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Abstract: In recent decades, considerable attention has been focused on the design and development
of surfaces with defined or tunable properties for a wide range of applications and fields. To this
end, self-assembled monolayers (SAMs) of organic compounds offer a unique and straightforward
route of modifying and engineering the surface properties of any substrate. Thus, alkane-based self-
assembled monolayers constitute one of the most extensively studied organic thin-film nanomaterials,
which have found wide applications in antifouling surfaces, the control of wettability or cell adhesion,
sensors, optical devices, corrosion protection, and organic electronics, among many other applications,
some of which have led to their technological transfer to industry. Nevertheless, recently, aromatic-
based SAMs have gained importance as functional components, particularly in molecular electronics,
bioelectronics, sensors, etc., due to their intrinsic electrical conductivity and optical properties,
opening up new perspectives in these fields. However, some key issues affecting device performance
still need to be resolved to ensure their full use and access to novel functionalities such as memory,
sensors, or active layers in optoelectronic devices. In this context, we will present herein recent
advances in π-conjugated systems-based self-assembled monolayers (e.g., push–pull chromophores)
as active layers and their applications.
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1. Introduction

Self-assembly is a ubiquitous phenomenon in nature, in which building units com-
posed of atoms, (bio)molecules, polymers, colloids, or particles are capable of self-organizing
into ordered and/or functional patterns or superstructures [1,2]. Self-assembling proceeds
randomly or directionally and is governed by local interactions (repulsive or attractive
forces) between the monomer units themselves, with or without external direction [3].
Nanoscale self-assembling occurs at interfacial or solution and constitutes the easiest
bottom-up approach [4].

Among these self-assemblies, self-assembled monolayers, classically referred to as
SAMs [5,6], constitute an interesting approach to surface functionalization, fine-tune the
properties of a surface of interest, and are suitable for industry. The concept of SAMs
was first introduced at the liquid–gas interface [7,8] prior to being reported in the late 40s
by Bigelow et al. [9,10], then successively by Sagiv et al. [11] and Nuzzo et al. [12], on
substrates and suggested later for applications by Whitesides et al. [13]. Due to the wide
range of applications of SAMs, the pioneers of the field were awarded in 2022 by the Kavli
prize in nanoscience [14]. SAMs are long-range ordered two-dimensional single-molecular
layers of well-oriented chemisorbed or physiosorbed organic compounds, which assemble
spontaneously on various surfaces in the gas phase or in solution. The compounds used for
the fabrication of SAMs are generally amphiphilic molecules composed of three parts [15]:
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(i) the anchoring or head group, which interacts and binds to the surface; (ii) a spacer,
typically a molecular backbone made of an aliphatic chain or aromatic oligomer imparting
the molecular packing and order; (iii) the end or tail group, which is responsible for the
surface energy, chemistry, and topography of the outer interface [16,17] (Figure 1).
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Figure 1. Amphiphilic self-assembling molecule showing the end group, spacer, and tail group in
interaction with a substrate.

Based on the molecular deposition techniques used, uniform homomolecular or hetero-
molecular SAMs can be obtained at the liquid/liquid, liquid/solid, air/liquid, or air/solid
interfaces with the existence of two monolayer types, namely, the Gibbs and Langmuir
monolayers [18,19]. However, the development and performance of such SAMs can be
hampered by some hurdles. Indeed, the quality and properties of the SAMs depend on
several parameters, among them, the thickness of the monolayer, the molecular orientation
and order, the uniformity and coverage, the chemical composition, the odd–even effects
of the linker [20], electrostatic effects [21], and the thermal and chemical stabilities [22]. In
addition, several factors affect the SAM formation [23], i.e., temperature [24,25], immersion
time [26], solvent [27,28], concentration, humidity, and O2 contents [29,30], and need to be
mastered and controlled to attain the desired properties.

SAMs based on alkanethiols [14,31], alkanesilanes [32], alkanecarboxylates [33], alka-
nephosphonates [34], etc., on metallic or metal oxide [35] substrates have been extensively
studied, both experimentally and theoretically, along with the development of novel
efficient headgroups such as N-heterocyclic carbenes (NHCs) [36,37] or multidentate ad-
sorbates [38]. Indeed, SAMs are versatile and inexpensive surface coatings that have been
used in both static or dynamic ways (by using various stimuli) for a variety of applications
including micro- and nanofabrication [39,40], sensors [41], batteries [42], biological [43],
energy [44], and electronics [45], among many other applications.

Recently, SAMs made from π-conjugated systems have gained wide attention due to
their intrinsic optical and electrical properties, which can be used in molecular electronic
devices, molecular (bio)sensors, bioelectronics, photovoltaics, and so on [46].

