Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens
Abstract
:1. Introduction
2. Results and Discussion
Isolation and Distribution of Fungal Endophytes
3. Materials and Methods
3.1. Study Sites and Sample Collection
3.2. Isolation of Fungal Endophytes
3.3. Identification of Fungal Endophytes
3.4. Extraction of Secondary Metabolites from Fungal Endophytes
3.5. Inoculum Preparation
3.6. Screening of Crude Extracts from Endophytes for Antibacterial Activity
3.7. Minimum Inhibitory Concentration (MIC) of Crude Extracts from Endophytes
3.8. GC-HRTOF-MS (Gas Chromatography High-Resolution Time-of-Flight Mass Spectrometry) Analysis
3.9. LC-QTOF-MS Settings
3.10. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Editors, P.M. Call for Papers: PLOS Medicine Special Issue on Bacterial Antimicrobial Resistance-Surveillance and Prevention. PLoS Med. 2022, 19, e1004014. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- Nardulli, P.; Ballini, A.; Zamparella, M.; De Vito, D. The Role of Stakeholders’ Understandings in Emerging Antimicrobial Resistance: A One Health Approach. Microorganisms 2023, 11, 2797. [Google Scholar] [CrossRef]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.S.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Irfan, M.; Almotiri, A.; AlZeyadi, Z.A. Antimicrobial Resistance and Its Drivers-A Review. Antibiotics 2022, 11, 1362. [Google Scholar] [CrossRef]
- Pezzani, M.D.; Tornimbene, B.; Pessoa-Silva, C.; de Kraker, M.; Rizzardo, S.; Salerno, N.D.; Harbarth, S.; Tacconelli, E. Methodological quality of studies evaluating the burden of drug-resistant infections in humans due to the WHO Global Antimicrobial Resistance Surveillance System target bacteria. Clin. Microbiol. Infect. 2021, 27, 687–696. [Google Scholar] [CrossRef]
- Elkady, W.M.; Raafat, M.M.; Abdel-Aziz, M.M.; Al-Huqail, A.A.; Ashour, M.L.; Fathallah, N. Endophytic Fungus from Opuntia ficus-indica: A Source of Potential Bioactive Antimicrobial Compounds against Multidrug-Resistant Bacteria. Plants 2022, 11, 1070. [Google Scholar] [CrossRef]
- Pelo, S.; Mavumengwana, V.; Green, E. Diversity and Antimicrobial Activity of Culturable Fungal Endophytes in Solanum mauritianum. Int. J. Environ. Res. Public Health 2020, 17, 439. [Google Scholar] [CrossRef]
- Pelo, S.P.; Adebo, O.A.; Green, E. Chemotaxonomic profiling of fungal endophytes of Solanum mauritianum (alien weed) using gas chromatography high-resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Metabolomics 2021, 17, 43. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Dufosse, L.; Chhipa, H.; Saxena, S.; Mahajan, G.B.; Gupta, M.K. Fungal Endophytes: A Potential Source of Antibacterial Compounds. J. Fungi 2022, 8, 164. [Google Scholar] [CrossRef]
- Silva, D.P.D.; Cardoso, M.S.; Macedo, A.J. Endophytic Fungi as a Source of Antibacterial Compounds-A Focus on Gram-Negative Bacteria. Antibiotics 2022, 11, 1509. [Google Scholar] [CrossRef]
- Wen, J.; Okyere, S.K.; Wang, J.; Huang, R.; Wang, Y.; Liu, L.; Nong, X.; Hu, Y. Endophytic Fungi Isolated from Ageratina adenophora Exhibits Potential Antimicrobial Activity against Multidrug-Resistant Staphylococcus aureus. Plants 2023, 12, 650. [Google Scholar] [CrossRef]
- Sharma, H.; Rai, A.K.; Dahiya, D.; Chettri, R.; Nigam, P.S. Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS Microbiol. 2021, 7, 175–199. [Google Scholar] [CrossRef]
