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Abstract: Heptanuclear {GdIII
7} (complex 1) and tetradecanuclear {GdIII

14} (complex 2) were synthe-
sized using the rhodamine 6G ligand HL (rhodamine 6G salicylaldehyde hydrazone) and character-
ized. Complex 1 has a rare disc-shaped structure, where the central Gd ion is connected to the six
peripheral GdIII ions via CH3O−/µ3-OH− bridges. Complex 2 has an unexpected three-layer double
sandwich structure with a rare µ6-O2− ion in the center of the cluster. Magnetic studies revealed that
complex 1 exhibits a magnetic entropy change of 17.4 J kg−1 K−1 at 3 K and 5 T. On the other hand,
complex 2 shows a higher magnetic entropy change of 22.3 J kg−1 K−1 at 2 K and 5 T.

Keywords: lanthanide oxygen cluster; magnetocaloric effect; magnetic refrigerant materials;
rhodamine ligand

1. Introduction

The exploration of new compounds in the field of coordination chemistry reveals
many fascinating structures and properties. Among them, rare earth ions play an impor-
tant role in the assembly of polynuclear clusters [1–3]. Due to their large ion radius and
inherent ability to participate in various coordination environments, rare earth ions can
promote the formation of polymetallic clusters [4–22]. Multinuclear rare earth clusters with
different structural types, such as {Ln18} [23], {Ln28} [24], {Ln34} [25], {Ln36} [26], {Ln37} [27],
{Ln48} [28], {Ln60} [29], {Ln72} [30], {Ln104} [31], {Ln140} [32], etc., were synthesized, and the
largest even has a {Nd288} structure [33]. These polynuclear clusters usually exhibit fascinat-
ing properties, such as single-molecule magnetism [8,12,14,15,19,30], luminescence [23,24],
magneto-optical properties [34] and proton-conductive properties [35].

The formation of lanthanide hydroxide clusters involves the hydrolysis of lanthanide
ions in the presence of ligands. The hydrolysis process leads to the formation of small
lanthanide hydroxide units, which then assemble to form larger clusters. The size and
structure of the clusters can be controlled by adjusting the hydrolysis conditions and the
choice of ligands. The hydrolysis-induced assembly mechanism of lanthanide hydroxide
clusters is still not fully understood due to the elusive coordination configurations of
lanthanide ions and the limited characterization methods available. However, recent studies
have made progress in determining the intermediate species and the pathways of cluster
formation [22]. The formation of high-nuclearity lanthanide clusters is believed to involve
the assembly of low-nuclearity subunits, which are formed according to initial hydrolysis.
These small units are then connected to form the final cluster structure. Understanding the
formation mechanism of lanthanide hydroxide clusters is important for the development
of new functional materials and their applications in various fields. In addition, the
interactions between the rare earth centers can affect the physical properties of the clusters.
The ligand framework around these ions also plays an important role in determining the
geometry, stability and functionality of the obtained clusters. By adjusting the ligand,
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scientists can strategically guide the self-assembly process, thus generating the required
multi-core architecture.

Certain gadolinium compounds have shown excellent magnetocaloric properties [36–38],
such as Gd(HCOO)3 [39], Gd(OH)3 [40], Gd2O(OH)4(H2O)2 [40], GdPO4 [41], Gd(OH)CO3 [42],
GdF3 [43], Gd(OH)F2 [44] and Ba2Gd(BO3)2X (X = F, Cl) [45]. The magnetocaloric effect
(MCE) in Gd is particularly strong, making it an ideal material for use in extremely low-
temperature magnetic refrigeration systems. Magnetic refrigeration is a technology that
uses a magnetic field to cool objects. Magnetic refrigeration materials play an increasingly
important role in the future of social development, particularly in the area of energy
efficiency and sustainability. In addition, molecular clusters with diverse structures also
exhibit enormous magnetic cooling potential and exhibit many physical properties, such as
chirality, spin crossover, fluorescence, etc.

Rhodamine-derived ligands show ring-opened or ring-closed structures and can
form rare earth [46–49] or transition metal [50,51] complexes. They are mostly mononu-
clear or low-nuclearity complexes. We are interested in forming high-nuclearity clusters
based on rhodamine ligands using the hydrolysis approach. In this work, we used the
rhodamine 6G salicylaldehyde hydrazone ligand (Figure 1) to synthesize two different
metal complexes, hexagonal heptanuclear {GdIII

7} [Gd7(L)6(µ2-CH3O)4(µ3-CH3O)4(µ3-
OH)4(NO3)2]NO3·10CH3CN·10CH3OH·2H2O (complex 1) and tetradecanuclear {GdIII

14}
Gd14(H0.5L)8(µ6-O)(µ4-O)2(µ3-OH)16(NO3)16·9.5CH3CN·2CH3OH·11H2O (complex 2), with
an unexpected three-layer double sandwich structure. These two complexes have an ex-
cellent magnetic refrigeration performance, and their magnetic entropy changes are 17.4 J
kg−1 K−1 at 3 K and 5 T and 22.3 J kg−1 K−1 at 2 K and 5 T, respectively.
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Figure 1. Transformation of ring-opened and ring-closed form of rhodamine-6G-type ligands and
their reactions.

