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Abstract: The objective of this study was to identify multiple alkaloids in Coptis chinensis that
demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding
characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay,
surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed.
The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values
of 3.44–53.73 µM. SPR-based binding studies revealed that these alkaloids display rapid binding
and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to
29.97 µM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine
DPP-4–ligand systems with minimal fluctuations, while binding free energy calculations showed that
the ∆Gbind values for the nine test compounds ranged from −31.84 to −16.06 kcal/mol. The most
important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van
der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358,
and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic
basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine
alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a
basis for further research and development on novel DPP-4 inhibitors.

Keywords: natural DPP-4 inhibitors; Coptis chinensis; enzyme inhibitory activity; molecular dynamics;
surface plasmon resonance

1. Introduction

Dipeptidyl peptidase-4 (DPP-4) is an important target for the clinical treatment of
several diseases including diabetes, obesity, cardiovascular diseases, and non-alcoholic
fatty liver disease (NAFLD) [1–6]. As a serine protease on the surface of cells, DPP-4
plays a role in the breakdown of peptides, including incretin hormones such as glucagon-
like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) [7]. The
inhibition of DPP-4 can prolong the half-lives of these peptides, leading to increased insulin
secretion and improved glucose control. DPP-4 inhibitors have been developed as a class
of antidiabetic drugs and are used in the treatment of type 2 diabetes [8]. By inhibiting
DPP-4, these drugs can enhance the action of GLP-1 and GIP, resulting in better blood sugar
control. DPP-4 inhibitors are generally well tolerated and have a low risk of hypoglycemia
compared to other antidiabetic drugs. Overall, the clinical importance of DPP-4 as a target
lies in its involvement in glucose homeostasis and the potential therapeutic applications
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of DPP-4 inhibitors in diabetes and other related diseases. Therefore, inhibitors targeting
DPP-4 have broad therapeutic potential for a variety of diseases.

At present, a variety of DPP-4 inhibitors, such as sitagliptin, vildagliptin, saxagliptin,
alogliptin, linagliptin, gemigliptin, trelagliptin, and anagliptin, are marketed worldwide
(Figure 1). These DPP-4 inhibitors have the advantages of definite hypoglycemic effects,
a low risk of hypoglycemia, no weight gain, good cardiovascular safety, and once-daily
administration [9–15]. However, some potential side effects are also associated with them,
such as nasopharyngitis, headache, upper respiratory tract infection, and mild gastroin-
testinal discomfort. Some rare adverse reactions include acute pancreatitis, arthralgia, heart
failure, angioneurotic edema, hypersensitivity, elevated liver enzymes, diarrhea, cough,
and a decreased absolute lymphocyte count [16–21]. In addition, the dosage of some DPP-4
inhibitors needs to be adjusted according to renal function; the exception is linagliptin,
which is mainly excreted through the intestine while the others are mainly excreted through
the kidney [22–24].
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Compared with chemically synthesized drugs, natural herbal medicines are consid-
ered to have higher effectiveness and fewer side effects [25,26]. Therefore, an urgent need
for novel DPP-4 inhibitors with good efficacy and safety in natural herbal medicines is
recognized. Coptis chinensis is one of the earliest recognized and most valuable medicinal
plants in China; it has been used to treat diabetes for over two thousand years. It has been
shown to have various effects, such as lowering blood glucose, improving insulin secre-
tion, and modulating intestinal microbiota [27–30]. Recent clinical studies have confirmed
the efficacy of berberine (the main component of Coptis chinensis) for diabetes as it can
induce insulin secretion in a glucose-dependent manner, thus avoiding the risk of hypo-
glycemia [31–33]. Therefore, it may be meaningful to screen and validate DPP-4 inhibitors
from Coptis chinensis as they may offer new options for the development of effective and
safe antidiabetic drugs.

This study accomplished the discovery and characterization of DPP-4 inhibitors from
components of Coptis chinensis through an integrated approach that combined computa-
tional and experimental methods (Figure 2). Initially, molecular docking was performed
to identify compounds with the potential to bind with DPP-4. Subsequently, an enzyme
inhibition assay was used to validate the inhibitory activity of these potential compounds.
Then, the SPR technique was employed to evaluate the affinity of the novel DPP-4 inhibitors
for the DPP-4 protein and their binding–dissociation characteristics. Finally, a molecular
dynamics simulation technique was used to analyze the interaction between the inhibitors
and DPP-4. Natural DPP-4 inhibitors from Coptis chinensis were discovered in this work,
which will facilitate the development of safe and effective DPP-4 inhibitors and reveal
active ingredients in Coptis chinensis for treating diabetes.
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Figure 2. A schematic illustration of the discovery of DPP-4 inhibitors from Coptis chinensis.