- Khumalo, G.P.; Van Wyk, B.E.; Feng, Y.; Cock, I.E. A review of the traditional use of southern African medicinal plants for the treatment of inflammation and inflammatory pain. J. Ethnopharmacol. 2022, 283, 114436. [Google Scholar] [CrossRef]
- Torta, L.; Burruano, S.; Giambra, S.; Conigliaro, G.; Piazza, G.; Mirabile, G.; Pirrotta, M.; Calvo, R.; Bellissimo, G.; Calvo, S.; et al. Cultivable Fungal Endophytes in Roots, Rhizomes and Leaves of Posidonia oceanica (L.) Delile along the Coast of Sicily, Italy. Plants 2022, 11, 1139. [Google Scholar] [CrossRef]
- de Siqueira, V.M.; Conti, R.; de Araújo, J.M.; Souza-Motta, C.M. Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 2011, 53, 89–95. [Google Scholar] [CrossRef]
- Behie, S.W.; Jones, S.J.; Bidochka, M.J. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol. 2015, 13, 112–119. [Google Scholar] [CrossRef]
- Arnold, A.E.; Maynard, Z.; Gilbert, G.S.; Coley, P.D.; Kursar, T.A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 2002, 3, 267–274. [Google Scholar] [CrossRef]
- Yu, J.; Wu, Y.; He, Z.; Li, M.; Zhu, K.; Gao, B. Diversity and Antifungal Activity of Endophytic Fungi Associated with Camellia oleifera. Mycobiology 2018, 46, 85–91. [Google Scholar] [CrossRef]
- Fisher, P.J.; Petrini, O.; Scott, H.M.L. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol. 1992, 122, 299–305. [Google Scholar] [CrossRef]
- Grabka, R.; d’Entremont, T.W.; Adams, S.J.; Walker, A.K.; Tanney, J.B.; Abbasi, P.A.; Ali, S. Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants 2022, 11, 384. [Google Scholar] [CrossRef]
- Kharwar, R.N.; Verma, S.K.; Mishra, A.; Gond, S.K.; Sharma, V.K.; Afreen, T.; Kumar, A. Assessment of diversity, distribution and antibacterial activity of endophytic fungi isolated from a medicinal plant Adenocalymma alliaceum Miers. Symbiosis 2011, 55, 39–46. [Google Scholar] [CrossRef]
- Aruna, A.; Abhinesh, M.; Bhavani, V.; Reddy, V.K. Antibacterial Activity of Fungal Endophytes Isolated from Wattakaka volubilis (Linn.f.), A medicinal plant from Telangana, India. Int. J. Sci. Res. Biol. Sci. 2019, 6, 75–83. [Google Scholar] [CrossRef]
- Gordien, A.Y.; Gray, A.I.; Ingleby, K.; Franzblau, S.G.; Seidel, V. Activity of Scottish plant, lichen and fungal endophyte extracts against Mycobacterium aurum and Mycobacterium tuberculosis. Phytother. Res. 2010, 24, 692–698. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; p. 332. [Google Scholar]
- Kyekyeku, J.O.; Kusari, S.; Adosraku, R.K.; Bullach, A.; Golz, C.; Strohmann, C.; Spiteller, M. Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia 2017, 119, 108–114. [Google Scholar] [CrossRef]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef]
- Teng, P.; Li, C.; Peng, Z.; Anne Marie, V.; Nimmagadda, A.; Su, M.; Li, Y.; Sun, X.; Cai, J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg Med. Chem. 2018, 26, 3573–3579. [Google Scholar] [CrossRef]
- Kalra, S.; Kumar, A.; Gupta, M.K. Modeling of antitubercular activity of biphenyl analogs of 2-nitroimidazo[2,1-b][1,3]oxazine to rationalize their activity profile. Med. Chem. Res. 2012, 22, 3444–3451. [Google Scholar] [CrossRef]
- Shah, R.; Verma, P.K. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem. 2019, 13, 54. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Murali, M.; Singh, S.B.; Shivamallu, C.; Pradeep, S.; Shivakumar, C.S.; Anandan, S.; Thampy, A.; Achar, R.R.; Silina, E.; et al. Phytoconstituents of Withania somnifera unveiled Ashwagandhanolide as a potential drug targeting breast cancer: Investigations through computational, molecular docking and conceptual DFT studies. PLoS ONE 2022, 17, e0275432. [Google Scholar] [CrossRef]