2. Results and Discussion
2.1. Synthesis and Characterization

Rhodamine 6G-type ligands have attracted significant attention in the realm of fluores-
cent sensors. Previous studies have primarily focused on the synthesis of mononuclear rare
earth or transition metal complexes [46–52]. However, these ligands have yet to be fully
unearthed. We speculate that the reaction between LnIII and the rhodamine 6G ligands
might lead to high-nuclearity lanthanide complexes under high pH values. Using the
hydrolysis strategy, we have successfully synthesized two new GdIII clusters, 1 and 2
(Figure 1). Additionally, our research has unveiled the influential factors that impact the
synthesis process, including the ratio of central ions to ligands, solvents, alkalines and
reaction temperature.

The synthetic procedure for the two clusters is similar, with the exception of the molar
ratio of Gd:L, i.e., an excess amount of gadolinium nitrate was used in the synthesis of
{Gd14}. Both complexes were prepared using the reaction of the ligand HL with gadolinium
nitrate in a mixed solution of methanol and acetonitrile. A quantity of triethylamine was
used to induce the ring closure of the HL and hydrolysis, which was characterized using the
UV-Vis spectra of the reactant mixtures (Figure 2). The absorption at 535 nm due to the ring-
opened xanthene disappeared after the addition of four times the amount of Et3N, revealing
that the HL ligands were ring-closed [46–48]. The peak at 400 nm is most likely due to
the conjugated salicylaldehyde hydrazone group, corresponding to the yellow color of the
final products. The resulting mixture was left undisturbed at room temperature for one
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week, facilitating the formation of yellow plate-like single crystals for {Gd7}. The reactant
mixture was heated at 60 ◦C in an oven for three days, resulting in the formation of yellow
cubic-shaped samples of {Gd14}. These two complexes tend to lose solvents in the air. When
the crystals are taken out of the solution, they turn from yellow to red at room temperature,
and they lose their crystallinity. The powder XRD pattern for Gd7 illustrates that the main
strong peaks show disagreement with those simulated, indicating the desolvation of the
crystals (Figure S1). Thermogravimetric analysis (TGA) shows that the crystals lose all their
crystallization solvent molecules to give a desolvated solid (Figure S2). The peaks at low
2θ angles in the PXRD data for Gd14 are approximately consistent with those simulated,
and the TGA data show a weight loss of 8.5% in the temperature range 41–112 ◦C, which
is in agreement with the calculated data of 7.7%. The infrared spectra of complexes 1 and
2 (Figure S3) show peaks at 1363 cm−1 and 1380 cm−1, respectively, as is characteristic
of nitrate anions. The disappearance of the peak at 1680 cm−1 for HL illustrates the
coordination of aryl oxygen toward GdIII. The strong peak at 1620 cm−1 is most likely due
to the C=N stretching vibration for the Schiff base ligand L−. The UV-Vis and fluorescent
spectra (Figure 2) for the reactant solutions of HL and Gd(NO3)3 with different amounts
of Et3N were measured in the methanolic solution ([HL] = [Gd3+] = 10 µM, λex = 354 nm).
The colorless ligand shows no absorption in the visible region; however, after the addition
of GdIII, the ligand becomes ring-opened owing to the coordination and has a strong typical
absorption at 533 nm. With the addition of Et3N, the absorption gradually decreases owing
to the ring-closure of HL in alkaline conditions. The free ligand HL in MeOH has an
emission at 555 nm, which is due to the presence of small quantities of the ring-opened
ligand. After the addition of GdIII, the ligand HL becomes ring-opened, and emits yellow
light with a wavelength of 580 nm. When three times the amount of Et3N was added,
the emission nearly disappeared, indicating that almost all the HL ligands were in the
ring-closed form. The complexes are slightly soluble in MeOH, and the solutions (10 µM)
show an intense absorption at 398 nm, corresponding to the yellow color of the complex
with ring-closed L− ligands (Figure S4a). The emissions at 546 nm for Gd7 and 550 nm for
Gd14 (λex = 354 nm) potentially come from the ring-opened xanthene in the complexes, and
although the ring-opened dissociation is scant, the emission is strong. The weak emission
at 484 for Gd7 and 489 nm for Gd14 is most likely due to the Schiff base part of the ligand
L− (Figure S4b).
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2.2. Structure

A yellow single crystal of complex 1 was selected for single crystal X-ray diffraction at
100 K. Complex 1 crystallizes in the monoclinic system with the P21/n space group. The
volume of the unit cell is very large with a monoclinic system, and therefore the diffraction
data are not optimal. The command MASK was used during the structural refinement,
and 452 electrons were masked per formula unit, which account for the missing NO3