2. Results
2.1. Potential DPP-4 Inhibitors Identified through Molecular Docking

The reliability of the docking program was confirmed by re-docking 8O3 into the active
site of DPP-4 from the co-crystal structure. A total score of 6.25 was achieved for DPP-
4-8O3, and an RMSD of 0.71 Å was observed between the co-crystallized and re-docked
conformations of 8O3 (Figure 3). This suggests that the experimentally observed binding
mode was accurately reproduced by the docking program as the docked conformation was
highly similar to the co-crystallized conformation. The amino acids Arg125, Glu205, Glu206,
Ser209, Tyr631, Tyr662, Tyr666, Asn710, and His740 played a critical role in inhibiting DPP-4
activity at the 8O3 binding site. A screening of 96 natural compounds for DPP-4 inhibitors
was subsequently conducted using docking procedures, resulting in the identification of
39 hits with docking scores exceeding 6.00, which is the score for the re-docking of 8O3
with DPP-4, indicating that the compounds have a strong affinity for the target protein.
Inhibitory activity against DPP-4 was then evaluated in vitro for these hits.
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2.2. In Vitro Evaluation of DPP-4 Inhibitory Activity

In a primary screening, 40% DPP-4 inhibition was exhibited by nine alkaloids in
Coptis chinensis, namely columbamine, demethyleneberberine, epiberberine, groenlandicine,
coptisine, berberine, palmatine, jatrorrhizine, and berberrubine, at a final concentration of
30 µM. Sitagliptin, which had an IC50 value of 0.41 nM (Figure 2.3), was used as a positive
control. A further dose–response investigation revealed that nine alkaloids exhibited IC50
values of 3.44–53.73 µM for DPP-4 inhibition (Figure 5). Columbamine had the strongest
inhibitory activity, with an IC50 value of 3.44 µM, while berberine had the weakest activity,
with an IC50 value of 53.73 µM.
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Figure 4. The initial screening results of the inhibitory activity of 39 compounds against DPP-4
(A) and the DPP-4 inhibitory activity of sitagliptin (B). In (A), the compounds represented by Com-
pound IDs 1–40 are sitagliptin (CAS:486460-32-6), columbamine (CAS:3621-36-1), demethyleneber-
berine (CAS:25459-91-0), epiberberine (CAS:6873-09-2), groenlandicine (CAS:38691-95-1), coptisine
(CAS:3486-66-6), berberine (CAS:2086-83-1), palmatine (CAS:3486-67-7), jatrorrhizine (CAS:3621-38-
3), berberrubine (CAS:15401-69-1), ethyl caffeate (CAS:102-37-4), picrotin (CAS:21416-53-5), picro-
side ii (CAS:39012-20-9), protocatechuic acid methyl ester (CAS:2150-43-8), picroside i (CAS:27409-
30-9), canadine (CAS:522-97-4), catalpol (CAS:2415-24-9), spongouridine (CAS:3083-77-0), caf-
feic acid dimethyl ether (CAS:2316-26-9), obacunone (CAS:751-03-1), isovanilline (CAS:621-59-
0), D−mannoheptulose (CAS:3615-44-9), androsin (CAS:531−28−2), limonin (CAS:1180-71-8),
N−trans−feruloyltyramine (CAS:66648-43-9), gentisic acid (CAS:490-79-9), danshensu (CAS:76822-
21-4), sophocarpine (CAS:6483-15-4), sophoridine (CAS:6882-68-4), rhombifoline (CAS:529-78-2),
N−methylcytisine (CAS:486-86-2), cytisine (CAS:485-35-8), D−tetrahydropalmatine (CAS:3520-14-7),
phellodendrine (CAS:6873-13-8), corypalmine (CAS:27313-86-6), dauricine (CAS:524-17-4), sinome-
nine (CAS:115-53-7), phellodendrine chloride (CAS:104112-82-5), berbamine (CAS:478-61-5), and
oxyberberine (CAS:549-21-3), respectively. The purity of all test compounds is above 98%, and the
blank solvent is represented by compound ID 41. The DPP-4 inhibition rate (%) was calculated using
the following formula: (maximum fluorescence value—sample fluorescence value)/maximum fluo-
rescence value × 100%. The red dotted line indicates the 40% DPP4 inhibition rate line. In this study,
compounds with a DPP4 inhibition rate higher than 40% were selected for further dose-response
relationship analysis.