- Sondergaard, T.E.; Fredborg, M.; Oppenhagen Christensen, A.M.; Damsgaard, S.K.; Kramer, N.F.; Giese, H.; Sorensen, J.L. Fast Screening of Antibacterial Compounds from Fusaria. Toxins 2016, 8, 355. [Google Scholar] [CrossRef]
- Lopes, F.C.; Tichota, D.M.; Sauter, I.P.; Meira, S.M.M.; Segalin, J.; Rott, M.B.; Rios, A.O.; Brandelli, A. Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues. Ann. Microbiol. 2012, 63, 771–778. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Elkhayat, E.S.; Mohamed, G.A.A.; Fat’hi, S.M.; Ross, S.A. Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem. Biophys. Res. Commun. 2016, 479, 211–216. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Chandrika, M.; Yashavantha Rao, H.C.; Kamalraj, S.; Jayabaskaran, C.; Pugazhendhi, A. Molecular profiling of marine endophytic fungi from green algae: Assessment of antibacterial and anticancer activities. Process Biochem. 2020, 96, 11–20. [Google Scholar] [CrossRef]
- Visamsetti, A.; Ramachandran, S.S.; Kandasamy, D. Penicillium chrysogenum DSOA associated with marine sponge (Tedania anhelans) exhibit antimycobacterial activity. Microbiol. Res. 2016, 185, 55–60. [Google Scholar] [CrossRef]
- El-Sayed, H.; Hamada, M.A.; Elhenawy, A.A.; Sonbol, H.; Abdelsalam, A. Acetylcholine Esterase Inhibitory Effect, Antimicrobial, Antioxidant, Metabolomic Profiling, and an In Silico Study of Non-Polar Extract of The Halotolerant Marine Fungus Penicillium chrysogenum MZ945518. Microorganisms 2023, 11, 769. [Google Scholar] [CrossRef]
- Gao, S.S.; Li, X.M.; Du, F.Y.; Li, C.S.; Proksch, P.; Wang, B.G. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar. Drugs 2010, 9, 59–70. [Google Scholar] [CrossRef]
- Ajito, K.; Shimizu, A.; Shibahara, S.; Hara, O.; Kurihara, K.; Araake, M.; Tohyama, K.; Miyadoh, S.; Omoto, S.; Inouye, S. Cladinose analogues of sixteen-membered macrolide antibiotics. V. Preparation of unsubstituted L-cladinose analogues: Effect of methylation of a 3″-hydroxyl group on the bioactivity. J. Antibiot. 1997, 50, 366–369. [Google Scholar] [CrossRef]
- Kurihara, K.; Kikuchi, N.; Ajito, K. Cladinose analogues of sixteen-membered macrolide antibiotics. III. Efficient synthesis of 4-O-alkyl-L-cladinose analogues: Improved antibacterial activities compatible with pharmacokinetics. J. Antibiot. 1997, 50, 32–44. [Google Scholar] [CrossRef]
- Markoglou, A.N.; Ziogas, B.N. Genetic control of resistance to tridemorph inustilago maydis. Phytoparasitica 2000, 28, 349–360. [Google Scholar] [CrossRef]
- Zamora, T.; Pozo, O.J.; Lopez, F.J.; Hernandez, F. Determination of tridemorph and other fungicide residues in fruit samples by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2004, 1045, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Kalam, A.; Banerjee, A.K. Action of the fungicide tridemorph on the glucose, lactate and succinate dehydrogenase activities of some tridemorph-sensitive and -resistant bacteria. Pestic. Sci. 2006, 43, 41–45. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Cai, Y.-Z.; Xing, J.; Corke, H.; Sun, M. A Potential Antioxidant Resource: Endophytic Fungi from Medicinal Plants. Econ. Bot. 2007, 61, 14–30. [Google Scholar] [CrossRef]