−

anion and 10 acetonitrile, 10 methanol and 2 H2O molecules, with their total electrons
being 451. The crystallographic data and selected bond distances and angles are given in
Tables S1 and S2. The asymmetric unit cell contains three crystallographically independent
{GdIII

7} moieties. Because they have similar molecular structures, only one of them is
described in detail as a representative. The coordination number of each GdIII ion in {Gd7}
(Figure 3) is between 7 and 9. Their coordination patterns are shown in Figures S5 and S6.
Using the SHAPE software (version 2.1) for calculation, their coordination patterns were
obtained, as shown in Tables S3–S5. The central Gd1 ions are coordinated by eight oxy-
gen atoms and have a square antiprism structure D4d. Among the eight oxygen atoms,
four are µ3-OH− and another four are µ3-CH3O−. The Gd–Ohydroxy bond distances are
in the range of 2.316(9)–2.358(9) Å, slightly shorter than that of the Gd–Omethoxy bonds
(2.362(9)–2.404(6) Å). The remaining six GdIII ions are evenly distributed around the central
GdIII ion, forming a saddle-shaped structure, which is relatively rare in rare earth com-
plexes [53] (Figure S7). Each peripheral GdIII ion is chelated by one ring-closed ligand
L−, and is bridged to the adjacent peripheral GdIII ions by µ2-CH3O− or phenoxy oxygen
atoms (Figure 4). The Gd–Omethoxy bond distances are in the range of 2.261(10)–2.298(10) Å,
comparable to that of the Gd–Ophenoxy bonds (2.189(10)–2.433(9) Å). The central GdIII ion is
connected to the six peripheral GdIII ions via the µ3-OH− and µ3-CH3O− bridges, giving
rise to a Gd7 core, as shown in Figure 3b. The bridging Gd–O–Gd bond angles are in the
range of 92.9(3)–110.6(4)◦ for µ3-OH−, 92.9(3)–99.2(3)◦ for µ3-CH3O−, 110.4(4)–112.8(4)◦ for
µ2-CH3O− and 98.2(3)–98.4(3)◦ for µ2-Ophenoxy, respectively, with intramolecular Gd–Gd
separations of 3.5064(11)–3.808(11) Å. The neighboring Gd7 molecules are connected via
weak intermolecular forces and no obvious intermolecular hydrogen bonds are found
based on the squeezed model of the crystal data.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 14 
 

 

 
 

(a) (b) 

Figure 3. (a) The structure of the {GdIII7} cation for complex 1. Hydrogen atoms and solvents have 
been omitted for clarity. (b) The core skeleton graph of complex 1. Color code: GdIII green; O red; N 
blue; C gray. 

  
(a) (b) 

Figure 4. Schematic diagram of two different coordination modes of ring-closed rhodamine ligands 
L−. (a) Tridentate chelating mode; (b) phenolic oxygen bridging mode. 

As for complex 2, a yellow cube-shaped single crystal was selected for single crystal 
X-ray diffraction at 173 K. A solvent mask was used, and 183.4 electrons were found at a 
volume of 3448.9 Å3 in nine voids per unit cell, which is consistent with the presence of 2 
CH3OH, 2 H2O and 1.5 CH3CN molecules per formula unit with 178 electrons. The 
crystallographic data and selected bond distances and angles are given in Tables S1 and 
S6. Complex 2 crystallizes in the tetragonal system with a space group of P4/n and has a 
D4h symmetry. The asymmetric unit contains 1/4 of the tetradecanuclear molecule and 
there are five different kinds of nine-coordinated GdIII ions (Gd1-Gd5, Figure 5b). They 
have three different coordination modes (Table S7) and their coordination patterns are 
shown in Figures S8 and S9. The tetradecanuclear cluster core is neutral and has a highly 
symmetrical three-layer double sandwich structure (Figure 5b). In the structure, four 
nine-coordinated GdIII ions form a square plane layer, and a nine-coordinated GdIII ion is 
located between the layers. The distance between the two layers is 5.792 Å. The center of 
the middle layer is six-coordinated µ6-O2−, while the outer layers on both sides are µ4-O2−. 
The sandwiched GdIII ions and the square-shaped layer are connected by µ3-OH− ions. 
The Gd ions are linked together by hydroxo bridges, forming a 
[Gd14(µ6-O)(µ4-O)2(µ3-OH)16] core. This core contains one octahedral [Gd6(µ6-O)(µ3-OH)8] 
unit that shares two apexes with two [Gd5(µ4-O)(µ3-OH)4] square pyramid moieties. The 

Figure 3. (a) The structure of the {GdIII
7} cation for complex 1. Hydrogen atoms and solvents have

been omitted for clarity. (b) The core skeleton graph of complex 1. Color code: GdIII green; O red; N
blue; C gray.



Molecules 2024, 29, 389 5 of 13

Molecules 2024, 29, x FOR PEER REVIEW 5 of 14 
 

 

 
 

(a) (b) 

Figure 3. (a) The structure of the {GdIII7} cation for complex 1. Hydrogen atoms and solvents have 
been omitted for clarity. (b) The core skeleton graph of complex 1. Color code: GdIII green; O red; N 
blue; C gray. 