2.3. Interaction Analysis-Based Molecular Docking
Molecular docking was employed to investigate the binding sites between the ligands

and DPP-4. The results showed that nine alkaloids had stable binding modes with DPP-4
(Figure 6). For instance, berberine formed two hydrogen bonds with the side chains of
Ser630 and Arg669 and also established hydrophobic contacts with Glu205, Glu206, and
Tyr666. Sitagliptin produced six hydrogen bonds with the side chains of Arg125, Glu205,
Glu206, Ser209, and Ser552 and also had hydrophobic interactions with Tyr547 and Lys554.
Some DPP-4 binding sites, including Glu205, Glu206, Tyr666, Phe357, and Arg125, can bind
to at least four alkaloids, which may be a common characteristic of the interactions between
these alkaloids and the DPP-4 protein. Some of the less frequently occurring amino acid
residues, such as Arg358 for columbamine, Arg669 for berberine, and Lys554 and Tyr547
for sitagliptin, might be unique to the binding characteristics of these alkaloids.
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palmatine (H), berberine (I), and sitagliptin (J) at the binding site.
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2.4. Binding Analysis Based on SPR

An SPR-based binding study showed that the test alkaloids bound to DPP-4 with
fast binding and fast dissociation characteristics, and they had varying affinities, with KD
values ranging from 8.11 to 29.97 µM (Figure 7). The strongest affinity was observed for
columbamine, with a KD value of 8.11 µM, while berberine exhibited a relatively weak
affinity, with a KD value of 29.97 µM, which was consistent with the trend in its in vitro
DPP-4 inhibitory activity.
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Figure 7. The sensorgrams and fitted curves for the binding and dissociation of DPP-4 with coptisine,
columbamine, berberrubine, berberine, groenlandicine and jatrorrhizine (from (A) to (L)). The fitted
curves were obtained using the ‘Affinity’ module of the evaluation software Biacore T200.

2.5. Molecular Dynamics Simulation

A molecular dynamics simulation was performed on the initial conformations of the
DPP-4–inhibitor complexes obtained from the docking program. The RMSD values of
the backbone atoms of DPP-4 relative to the initial structure were calculated to study the
conformation dynamics of each system (Figure 8A). The results showed that the RMSD
values of most compounds and DPP-4 complex system reached equilibrium quickly after
20 ns, with very low fluctuations (below 1 Å). However, coptisin and deMethyleneberberine
reached equilibrium after 70 ns with very low fluctuations (below 1 Å). These results
suggest that the protein conformation of DPP-4 could be bound and stabilized by the test
compounds. Finally, the binding free energy and free energy decomposition of each system
were calculated based on trajectory data from the last 20 ns.

The binding affinities of the nine DPP-4–ligand systems were calculated using MM/GBSA.
The binding free energy (∆Gbind) values for the nine test compounds ranged from −31.84 to
−16.06 kcal/mol (Table 1). Hydrophobic, electrostatic, and hydrogen bonding interactions
play important roles in the interactions between them. The hydrophobic groups of the nine
alkaloids, which include multiple phenyl and methyl groups, interact with the hydrophobic
region of the protein active pocket through amino acid residues such as Phe357, Tyr662,
and Tyr666, thereby enhancing their affinity with the DPP-4 protein. Moreover, electrostatic
interaction also plays a large role in the interaction between these nine alkaloids and DPP-4.
The N atoms of the nine alkaloids, which are all quaternary ammonium alkaloids and carry
positive charges, interact with a charged region in the protein active pocket, such as Glu205,
Glu206, and other amino acid residues, increasing their affinity with the DPP-4 protein.
The important structural basis for their DPP-4-inhibitory effect lies in the benzene ring,
positively charged N atom, and hydroxyl group of these nine alkaloids, which enable them
to bind firmly to DPP-4.
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Figure 8. A molecular dynamics simulation analysis of DPP-4 and six of the test compounds. (A) The
RMSD of the backbone atoms in the DPP-4–ligand system was calculated to evaluate the stability
of the complex. The vertical offset was set to 2 in order to avoid overlap. (B) The RMSF values of
the amino acid residues in the DPP-4–ligand system were computed to measure the flexibility of the
protein. The key residues involved in binding are marked with dashed lines. The vertical offset was
set to 2 in order to avoid overlap. (C) The MM/GBSA decomposition method was applied to estimate
the contribution of each residue to the total binding free energies for the DPP-4–columbamine and
DPP-4–berberine systems.