- Lin, X.; Cane, D.E. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor. Mechanism and stereochemistry of the enzymatic formation of epi-isozizaene. J. Am. Chem. Soc. 2009, 131, 6332–6333. [Google Scholar] [CrossRef]
- Huang, M.; Chen, X.; Tian, H.; Sun, B.; Chen, H. Isolation and identification of antibiotic albaflavenone from Dictyophora indusiata (Vent: Pers.) Fischer. J. Chem. Res. 2011, 35, 659–660. [Google Scholar] [CrossRef]
- Moody, S.C.; Zhao, B.; Lei, L.; Nelson, D.R.; Mullins, J.G.; Waterman, M.R.; Kelly, S.L.; Lamb, D.C. Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in streptomycetes. FEBS J. 2012, 279, 1640–1649. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kon, Y.; Abe, H.; Ito, H. Concise total synthesis of albaflavenone utilizing sequential intramolecular aldol condensation: Determination of absolute configuration. Org. Lett. 2014, 16, 6397–6399. [Google Scholar] [CrossRef]
- Yoshioka, M.; Adachi, A.; Sato, Y.; Doke, N.; Kondo, T.; Yoshioka, H. RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre- and post-invasive resistance to potato blight pathogens. Mol. Plant Pathol. 2019, 20, 907–922. [Google Scholar] [CrossRef]
- Sobrinho, A.C.N.; Fontenelle, R.O.d.S.; Souza, E.B.d.; Morais, S.M.d. Antifungal and antioxidant effect of the lachnophyllum ester, isolated from the essential oil of Baccharis trinervis (Lam.) Pers., against dermatophytes fungi. Rev. Bras. Saúde Produção Anim. 2021, 22, e2122542021. [Google Scholar] [CrossRef]
- Ferrer, C.; Malato, O.; Agüera, A.; Fernandez-Alba, A.R. Application of HPLC–TOF-MS and HPLC–QTOF-MS/MS for Pesticide Residues Analysis. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–60. [Google Scholar]
- Hengel, M.J.; Jordan, R.; Maguire, W. Development and validation of a standardized method for the determination of morpholine residues in fruit commodities by liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2014, 62, 3697–3701. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Ding, N.; Jiang, Y.; Zhang, J.; Ma, J.; Chen, X.; Liu, J.; Han, L.; Huang, X. Albaflavenoid, a new tricyclic sesquiterpenoid from Streptomyces violascens. J. Antibiot. 2016, 69, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, G.; Gallo, C.; d’Ippolito, G.; Manzo, E.; Ruocco, N.; Russo, E.; Carotenuto, Y.; Costantini, M.; Zupo, V.; Sardo, A.; et al. UPLC(-)MS/MS Identification of Sterol Sulfates in Marine Diatoms. Mar. Drugs 2018, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, T.; Zhu, Z.J. Multi-dimensional characterization and identification of sterols in untargeted LC-MS analysis using all ion fragmentation technology. Anal. Chim. Acta 2021, 1142, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Velazquez, T.; Gonzalez-Garrido, J.A.; Sanchez-Lombardo, I.; Jimenez-Perez, N.D.C.; Olivares-Corichi, I.M.; Garcia-Sanchez, J.R.; Hernandez-Abreu, O. Untargeted metabolic analysis of Epaltes mexicana by LC-QTOF-MS: Terpenes with activity against human cancer cell lines. Fitoterapia 2024, 179, 106194. [Google Scholar] [CrossRef]
- Radi, M.H.; El-Shiekh, R.A.; Hegab, A.M.; Henry, S.R.; Avula, B.; Katragunta, K.; Khan, I.A.; El-Halawany, A.M.; Abdel-Sattar, E. LC-QToF chemical profiling of Euphorbia grantii Oliv. and its potential to inhibit LPS-induced lung inflammation in rats via the NF-kappaB, CY450P2E1, and P38 MAPK14 pathways. Inflammopharmacology 2024, 32, 461–494. [Google Scholar] [CrossRef]