  
(a) (b) 

Figure 4. Schematic diagram of two different coordination modes of ring-closed rhodamine ligands 
L−. (a) Tridentate chelating mode; (b) phenolic oxygen bridging mode. 

As for complex 2, a yellow cube-shaped single crystal was selected for single crystal 
X-ray diffraction at 173 K. A solvent mask was used, and 183.4 electrons were found at a 
volume of 3448.9 Å3 in nine voids per unit cell, which is consistent with the presence of 2 
CH3OH, 2 H2O and 1.5 CH3CN molecules per formula unit with 178 electrons. The 
crystallographic data and selected bond distances and angles are given in Tables S1 and 
S6. Complex 2 crystallizes in the tetragonal system with a space group of P4/n and has a 
D4h symmetry. The asymmetric unit contains 1/4 of the tetradecanuclear molecule and 
there are five different kinds of nine-coordinated GdIII ions (Gd1-Gd5, Figure 5b). They 
have three different coordination modes (Table S7) and their coordination patterns are 
shown in Figures S8 and S9. The tetradecanuclear cluster core is neutral and has a highly 
symmetrical three-layer double sandwich structure (Figure 5b). In the structure, four 
nine-coordinated GdIII ions form a square plane layer, and a nine-coordinated GdIII ion is 
located between the layers. The distance between the two layers is 5.792 Å. The center of 
the middle layer is six-coordinated µ6-O2−, while the outer layers on both sides are µ4-O2−. 
The sandwiched GdIII ions and the square-shaped layer are connected by µ3-OH− ions. 
The Gd ions are linked together by hydroxo bridges, forming a 
[Gd14(µ6-O)(µ4-O)2(µ3-OH)16] core. This core contains one octahedral [Gd6(µ6-O)(µ3-OH)8] 
unit that shares two apexes with two [Gd5(µ4-O)(µ3-OH)4] square pyramid moieties. The 

Figure 4. Schematic diagram of two different coordination modes of ring-closed rhodamine ligands
L−. (a) Tridentate chelating mode; (b) phenolic oxygen bridging mode.

As for complex 2, a yellow cube-shaped single crystal was selected for single crystal
X-ray diffraction at 173 K. A solvent mask was used, and 183.4 electrons were found at
a volume of 3448.9 Å3 in nine voids per unit cell, which is consistent with the presence
of 2 CH3OH, 2 H2O and 1.5 CH3CN molecules per formula unit with 178 electrons. The
crystallographic data and selected bond distances and angles are given in Tables S1 and S6.
Complex 2 crystallizes in the tetragonal system with a space group of P4/n and has a D4h
symmetry. The asymmetric unit contains 1/4 of the tetradecanuclear molecule and there
are five different kinds of nine-coordinated GdIII ions (Gd1-Gd5, Figure 5b). They have
three different coordination modes (Table S7) and their coordination patterns are shown in
Figures S8 and S9. The tetradecanuclear cluster core is neutral and has a highly symmetrical
three-layer double sandwich structure (Figure 5b). In the structure, four nine-coordinated
GdIII ions form a square plane layer, and a nine-coordinated GdIII ion is located between
the layers. The distance between the two layers is 5.792 Å. The center of the middle
layer is six-coordinated µ6-O2−, while the outer layers on both sides are µ4-O2−. The
sandwiched GdIII ions and the square-shaped layer are connected by µ3-OH− ions. The Gd
ions are linked together by hydroxo bridges, forming a [Gd14(µ6-O)(µ4-O)2(µ3-OH)16] core.
This core contains one octahedral [Gd6(µ6-O)(µ3-OH)8] unit that shares two apexes with
two [Gd5(µ4-O)(µ3-OH)4] square pyramid moieties. The cluster core is surrounded by
eight ring-closed L− ligands. Additionally, the GdIII of the middle layer is coordinated
with two nitrate ions, and the GdIII of outer layers on both sides is coordinated with a
nitrate ion and a tridentate ring-closed L− ligand. The square plane layers are bridged by
phenolic oxygen on the ligand, as shown in Figure 4b. Unlike in complex 1, all the ligands
L− are involved in the bridging, and none of the coordination modes shown in Figure 4a
are present in complex 2.
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As for the coordination environment of the Gd14 ions, three different types can be
divided into Gd1 and Gd5 and their equivalences; Gd2 and Gd4; Gd3 and its equivalences.
The Gd1 or Gd5 ion is surrounded by two µ3-OH−, two µ2-phenoxy, one µ4-O2− and one
L− ligand, with Gd–O/N bond distances of 2.320(7)–2.587(19) Å for Gd1 and 2.292(8)–
2.601(11) Å for Gd5. The Gd2 or Gd4 ion is coordinated by eight µ3-OH− and one µ6-O2−,
with Gd–O bond distances of 2.434(9)–2.617(13) Å for Gd2 and 2.454(8)–2.716(13) Å for
Gd4. The Gd3 ion is coordinated by one µ6-O2−, four µ3-OH− and two nitrate anions, with
Gd–O bond distances of 2.335(8)–2.555(9) Å. The rare µ6-O2−-bridged Gd6 core has an
elongated octahedral symmetry, with equatorial Gd–O bond distances of 2.4822(8) Å and
axial Gd–O bond distances of 2.617(13)/2.716(13) Å. The intermetallic Gd–Gd separations
within the Gd14 core are similar and are in the range of 3.5099(11)–3.882(1) Å. The Gd–O–
Gd bond angles via the µ3-OH− bridges are in the range of 95.9(3)–107.8(4)◦, and those
via the phenoxy bridges are similar (97.5(3) and 97.8(3)◦). The acetonitrile molecules are
hydrogen-bonded to the HN groups of L−. No intermolecular π–π contact is observed. The
nearest intermolecular Gd–Gd separation is 13.73 Å.