Table 1. Binding free energies and intermolecular interaction energy components of systems of DPP-4
and nine alkaloids in Coptis chinensis, calculated by the MM/GBSA approach (kcal/mol). Here, the
van der Waals and coulomb energies are denoted by Evdw and Eele, respectively. The polar and
non-polar solvation contributions, EGB and ESURF, were determined by solving the GB equations.
Gsol represents the total solvation free energy, while Gbind represents the binding energy between
DPP-4 and the ligands. Gbind was approximated by ∆Gbind = Gcom − (Gpro + Glig) ≈ ∆Evdw + ∆Eele

+ ∆Gsol.

Energy Component Average Std. Dev. Std. Err. of Mean

DPP-4–
Columbamine

∆Evdw −35.93 2.65 0.08
∆Eele −282.02 8.30 0.26
∆EGB 291.16 7.77 0.25

∆ESURF −5.05 0.16 0.00
∆Ggas −317.95 8.30 0.26
∆Gsol 286.11 7.77 0.25

∆Gbind −31.84 2.54 0.08

DPP-4–
Demethyleneberberine

∆Evdw −23.95 5.13 0.16
∆Eele −277.99 17.25 0.55
∆EGB 276.92 16.17 0.51

∆ESURF −3.70 0.41 0.01
∆Ggas −301.94 14.42 0.46
∆Gsol 273.21 16.45 0.52

∆Gbind −28.73 5.45 0.17
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Table 1. Cont.