- Ergüden, B. Phenol group of terpenoids is crucial for antibacterial activity upon ion leakage. Lett. Appl. Microbiol. 2021, 73, 438–445. [Google Scholar] [CrossRef]
- Mili, C. Bioprospecting of endophytes associated with Solanum species: A mini-review. Arch. Microbiol. 2023, 205, 254. [Google Scholar] [CrossRef]
- Bulasag, A.S.; Ashida, A.; Miura, A.; Pring, S.; Kuroyanagi, T.; Camagna, M.; Tanaka, A.; Sato, I.; Chiba, S.; Ojika, M.; et al. Botrytis cinerea detoxifies the sesquiterpenoid phytoalexin rishitin through multiple metabolizing pathways. Fungal Genet. Biol. 2024, 172, 103895. [Google Scholar] [CrossRef]
- Le Floch, G.; Benhamou, N.; Mamaca, E.; Salerno, M.I.; Tirilly, Y.; Rey, P. Characterisation of the early events in atypical tomato root colonization by a biocontrol agent, Pythium oligandrum. Plant Physiol. Biochem. 2005, 43, 1–11. [Google Scholar] [CrossRef]
- Mirzaei, S.; Masumi, S. The Antimicrobial Activity of Endophytic Fungi Isolated from Thymus spp. J. Med. Plants By-Prod. 2023, 1, 117–124. [Google Scholar] [CrossRef]
- Sayed, M.A.; Ali, E.A.; Ahmed, A.A.A.; Hamed, M.R. Antimicrobial activity of Thymus vulgaris L. and associated endophytes extracts. Egypt. J. Exp. Biol. 2020, 16, 141–147. [Google Scholar] [CrossRef]
- Saghrouchni, H.; El Barnossi, A.; Salamatullah, A.M.; Bourhia, M.; Alzahrani, A.; Alkaltham, M.S.; Alyahya, H.K.; Tahiri, N.E.; Imtara, H.; Var, I. Carvacrol: A Promising Environmentally Friendly Agent to Fight Seeds Damping-Off Diseases Induced by Fungal Species. Agronomy 2021, 11, 985. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Wijesundara, N.M.; Lee, S.F.; Cheng, Z.; Davidson, R.; Rupasinghe, H.P.V. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci. Rep. 2021, 11, 1487. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Zaghlol, G.M.; El-Garawani, I.M.; Ahmed, E.F.; Rateb, M.E.; Abdel Moneim, A.E. Ganoderma applanatum secondary metabolites induced apoptosis through different pathways: In vivo and in vitro anticancer studies. Biomed. Pharmacother. 2018, 101, 264–277. [Google Scholar] [CrossRef]
- Dos-Reis, C.M.; da Rosa, B.V.; da Rosa, G.P.; do Carmo, G.; Morandini, L.M.B.; Ugalde, G.A.; Kuhn, K.R.; Morel, A.F.; Jahn, S.L.; Kuhn, R.C. Antifungal and antibacterial activity of extracts produced from Diaporthe schini. J. Biotechnol. 2019, 294, 30–37. [Google Scholar] [CrossRef]
- Deng, Q.; Li, G.; Sun, M.; Yang, X.; Xu, J. A new antimicrobial sesquiterpene isolated from endophytic fungus Cytospora sp. from the Chinese mangrove plant Ceriops tagal. Nat. Prod. Res. 2020, 34, 1404–1408. [Google Scholar] [CrossRef]
- Eshboev, F.; Mamadalieva, N.; Nazarov, P.A.; Hussain, H.; Katanaev, V.; Egamberdieva, D.; Azimova, S. Antimicrobial Action Mechanisms of Natural Compounds Isolated from Endophytic Microorganisms. Antibiotics 2024, 13, 271. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, J.; Liu, M.H.; Zhao, L. Progress. on Terpenoids with Biological Activities Produced by Plant Endophytic Fungi in China Between 2017 and 2019. Nat. Product. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Naveen, K.V.; Saravanakumar, K.; Sathiyaseelan, A.; Wang, M.H. Comparative Analysis of the Antioxidant, Antidiabetic, Antibacterial, Cytoprotective Potential and Metabolite Profile of Two Endophytic penicillium spp. Antioxidants 2023, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.R.M.; Omar, A.M.; Bagalagel, A.A.; Diri, R.M.; Noor, A.O.; Almasri, D.M.; Mohamed, S.G.A.; Mohamed, G.A. Thiophenes-Naturally Occurring Plant Metabolites: Biological Activities and In Silico Evaluation of Their Potential as Cathepsin D Inhibitors. Plants 2022, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- George, T.K.; Tomy, A.; Jisha, M.S. Molecular Docking Study of Bioactive Compounds of Withania somnifera Extract Against Topoisomerase IV Type B. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 90, 381–390. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wan, D.; Ding, J.; He, S.; Zhang, Q.; Wang, X.; Yuan, Y.; Lu, Y.; Ding, C.Z.; Lynch, A.S.; et al. Synergistic Activity of Nitroimidazole-Oxazolidinone Conjugates against Anaerobic Bacteria. Molecules 2020, 25, 2431. [Google Scholar] [CrossRef]
- Vinaya, K.; Kavitha, R.; Ananda Kumar, C.S.; Benaka Prasad, S.B.; Chandrappa, S.; Deepak, S.A.; Nanjunda Swamy, S.; Umesha, S.; Rangappa, K.S. Synthesis and antimicrobial activity of 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl)propyl)piperidine derivatives against pathogens of Lycopersicon esculentum: A structure-activity evaluation study. Arch. Pharm. Res. 2009, 32, 33–41. [Google Scholar] [CrossRef]
- Zaki, R.M.; Kamal El-Dean, A.M.; Radwan, S.M.; Sayed, A.S.A. Synthesis and Antimicrobial Activity of Novel Piperidinyl Tetrahydrothieno[2,3-c]isoquinolines and Related Heterocycles. ACS Omega 2020, 5, 252–264. [Google Scholar] [CrossRef]
- Oliveira, M.T.; Teixeira, A.M.; Cassiano, C.J.; Sena, D.M., Jr.; Coutinho, H.D.; Menezes, I.R.; Figueredo, F.G.; Silva, L.E.; Toledo, T.A.; Bento, R.R. Modulation of the antibiotic activity against multidrug resistant strains of 4-(phenylsulfonyl) morpholine. Saudi J. Biol. Sci. 2016, 23, 34–38. [Google Scholar] [CrossRef]
- Subik, J.; Takacsova, G.; Psenak, M.; Devinsky, F. Antimicrobial activity of amine oxides: Mode of action and structure-activity correlation. Antimicrob. Agents Chemother. 1977, 12, 139–146. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, X.; Sun, Y.; Li, Y.; Wang, Y.; Jiang, Y.; Shao, H.; Yong, B.; Li, H.; Tao, X. Comparative Metabolomic Profiling of Compatible and Incompatible Interactions Between Potato and Phytophthora infestans. Front. Microbiol. 2022, 13, 857160. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S.; Sharma, S. Decoding the Plant Growth Promotion and Antagonistic Potential of Bacterial Endophytes From Ocimum sanctum Linn. Against Root Rot Pathogen fusarium oxysporum in Pisum sativum. Front. Plant Sci. 2022, 13, 813686. [Google Scholar] [CrossRef]
- Ashitha, A.; Radhakrishnan, E.K.R.; Jyothis, J. Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J. Biotechnol. 2020, 313, 1–10. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, M.; Zhao, P.; Quan, C.; Li, X.; Wang, L.; Gao, W.; Li, J.; Zu, X.; Fu, D.; et al. Gram-negative bacilli-derived peptide antibiotics developed since 2000. Biotechnol. Lett. 2018, 40, 1271–1287. [Google Scholar] [CrossRef] [PubMed]
- Jothinathan, D.; Rathinavel, L.; Mylsamy, P.; Omine, K. Novel Antimicrobial Compounds from Indigenous Plants and Microbes: An Imminent Resource. In Nanostructures for Antimicrobial and Antibiofilm Applications; Nanotechnology in the Life Sciences; Springer: Berlin/Heidelberg, Germany, 2020; pp. 101–126. [Google Scholar]
- Agus, S.; Ietje, W.; Mohamad, R.; Lina-Noviyanti, S.; Silmi, M. LC-HRMS Metabolite Profiling of Lunasia amara Stem Bark and In Silico Study in Breast Cancer Receptors. Indones. J. Pharm. 2023, 35, 116–125. [Google Scholar] [CrossRef]