Although there are many reports on tetranuclear clusters of planar quadrilateral [54,55] and
nona-nuclear molecules of the double-layer sandwich type [56,57], a rare earth molecular
structure in the form of a three-layer double sandwich is uncommon. Similar molecules
have been reported before, as shown in Figures S10–S12. Tetradecanuclear hydroxo–
lanthanide acetylacetonato complexes, formulated as Ln14(µ4-OH)2(µ3-OH)16(µ-η2-acac)8
(η2-acac)16 (Ln = Tb and Eu, acac− = acetylacetonato) [58], and chiral tetradecanuclear
hydroxo-lanthanide clusters, as Ln14(µ4-OH)2(µ3-OH)16(µ-η2-acac)8(η2-acac)16·6H2O
(Ln = Dy and Tb) [59], have been reported. The ligands used in these two works are
both based on acetylacetonato, but the present tetradecanuclear {GdIII

14} is a completely
different ligand, i.e., ring-closed rhodamine L−. The use of ortho-nitrophenolate exhibited
the tetradecanuclear H18[Ln14(µ-η2-o-O2N-C6H4O)8(η2-o-O2N-C6H4O)16(µ4-O)2(µ3-O)16]
(Ln = Dy and Tm; o-O2N-C6H4O− = o-nitrophenolate) [60]. Despite the above similar Ln14
complexes, the µ6-O2− in 2 is unique among them.

It is worth mentioning that similar hexadecanuclear molecules [EuIII
16(tfac)20(CH3OH)8

(µ3-OH)24(µ6-O)2] have also been reported based on trifluoroacetylacetone (tfac−) [22]. In
addition to the tetradecanuclear {Eu14} core, there are another two Eu ions on the opposite
sides (Figure S13). This study provides insights into the formation, evolution and assembly
of lanthanide hydroxide clusters. The formation of {Gd7} and {Gd14} in this work further
verifies that hydrolysis under high pH values is an effective way of constructing high-
nuclearity LnIII species.

2.3. Magnetic Measurements

The temperature dependence of the magnetic susceptibility of complexes 1 and 2 is
measured under a 1000 Oe magnetic field in the range of 2–300 K (Figure 6). At room tem-
perature, the χMT values of 54.1 cm3 K mol−1 for {Gd7} and 109.0 cm3 K mol−1 for {Gd14}
are close to the theoretical values of 55.09 cm3 K mol−1 for heptanuclear and 110.18 cm3

K mol−1 for tetradecanuclear uncoupled GdIII (S = 7/2, g = 2, C = 7.87 cm3 K mol−1 per
Gd), respectively. For 1, upon lowering the temperature, the χMT value slightly decreases
to 49.76 cm3 K mol−1 at 20 K and then rapidly falls to 30.22 cm3 K mol−1 at 2 K. Complex
2 exhibits a similar behavior: when lowering the temperature, the χMT value slightly
decreases to 95.4 cm3 K mol−1 at 30 K, and then rapidly falls to 33.0 cm3 K mol−1 at 2 K.
These changes indicate the presence of dominant antiferromagnetic interactions between
the GdIII ions in the clusters. The data can be perfectly fitted to the Curie–Weiss law,
giving C = 54.44 cm3 K mol−1 and θ = −1.71 K for {Gd7} and C = 110.50 cm3 K mol−1 and
θ = −4.63 K for {Gd14} (Figure S14). The larger absolute θ value in {Gd14} suggests that the
antiferromagnetic interaction is stronger than that for {Gd7}.



Molecules 2024, 29, 389 7 of 13

Molecules 2024, 29, x FOR PEER REVIEW 7 of 14 
 

 

It is worth mentioning that similar hexadecanuclear molecules 
[EuIII16(tfac)20(CH3OH)8(µ3-OH)24(µ6-O)2] have also been reported based on 
trifluoroacetylacetone (tfac−) [22]. In addition to the tetradecanuclear {Eu14} core, there are 
another two Eu ions on the opposite sides (Figure S13). This study provides insights into 
the formation, evolution and assembly of lanthanide hydroxide clusters. The formation 
of {Gd7} and {Gd14} in this work further verifies that hydrolysis under high pH values is 
an effective way of constructing high-nuclearity LnIII species. 

