possibility of not reaching other targeting sites [72].
Thus, the type of linker and the site of attachment should be considered when developing
hybrid compounds.
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