- Larran, S.; Perelló, A.; Simón, M.R.; Moreno, V. The endophytic fungi from wheat (Triticum aestivum L.). World J. Microbiol. Biotechnol. 2006, 23, 565–572. [Google Scholar] [CrossRef]
- Katoch, M.; Phull, S.; Vaid, S.; Singh, S. Diversity, Phylogeny, anticancer and antimicrobial potential of fungal endophytes associated with Monarda citriodora L. BMC Microbiol. 2017, 17, 44. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Cenis, J.L. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res. 1992, 20, 2380. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. In PCR Protocols; Academic Press, Inc.: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Marcellano, J.P.; Collanto, A.S.; Fuentes, R.G. Antibacterial Activity of Endophytic Fungi Isolated from the Bark of Cinnamomum mercadoi. Pharmacogn. J. 2017, 9, 405–409. [Google Scholar] [CrossRef]
- Teh, C.H.; Nazni, W.A.; Nurulhusna, A.H.; Norazah, A.; Lee, H.L. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiol. 2017, 17, 36. [Google Scholar] [CrossRef]
- R-Core Team. R: A Language and Environment for Statistical Computing, 4.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Kolde, R. Pheatmap: Pretty Heatmaps, Version 1.0.12; CRAN; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
Accession No. | Fungal Endophyte | Stem | Leaves | Fruits | Total Secondary Metabolites |
---|---|---|---|---|---|
MF928767 | Paracamarosporium leucadendri | − | − | + | 29 |
MF928763 | Fusarium sp. | − | + | + | 23 |
MF928764 | Penicillium chrysogenum | − | + | + | 11 |
S/N | Compound Name | Retention Time | m/z | Peak Area | Chemical Formula |
---|---|---|---|---|---|
1 | N-Methyl-l-proline (peptide) | 1.45 | 130.086 | 32,280 | C6H11N1O2 |
2 | Indan-1-ol | 1.21 | 135.08 | 24,201 | C9H10O1 |
3 | Fecosterol | 4.89 | 399.365 | 11,312 | C28H46O1 |
4 | Phyllanthin | 4.9 | 419.246 | 28,061 | C24H34O6 |
5 | Glutathione amide disulfide | 4.9 | 611.187 | 28,061 | C20H34N8O10S2 |
6 | Tris (2,4-ditert-butyl phenyl) phosphate | 10.39 | 663.455 | 28,061 | C42H63O4P1 |
7 | Irganox 858 | 10.39 | 664.46 | 11,633 | C39H61N5O2S1 |
8 | Aniracetam | 10.65 | 220.098 | 13,235 | C12H13N1O3 |
9 | 9-Octadecenamide, n-butyl- | 10.69 | 338.343 | 13,012 | C22H43N1O1 |
10 | Bicyclo [2.2.1] hept-2-en-7-ol | 11.17 | 111.081 | 33,799 | C7H10O1 |
11 | Bellendine | 11.07 | 206.119 | 33,799 | C12H15N1O2 |
12 | 4-Vinylguaiacol | 11.45 | 151.076 | 116,589 | C9H10O2 |
13 | Caffeine | 11.45 | 195.089 | 116,589 | C8H10N4O2 |
14 | Solavetivone | 11.45 | 219.175 | 116,589 | C15H22O1 |
15 | Dehydrovomifoliol | 11.45 | 223.132 | 116,589 | C13H18O3 |
16 | 5-Hydroxy-alpha-gurjunene | 11.45 | 223.205 | 116,589 | C15H26O1 |
17 | Pirimicarb | 11.45 | 239.15 | 116,589 | C11H18N4O2 |
18 | α-Eleostearic acid | 11.45 | 279.233 | 116,589 | C18H30O2 |
19 | Thiamine acetic acid (vitamin B) | 11.45 | 280.098 | 116,589 | C12H15N4O2S1 |
20 | Xanomeline | 11.45 | 282.161 | 116,589 | C14H23N3O1S1 |
21 | Tridihexethyl | 11.45 | 319.286 | 116,589 | C21H36N1O1 |
22 | Ethyl butylacetylaminopropionate | 11.82 | 216.16 | 54,174 | C11H21N1O3 |
23 | Felbamate | 11.82 | 239.101 | 54,174 | C11H14N2O4 |
24 | L-Cladinose | 3.15 | 177.1117 | 0 | C8H16O4 |
25 | Albaflavenone | 10.65 | 219.1753 | 13,235 | C15H22O1 |
26 | Carvacrol | 11.45 | 151.112 | 116,589 | C10H14O1 |
27 | 6-cis-docosenamide | 11.45 | 338.343 | 116,589 | C22H43N1O1 |