2.3. Magnetic Measurements 
The temperature dependence of the magnetic susceptibility of complexes 1 and 2 is 

measured under a 1000 Oe magnetic field in the range of 2–300 K (Figure 6). At room 
temperature, the χMT values of 54.1 cm3 K mol−1 for {Gd7} and 109.0 cm3 K mol−1 for {Gd14} 
are close to the theoretical values of 55.09 cm3 K mol−1 for heptanuclear and 110.18 cm3 K 
mol−1 for tetradecanuclear uncoupled GdIII (S = 7/2, g = 2, C = 7.87 cm3 K mol−1 per Gd), 
respectively. For 1, upon lowering the temperature, the χMT value slightly decreases to 
49.76 cm3 K mol−1 at 20 K and then rapidly falls to 30.22 cm3 K mol−1 at 2 K. Complex 2 
exhibits a similar behavior: when lowering the temperature, the χMT value slightly 
decreases to 95.4 cm3 K mol−1 at 30 K, and then rapidly falls to 33.0 cm3 K mol−1 at 2 K. 
These changes indicate the presence of dominant antiferromagnetic interactions between 
the GdIII ions in the clusters. The data can be perfectly fitted to the Curie–Weiss law, 
giving C = 54.44 cm3 K mol−1 and θ = −1.71 K for {Gd7} and C = 110.50 cm3 K mol−1 and θ = 
−4.63 K for {Gd14} (Figure S14). The larger absolute θ value in {Gd14} suggests that the 
antiferromagnetic interaction is stronger than that for {Gd7}. 

 
Figure 6. Temperature dependence of χMT for {Gd7} and {Gd14} under a 1000 Oe magnetic field in 
the range of 2–300 K. 

The field dependence of the magnetizations (M) for complexes 1 and 2 was 
measured in the temperature range of 2–10 K (Figure S15). It can be seen that the 
magnetization has not reached saturation at 5 T and 2 K. At 2 K, the experimental 
maximum magnetization values of 47.03 Nβ for 1 and 89.35 Nβ for 2 are lower than the 
theoretical saturation value of GdIII (49 Nβ for 1 and 98 Nβ for 2, respectively), which may 
owe to the antiferromagnetic coupling, and a higher magnetic field is needed to suppress 
the magnetic coupling effect. For complexes 1 and 2, the experimental M–H curves at 2–
10 K lie below the calculated Brillouin curve for non-interacting SGd spins (Figures S16 
and S17), also suggesting the presence of overall intermetallic antiferromagnetic 
coupling. The difference between the experimental and calculated values for Gd14 is 
obviously larger than that for Gd7, indicating that the former shows stronger 

Figure 6. Temperature dependence of χMT for {Gd7} and {Gd14} under a 1000 Oe magnetic field in
the range of 2–300 K.

The field dependence of the magnetizations (M) for complexes 1 and 2 was measured
in the temperature range of 2–10 K (Figure S15). It can be seen that the magnetization has
not reached saturation at 5 T and 2 K. At 2 K, the experimental maximum magnetization
values of 47.03 Nβ for 1 and 89.35 Nβ for 2 are lower than the theoretical saturation value of
GdIII (49 Nβ for 1 and 98 Nβ for 2, respectively), which may owe to the antiferromagnetic
coupling, and a higher magnetic field is needed to suppress the magnetic coupling effect.
For complexes 1 and 2, the experimental M–H curves at 2–10 K lie below the calculated
Brillouin curve for non-interacting SGd spins (Figures S16 and S17), also suggesting the
presence of overall intermetallic antiferromagnetic coupling. The difference between
the experimental and calculated values for Gd14 is obviously larger than that for Gd7,
indicating that the former shows stronger antiferromagnetic coupling than that of the latter.
The presence of µ6-O2−-bridged Gd6O moiety may be responsible for this.

The half-filled 4f electronic configuration in GdIII ions makes them magnetically
isotropic. This makes gadolinium a valuable material in various applications, especially
magnetic refrigeration. Thus, the magnetocaloric effect (MCE) of complexes 1 and 2 was
studied using the Maxwell equation:

∆Sm(T)∆H =
∫

[
∂M(T, H)