Energy Component Average Std. Dev. Std. Err. of Mean

DPP-4–
Coptisine

∆Evdw −28.79 2.24 0.07
∆Eele −216.09 8.99 0.28
∆EGB 229.81 8.74 0.28

∆ESURF −2.90 0.15 0.00
∆Ggas −244.88 9.13 0.29
∆Gsol 226.91 8.70 0.28

∆Gbind −17.98 2.15 0.07

DPP-4–
Groenlandicine

∆Evdw −23.60 3.52 0.11
∆Eele −283.96 10.39 0.33
∆EGB 291.75 10.14 0.32

∆ESURF −3.61 0.33 0.01
∆Ggas −307.57 11.24 0.36
∆Gsol 288.15 9.98 0.32

∆Gbind −19.42 3.45 0.11

DPP-4–
Jatrorrhizine

∆Evdw −32.43 2.76 0.09
∆Eele −228.65 8.00 0.25
∆EGB 238.54 7.04 0.22

∆ESURF −4.42 0.19 0.01
∆Ggas −261.09 8.05 0.25
∆Gsol 234.11 7.03 0.22

∆Gbind −26.97 2.89 0.09

DPP-4–
Berberrubine

∆Evdw −32.80 3.32 0.11
∆Eele −289.40 10.88 0.34
∆EGB 300.01 8.61 0.27

∆ESURF −4.55 0.23 0.01
∆Ggas −322.21 10.99 0.35
∆Gsol 295.45 8.58 0.27

∆Gbind −26.75 4.77 0.15

DPP-4–
Epiberberine

∆Evdw −30.50 2.68 0.08
∆Eele −241.47 8.29 0.26
∆EGB 260.01 8.56 0.27

∆ESURF −4.10 0.38 0.01
∆Ggas −271.98 9.41 0.30
∆Gsol 255.92 8.38 0.26

∆Gbind −16.06 2.56 0.08

DPP-4–
Palmatine

∆Evdw −33.91 2.33 0.07
∆Eele −255.44 7.37 0.23
∆EGB 269.54 7.02 0.22

∆ESURF −4.27 0.24 0.01
∆Ggas −289.35 7.45 0.24
∆Gsol 265.27 6.98 0.22

∆Gbind −24.08 2.58 0.08

DPP-4–
Berberine

∆Evdw −30.70 2.31 0.07
∆Eele −204.52 12.53 0.40
∆EGB 218.71 12.96 0.41

∆ESURF −3.20 0.36 0.01
∆Ggas −235.23 12.68 0.40
∆Gsol 215.51 12.82 0.41

∆Gbind −19.72 2.40 0.08

The root mean square fluctuation (RMSF) of each amino acid residue of the DPP-4
protein was calculated to investigate the binding stability of the nine test compounds with
DPP-4 (Figure 8B). A similar RMSF distribution was observed for the nine systems overall.
Lower RMSF values were exhibited by the key common amino acid residues (i.e., Arg125,
His126, Phe357, Arg358, Tyr547, Ser552, Gln553, Ser630, Tyr662, and Tyr666) than the other
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regions of DPP-4, which means that a strong binding force was exerted by them toward
DPP-4 and the tested compounds.

3. Discussion

Although previous studies in the literature reported that berberine, the main compo-
nent of Coptis chinensis, demonstrates inhibitory activity against DPP-4, this study found
that several other alkaloids in Coptis chinensis in addition to berberine can also inhibit DPP-
4’s activity, and some of them demonstrate stronger activity than berberine. This discovery
possesses innovative value and provides references for revealing the relationship between
the DPP-4 inhibitory activity of isoquinoline alkaloids and their structures, providing new
clues for the development of more effective DPP-4 inhibitors.

In the enzymatic reaction assay, the IC50 values of berberine were found to be close
to those reported in the literature [34,35], and the other eight alkaloids all demonstrated
stronger DPP-4 inhibitory activity than berberine. Using columbine and berberine as
examples, the structures and activities of the alkaloids in Coptis chinensis were analyzed.
Columbine has a hydroxyl and methoxy group at the same position as the methanedioxyl
group of berberine, which allows columbine to form hydrogen bonds and hydrophobic
interactions with the key amino acid residues (e.g., Glu206 and Tyr666) of the DPP-4
protein. These interactions enhance the binding affinity of columbine with the DPP-4
protein. Similar observations were made for demethyleneberberine, berberrubine, and
jatrorrhizine. This phenomenon was confirmed by both SPR-based binding assays and
molecular dynamics simulations. Columbamine has a stronger affinity and a lower binding
free energy than berberine, indicating that the hydroxyl group on the isoquinoline core can
enhance the affinity between alkaloids and DPP-4 protein, thereby improving its DPP-4
inhibitory activity (Table S1).

The material basis and mechanism of the use of Coptis chinensis in diabetes treatment
are further expanded in this work. In addition to berberine, many kinds of alkaloids in
Coptis chinensis also possess DPP-4 inhibitory activity, which suggests that Coptis chinensis’s
hypoglycemic effect may be the result of the collective action of its various alkaloids. Nu-
merous studies have reported that many alkaloids, including palmatine, columbamine, and
coptisine, possess properties such as reducing blood sugar, promoting insulin secretion,
improving insulin resistance, and enhancing glucose utilization [36–41]. A comprehensive
improvement in streptozotocin-induced diabetic mice was observed when various alka-
loids in Coptis chinensis were combined, as evidenced by lowered blood sugar levels, an
increased insulin content, and an improved lipid metabolism [42]. A theoretical basis for
the application of Coptis chinensis in the treatment of diabetes is provided by these findings.
Although all these alkaloids have the ability to inhibit DPP-4, their differing chemical struc-
tures and binding characteristics suggest a potential synergistic role in diabetes treatment.
The combination of these alkaloids in a drug formulation has the potential to enhance
clinical efficacy and reduce adverse reactions and drug resistance, thereby offering new
insights and directions for the development of diabetes drugs.