28 | Seiricardine A | 11.82 | 239.1983 | 54,174 | C15H26O2 |
29 | Rishitin | 11.45 | 223.1693 | 116,589 | C14H22O2 |
S/N | Compound Name | Retention Time | m/z | Peak Area | Chemical Formula |
---|---|---|---|---|---|
1 | 3-Aminophenol | 0.67 | 110.7653 | 20,855.62 | C6H7N1O1 |
2 | Aminohydroquinone | 0.68 | 126.0548 | 163,862.47 | C6H7N1O2 |
3 | Benzocaine | 0.76 | 166.0849 | 1325.77 | C9H11N1O2 |
4 | Methyldopa | 0.76 | 212.0923 | 1325.77 | C10H13N1O4 |
5 | Nicotinamide (vitamin B3) | 0.81 | 124.0393 | 102,375.62 | C6H5N1O2 |
6 | Actinidine | 0.84 | 148.1118 | 102,375.62 | C10H13N1 |
7 | 1-phenyl pyridine-1-ium | 0.93 | 157.0892 | 112,684.58 | C11H10N1 |
8 | 2-[tert-butyl(methyl) amino] ethanethiol | 0.98 | 148.1142 | 61,849.06 | C7H17N1S1 |
9 | Zeatin (cytokinins) | 0.98 | 220.1184 | 5196.3 | C10H13N5O1 |
10 | ethyl 4-amino-1H-pyrrole-2-carboxylate | 1.01 | 155.0817 | 231,881.42 | C7H10N2O2 |
11 | Norselegiline | 3.26 | 174.1283 | 10,494.4 | C12H15N1 |
12 | Pifithrin β | 4.81 | 269.1121 | 3,211,781.75 | C16H16N2S1 |
13 | Capsi-amide | 4.81 | 270.2803 | 32,11,781.75 | C17H35N1O1 |
14 | Montanol | 4.81 | 353.2666 | 32,664.74 | C21H36O4 |
15 | 16-methyl-1-morpholin-4-ylheptadecan-1-one | 4.81 | 354.3363 | 32,664.74 | 88.0757 |
16 | 1,4,8,11-tetraethyl-1,4,8,11-tetrazacyclotetradecane | 10.03 | 313.3309 | 2224.51 | C18H40N4 |
17 | Tridemorph | 11.79 | 298.3117 | 41,864.85 | C19H39N1O1 |
18 | Messagenin | 12.16 | 445.3695 | 6640.07 | C29H48O3 |
19 | 3-allylthiophene | 0.81 | 125.0432 | 102,375.62 | C7H8S1 |
20 | 2-nitroimidazo[2,1-b][1,3]oxazole | 1.01 | 154.0243 | 231,881.42 | C5H3N3O3 |
21 | Withasomnine | 4.83 | 185.1073 | 42,543.51 | C12H12N2 |
22 | 1-(4-methyl-1-piperidinyl)-2-tetra decanol | 10.03 | 312.3281 | 2224.51 | C20H41N1O1 |
23 | 4-dodecyl morpholine | 10.03 | 256.2647 | 25,182.35 | C16H33N1O1 |
S/N | Compound Name | Retention Time | m/z | Peak Area | Chemical Formula |
---|---|---|---|---|---|
1 | Metoprolol | 6.41 | 268.1927 | 1627.21 | C15H25N1O3 |
2 | Petromyzonol | 11.24 | 395.3127 | 10,748.93 | C24H42O4 |
3 | 6-Ethylchenodeoxycholic acid | 11.27 | 421.3287 | 5593.51 | C26H44O4 |
4 | Methamphetamine | 11.4 | 150.1276 | 17,864.26 | C10H15N1 |
5 | Phenethylamine | 12.05 | 122.096 | 800.37 | C8H11N1 |
6 | Amphetamine | 13.01 | 136.1117 | 1399.35 | C9H13N1 |
7 | Tubulysin B | 9.87 | 830.4306 | 1840.95 | C42H63N5O10S1 |
8 | Azafrin | 8.71 | 427.2811 | 14,967.18 | C27H38O4 |
9 | Dihydro-beta-erythroidine (nicotine) | 9.45 | 276.1546 | 13,381.62 | C16H21N1O3 |
10 | Ochrolifuanine A | 8.59 | 439.2818 | 19,935 | C29H34N4 |
11 | 1,8-Diazacyclotetradecane-2,9-dione | 3.51 | 227.1753 | 571.73 | C12H22N2O2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogofure, A.G.; Pelo, S.P.; Green, E. Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens. Molecules 2024, 29, 4924. https://doi.org/10.3390/molecules29204924
Ogofure AG, Pelo SP, Green E. Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens. Molecules. 2024; 29(20):4924. https://doi.org/10.3390/molecules29204924
Chicago/Turabian StyleOgofure, Abraham Goodness, Sharon Pauline Pelo, and Ezekiel Green. 2024. "Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens" Molecules 29, no. 20: 4924. https://doi.org/10.3390/molecules29204924
APA StyleOgofure, A. G., Pelo, S. P., & Green, E. (2024). Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens. Molecules, 29(20), 4924. https://doi.org/10.3390/molecules29204924