∂T
]
H

dH

At 3 K and ∆H = 5 T, the value of −∆Sm is 17.44 J kg−1 K−1 for 1 (Figure 7a), which
is slightly lower than the expected value of 14.56R (25.25 J kg−1 K−1) calculated for seven
uncorrelated GdIII ions using the equation −∆Sm = nRln(2S + 1) (R≈8.314 J mol−1 K−1).
The value of −∆Sm for 2 is 22.30 J kg−1 K−1 at 2 K and ∆H = 5 T (Figure 7b), which is
close to the expected value of 29.11R (28.72 J kg−1 K−1) calculated for 14 uncorrelated GdIII

ions. To improve the magnetic refrigeration effect of the gadolinium clusters [37], several
approaches can be considered. Firstly, the experimental conditions can be optimized. For
instance, the temperature and magnetic field can be carefully controlled to ensure the most
efficient operation of the gadolinium clusters. The thermal conductivity of the environment
and the pressure during the refrigeration cycle can also be adjusted to minimize the energy
loss. Secondly, the chemical composition of the clusters can be varied. Gadolinium can be
alloyed with other metals to create compounds with different magnetic properties. Thirdly,
the size of the clusters can be optimized. The optimal size will depend on the specific
setup and application, but generally smaller clusters have a higher surface-to-volume ratio,
which leads to more efficient heat exchange and therefore a stronger refrigeration effect.
However, too-small clusters may also suffer from higher energy barriers between spin
states, which can decrease the magnetic entropy change. Overall, a combination of these
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strategies can be used to improve the magnetic refrigeration effect of gadolinium clusters
for various applications, such as cryogenic cooling of scientific instruments, temperature
control in electronics and energy-efficient refrigeration in households and industries.
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3. Materials and Methods
3.1. Synthesis and Preparations

All of the reagents we used were commercially available and used without further
purification. The ligand HL we used was synthesized according to the method in the
literature [46–49].

3.1.1. Synthesis of the Ligand HL

Step 1: Synthesis of Rhodamine 6G hydrazide. Solid rhodamine 6G (10 mmol, 4.5 g)
was dissolved in ethanol (100 mL). During stirring, 80% hydrazine hydrate solution (10 mL)
was slowly added, and then the mixture was heated at 80 ◦C. After refluxing for 3 h,
the reaction solution was cooled to room temperature. A light-colored precipitate was
generated from the orange solution, which was collected using filtration, and washed with
deionized water and ethanol until the color of the product turned white. Yield: about 4 g.

Caution: As hydrazine hydrate is a highly toxic reagent, the operations should be
performed in a fume hood with care.
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Step 2: Synthesis of HL. Rhodamine 6G hydrazide (5 mmol, 2.22 g) was suspended in
100 mL ethanol under stirring and heating at 80 ◦C, to which salicylaldehyde (10 mmol,
1 mL) was slowly added. The reaction continued at 80 ◦C for 3 h, and then the mixture
was cooled to room temperature to give a light-colored solid. Filtering and washing with
deionized water and ethanol generated a white solid powder of HL (about 2 g). The solid
was used without further purification.
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[Gd7(L)6(µ2-CH3O)4(µ3-CH3O)4(µ3-OH)4(NO3)2]NO3·10CH3CN·10CH3OH·2H2O (1)

The ligand HL (0.2 mmol, 106 mg) was suspended in a mixed solution of MeOH
(10 mL) and MeCN (10 mL), to which Gd(NO3)3·6H2O (0.25 mmol, 108 mg) was added,
generating a red solution. The solution was heated and stirred for a few minutes and
then triethylamine (300 µL, 2.16 mmol) was added to give a yellow solution. The mixture
was filtered and the filtrate was placed undisturbed at room temperature. Yellow crystals
suitable for X-ray diffraction analysis were collected after about 7 days. Yield: about 20%.
Desolvated samples were used for the elemental analysis and physical measurements.
Elemental analysis calcd. (%) for C206H214N27O39Gd7 (4793.23): C, 51.62; H, 4.50; N, 7.89.
Found: C, 51.79; H, 4.91; N, 7.92.

3.1.3. Synthesis of
Gd14(H0.5L)8(µ6-O)(µ4-O)2(µ3-OH)16(NO3)16·9.5CH3CN·2CH3OH·11H2O (2)

The ligand HL (0.2 mmol, 106 mg) was suspended in the mixed solution of MeOH
(10 mL) and MeCN (10 mL). Gd(NO3)3·6H2O (0.35 mmol, 150 mg) was added to generate a
red solution. After heating and stirring for a few minutes, triethylamine (150 µL, 1.08 mmol)
was added, giving rise to a yellow solution. The solution was filtered and the filtrate was
heated in an oven at 60 ◦C. Yellow crystals suitable for X-ray diffraction analysis were obtained
after about 2 days and collected. Yield: about 30%. Elemental analysis calcd. (%) for
C285H330.5N57.5O104Gd14 (8427.05): C, 39.62; H, 3.95; N, 9.56. Found: C, 39.27; H, 4.10; N, 9.25.