4. Materials and Methods
4.1. Molecular Docking-Based Virtual Screening

To identify DPP-4 inhibitors in Coptis chinensis, a virtual library of 96 compounds from
Coptis chinensis was constructed for a docking-based virtual screening using Surflex-Dock,
a semi-flexible docking program, in the Sybyl X-2.0 package (Tripos, Cincinnati, OH, USA).
Surflex-Dock employs a unique empirical scoring function and a search engine based on
molecular similarity to dock ligand molecules to protein binding sites. The compound
library was downloaded from the NCBI PubChem database (https://www.ncbi.nlm.nih.
gov/pccompound, accessed on 16 January 2024.) in 2D (sdf) format. The optimization of
these compounds and the molecular docking process were carried out according to our
previous work [43,44].

https://www.ncbi.nlm.nih.gov/pccompound
https://www.ncbi.nlm.nih.gov/pccompound
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The target protein for docking is the A chain of the DPP-4 crystal structure (PDB
ID: 5Y7H), which was resolved by X-ray crystallography at 3.00 Å resolution [45]. The
preparation of the DPP-4 crystal structure involved the elimination of crystallographic water
molecules and the addition of hydrogen atoms. Subsequently, an energy minimization
process was conducted utilizing an AMBER7 F99 force field. This process was carried
out in accordance with the standard parameters of the SYBYL X-2.0 software. The DPP-
4 active site, located within the binding pocket, is defined as the area within a 0.5 Å
distance from the recognized inhibitor 8O3, chemically known as (R)-4-(3-amino-4-(2,4,5-
trifluorophenyl)butanoyl)piperazin-2-one, with the molecular formula C14H16F3N3O2 [45].

In order to evaluate the precision and robustness of the docking program, 8O3 was
removed from the co-crystal structure and subsequently re-docked into the DPP-4 active
site using the pre-established parameters of the Surflex-Dock docking program. The root
mean square deviation (RMSD) was employed to measure the discrepancy between the
co-crystallized and docked configurations of all heavy atoms in 8O3, as dictated by the
subsequent formula [46]: “d” represents the distance between N pairs of corresponding
atoms, with hydrogen atoms being the exception. A smaller RMSD value indicates a
greater similarity between the co-crystal and docked configurations of 8O3. Diagrams
of the protein–ligand contacts were generated using the show 2D Diagram program in
Discovery Studio 3.0 software.

RMSD =

√√√√ 1
N

i=N

∑
i=1

d2
i

4.2. DPP-4 Inhibition Assay

The DPP-4 inhibitory activity of 39 potential compounds obtained via virtual screening
was tested using a commercial DPP-4 inhibitor screening assay kit (Item No. 700210,
Cayman Chemical Company, Ann Arbor, MI, USA), and the kit’s instructions were followed
exactly. The fluorescence intensity was measured at an excitation/emission wavelength of
360/460 nm using an EnVision Multilabel Reader (2104 PerkinElmer, Waltham, MA, USA).
The possibility of false positives was eliminated by assessing the autofluorescence of each
test compound. The test compounds, documented to be isolated from Coptis chinensis and
structurally identified [47–50], were purchased from MCE (Medchem Express, Monmouth
Junction, NJ, USA) and had a purity exceeding 98% (Figures S1–S18). These compounds
were prepared at a concentration of 30 µM in deionized water that contained 0.5% DMSO.
Sitagliptin (0.60 µM, Sigma-Aldrich, St. Louis, MO, USA) was used as a positive control,
while deionized water containing 0.5% DMSO served as a negative control [51]. The half-
maximal inhibitory concentration (IC50) was determined using GraphPad Prism 9 software.

4.3. SPR-Based Binding Assay

The binding affinity between DPP-4 and six alkaloids in Coptis chinensis was evalu-
ated using the BIAcore T200 system (GE Healthcare, Uppsala, Sweden). All SPR-related
materials were obtained from GE Healthcare, and DPP-4 (D3446) was purchased from
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The DPP-4 protein, dissolved in PBS
at a concentration of 40 ng/µL, was immobilized onto the surface of a CM5 sensor chip
using a standard amine-coupling procedure. The test compounds were prepared at varying
concentrations in a solution of Tris-Hcl (pH 8.0) and injected over the surface of the chip
at a rate of 30 µL·min−1 and a temperature of 25 ◦C. A reference flow cell without the
immobilization of DPP-4 served as a control for non-specific binding. The association and
dissociation kinetics of each test compound with DPP-4 were observed for a duration of
1 min. The chip could be regenerated and reused multiple times after it was treated with
glycine–HCl (10 mM; pH 2.0). The test compounds were evaluated using the single-cycle
kinetics mode across a two-fold concentration series (1.17–100 µM). The equilibrium con-
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stant (KD) was calculated based on the 1:1 reaction ratio between the molecule and protein,
using the ‘affinity” module in the Biacore T200 software [52].