3.2. Physical Measurements

The elemental analyses (C, H and N) were performed using an Elementar Vario Cario
Erballo analyzer. The powder X-ray diffraction (PXRD) measurements were recorded on a
Bruker D8 ADVANCE X-ray diffractometer using CuKα radiation (λ = 1.54184 Å) at room
temperature from 5◦ to 50◦ with a sweeping speed of 10◦/min. The single-crystal X-ray
data were collected using a Rigaku SuperNova, Dual, Cu at zero, AtlasS2. The structure
was solved using the program Olex2 1.3 and refined using a full-matrix least-squares
method based on F2 using the SHELXL-2018/3 method. Hydrogen atoms were added
geometrically and refined using a riding model. The temperature- and field-dependent
magnetic susceptibility measurements were carried out using a Quantum Design MPMS
XL5 SQUID magnetometer. The IR spectra (KBr tablet) were recorded on the WQF 510A
FTIR equipment in the range of 400−4000 cm−1 with a sweeping interval of 2 cm−1. The
UV-Vis absorption spectra were measured using a TU-1901 spectrophotometer in the range
of 280−600 nm with a sweeping interval of 0.5 nm. The photoluminescence spectra were
measured using a Lengguang F98 fluorescence spectrophotometer. The sweeping speed
was 1000 nm/min with a sweeping interval of 1 nm.

4. Conclusions

In conclusion, novel high-nuclearity clusters have been obtained using the hydrolysis
strategy: saddle-shaped {Gd7} and a three-layer double sandwich {Gd14}. Both complexes
exhibit good magnetocaloric properties with magnetic entropy changes of 17.4 J kg−1 K−1

for Gd7 at 3 K and 5 T and 22.3 J kg−1 K−1 for Gd14 at 2 K and 5 T, respectively. Further
work on the new clusters {LnIII

7} and {LnIII
14} (Ln = Dy, Tb, Eu and Ho) are in progress in

our laboratory, which possibly behave as SMMs or fluorescent materials. The combination
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of rare earth ions and new ligands paves the way for the discovery of new polynuclear
clusters with unprecedented structures and functionalities.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29020389/s1. Table S1. Crystal data and refinement parameters
for complexes 1 and 2; Table S2. Selected bond distances (Å) and bond angles (◦) for complex 1;
Table S3. The results of coordination geometric configurations evaluated by SHAPE software for
seven-coordinated Gd of complex 1; Table S4. The results of coordination geometric configurations
evaluated by SHAPE software for eight-coordinated Gd of complex 1; Table S5. The results of coordi-
nation geometric configurations evaluated by SHAPE software for nine-coordinated Gd of complex 1;
Table S6. Selected bond distances (Å) and bond angles (◦) for complex 2; Table S7. The results of coor-
dination geometric configurations evaluated by SHAPE software for nine-coordinated Gd of complex
2; Figure S1. Powder diffraction pattern of complexes 1 and 2; Figure S2. Thermogravimetric analysis
of complexes 1 and 2; Figure S3. IR spectra of HL, complexes 1 and 2; Figure S4. UV-vis (a) and fluores-
cence spectra (λex = 354 nm, b) for complexes Gd7 (1) and Gd14 (2) in MeOH (10 µM); Figure S5. Top
and side view of the heptanuclear surrounding polyhedral structures for complex 1; Figure S6. The
coordinate lanthanide GdIII surrounding polyhedral structures for complex 1; Figure S7. Structure of
[Gd7(OH)6(thmeH2)5(thmeH)(tpa)6(MeCN)2]2+ (Gd (purple), O (yellow), N (blue), C (skeletal), H
atoms are not shown); Figure S8. Drawings of the tetradecanuclear surrounding polyhedral struc-
tures for complex 2; Figure S9. Drawings of the coordinate lanthanide GdIII surrounding polyhedral
structures for complex 2; Figure S10. The molecular structure of Ln14(µ4-OH)2(µ3-OH)16(µ-η2-
acac)8(η2-acac)16 (Ln = Tb and Eu, acac− = acetylacetonato); Figure S11. Polyhedral representation of
the structure of Ln14(µ4-OH)2(µ3-OH)16(µ-η2-acac)8(η2-acac)16·6H2O (Ln = Dy and Tb) cluster core;
Figure S12. Solid-state structure of H18[Ln14(µ-η2-o-O2N-C6H4-O)8(η2-o-O2N-C6H4-O)16(µ4-O)2(µ3-
O)16] (Ln = Dy, Er, Tm, Yb; o-O2N-C6H4-O = o-nitrophenolate) showing the atom labeling scheme,
omitting hydrogen atoms; Figure S13. Polyhedron view of the [Eu16(tfac)20(CH3OH)8(µ3-OH)24(µ6-
O)2] cluster where ligands have been removed for clarity; Figure S14. Temperature dependence of
χMT for 1 (up) and 2 (bottom) under a 1000-Oe magnetic field in the range of 2–300 K. The solid
curves represent the Curie-Weiss fit results; Figure S15. Field-dependence of the magnetization for 1
(up) and 2 (bottom) in the range of 2–10 K at 0–5 T. The solid curves represent the calculated Brillouin
values for non-interacting SGd spins at 2 K; Figure S16. Field-dependence of the magnetization
for 1 (Gd7) in the range of 3–10 K. The solid curves represent the calculated Brillouin values for
non-interacting SGd spins in the range of 3–10 K, respectively; Figure S17. Field-dependence of the
magnetization for 2 (Gd14) in the range of 3–10 K at 0 - 5 T. The solid curves represent the calculated
Brillouin values for non-interacting SGd spins in the range of 3–10 K, respectively.
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