4.4. Molecular Dynamics and Binding Free Energy Calculation

A molecular dynamics simulation was applied to analyze the binding features and
free energy of nine alkaloids in Coptis chinensis with the DPP-4 protein. A simulation
system was set up which included a combination of the DPP-4 protein, a test compound,
ions, and water, according to our previous work [43]. The initial atomic coordinates of the
DPP-4-inhibitor complex were obtained using the Surflex-Dock method for the molecular
dynamics simulation. Nine separate simulation boxes were created to enable the molecular
dynamics simulation of nine compounds binding to DPP-4.

The geometry of the ligand was optimized using the B3LYP/6-31G* level of theory,
while the formal charges were computed using the HF/6-31G* method in the program
Gaussian 09 [53]. Partial charges were generated by fitting the electrostatic potentials
with the Gaussian program, employing the restrained electrostatic potential (RESP) fitting
technique found in the Amber20 package [54]. Each system’s water box was constructed
with the TIP3P water model [55], and either chlorine or sodium ions were introduced to
achieve system neutrality prior to the MD simulation. The DPP-4 protein and the ligands
were assigned the ff14SB force field and the general Amber force field (GAFF), respectively,
utilizing the LEaP module in the Amber20 package [56].

To achieve a low-energy starting conformation for the subsequent MD simulations,
energy minimization was performed on each simulation box. Initially, the steepest descent
method was employed with four thousand steps, followed by the conjugate gradient
method with six thousand steps. The minimization process was carried out on the entire
simulation system, which included the protein, ligand, ions, and water. Subsequently,
the solutes, which consisted of the protein and ligand, were minimized. The system
was heated from 0 to 300 K over a period of 300 ps using a Langevin thermostat system
under a canonical ensemble and a harmonic restraint force constant set at 10.0 kcal mol−1

Å−2. The system was equilibrated for a duration of 10 ns under conditions of constant
temperature and pressure (isothermal–isobaric), maintaining a pressure of 1.0 bar. The
barostat bath’s relaxation time was established at 2.0 ps. Following this, the production
simulation was carried out for 100 ns under isothermal–isobaric conditions, with periodic
boundary conditions in place. A time step of 2 fs was chosen, and the SHAKE algorithm
was utilized to constrain the bonds involving hydrogen atoms. The particle mesh Ewald
method was employed to manage long-range electrostatic interactions [57]. For short-range
interactions, a cut-off value of 10.0 Å was set.

The binding free energy for DPP-4 and each test compound was estimated using
molecular mechanics energies and techniques such as generalized born and surface area
continuum solvation [58]. The total binding free energy was further dissected into indi-
vidual contributions from each amino acid residue, facilitating the identification of the
most crucial residues in the binding of DPP-4 to each test compound using the MM/GBSA
decomposition method [59].

4.5. Statistical Method

Statistical analysis and graphical representation were carried out using GraphPad
Prism V9 software (GraphPad Software, San Diego, CA, USA). Data obtained from in vitro
experiments were subjected to an ANOVA (one-way analysis of variance) and Dunnett’s
multiple comparison test for analysis. A ***p value of less than 0.001 was considered significant.

5. Conclusions

Nine alkaloids from Coptis chinensis were discovered to be direct DPP-4 inhibitors were
discovered from by employing a systematic strategy of computational simulation, biological
verification, and binding studies. The anti-DPP-4 activity and binding characteristics of
these compounds were evaluated using multiple methods. The characteristics of the
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binding between DPP-4 and the nine alkaloids present a valuable reference for future
research to enhance their efficacy and selectivity via structural optimization, thereby laying
the foundation for the development of DPP-4-targeting agents. Moreover, this study forms
a basis and reference for understanding the material basis and mechanism underlying the
therapeutic effect of Coptis chinensis on diabetes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29102304/s1, Figures S1–S18: The 1H NMR spectra
and HPLC chromatograms of columbamine, demethyleneberberine, epiberberine, groenlandicine,
coptisine, berberine, palmatine, jatrorrhizine, and berberrubine. Table S1. Summary of the information
of the DPP-4 inhibitors discovered in this study.
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