For instance, in molecular electronics, these SAMs are commonly used to fine-tune
the work functions of metallic or inorganic electrodes to minimize the energy barriers
for holes, electron injection, or extraction from an active organic layer [47]. Such highly
ordered π-conjugated chromophores are also often encountered in nature and act either as
photon absorbers, electron donors and acceptors (chlorophyll, pheophytins, quinines, etc.),
or as eye photoreceptors in human retinas [48], resulting in efficient photoinduced charge
separation and electron transfer. Thereby, self-assembling π-conjugated chromophores
constitute a key-point in organic nanodevices to improve their properties and operation [49].
The elaboration of SAMs made from organic π-conjugated molecules will follow the same
recipes as described for alkane-based self-assembled monolayers considering additional
parameters that could influence the SAMs, like the dipole effect [50,51], the alkyl spacer
influence between the aromatic backbone and the surface [52], the number of aromatic
rings, and so on.
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P-conjugated systems are versatile organic materials for optoelectronics whose optical
and electrical properties are strongly impacted when self-assembled as thin films [53] and
need to be well controlled and oriented to optimize the performance of the devices in
which they are implemented [54,55]. Among them, push–pull chromophores (referred to
classically as donor–π–bridge-acceptors or D–π–A) are a class of peculiar importance [56]
with various shapes, such as linear, branched, twisted, planar, nonplanar, etc. [57,58],
exhibiting linear and/or nonlinear optical properties and electrical properties that are
useful, for instance, in the design, conception, and manufacture of electronic devices. These
molecules typically consist of an electron-donating (push) unit and an electron-withdrawing
(pull) unit connected through a conjugated bridge (Figure 2).
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The push and pull units create an electronic imbalance, leading to improved charge
transfer and exciton separation, which is crucial for efficient optoelectronic devices. By
carefully designing and modifying the molecular structure of push–pull chromophores,
researchers can tailor their optoelectronic properties for specific applications, aiming for
increased efficiency and performance in devices. Adjusting the strength of the donor and
acceptor units can optimize the HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital) energy levels, affecting the absorption and emission
properties. Extending the conjugated bridge increases the delocalization of electrons, facili-
tating better charge transport and reducing energy loss in the material. Introducing bulky
groups strategically can affect the molecular packing, enhancing solid-state properties and
preventing aggregation-induced quenching fluorescence. Incorporating electron-donating
or electron-withdrawing substituents on the aromatic rings can fine-tune the electronic
properties of the chromophore. Introducing solubilizing groups can enhance the material’s
processability, making it easier to fabricate thin films or coatings for devices. Systematically
modifying the molecular structure based on computational simulations and experimental
results can lead to the identification of optimal structures with improved optoelectronic
properties. However, in most cases, these push–pull chromophores are embedded and
used in their final form in polymeric or composite matrixes (as doped or grafted, poled
or not) [59] and rarely as SAMs. Thus, we will report herein some recent results and
applications dealing with push–pull chromophore-based SAMs and their applications.

2. SAMs from Push–Pull Chromophores for Dye-Sensitized Solar Cell Applications

Push–pull chromophores have been extensively studied in recent years with the aim
of incorporating them into the conception of organic solar cells [60], mainly as donor
materials. Among various solar cell technologies, their use in dye-sensitized solar cells
(DSSCs) has revealed interesting results since such donor–π–acceptor (D–π–A) sensitizers
exhibit strong molar absorption, making it possible to use thin oxide films compatible with
the improvement in the open circuit voltage [61–65]. The operating principle of DSSCs
incorporating push–pull assemblies at inorganic oxide surfaces is depicted in Figure 3,
extracted from the recent article by D’Annibale et al. [66]. Upon light absorption, an electron
is transferred from a p-type semiconducting substrate (valence band, VB) to the donor
group of the dye (D), which becomes excited (D*), and the acceptor moiety withdraws the
electron from the donor through the spacer (step a). The latter both acts as an electron
vehicle and is the seat of charge separation. At last, the acceptor donates the electron to the
oxidized form of the redox mediator (step b).
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For good DSSC operation, it is mandatory that the dyes be grafted onto the inor-
ganic mesoporous semiconductor oxide film in controlled, organized stacks, enabling the
determination of energy alignments and high charge-transfer kinetics to improve light
harvesting [67]. Such grafting as SAMs can be carried out using push–pull with an adequate
anchoring group [68] that could be profitably optimized [69]. As for incorporating such
assemblies within DSSCs, one can cite, for example, the work of Gholamrezaie et al. [70,71],
using π-conjugated quinquethiophene-derivative chromophores. Therefore, it is necessary
to develop the energy-level engineering of chromophores on the metal oxide surface, which
can be achieved by the right design of push–pull chromophores through the nature and
length of the π-bridge groups, together with using various acceptor and donor groups with
different electron affinities. Among the studies on various acceptors, one can cite the work
of Keremane and co-workers [72] (Figure 4), Paul and Sarkar on PCBM-based acceptors
(Phenyl-C61-butyric acid methyl ester) [73], and Mustafa et al. [74] on the theoretical study
of the influence of the acceptor’s nature.
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Figure 4. (a) Molecular design of new D-A dyes PO1-6 whose studied structures with a carboxylic
acid anchoring group and different acceptors are presented in (b). The benchmark reference dye P1 is
shown in (c). Reprinted with permission from reference [72]. Copyright (2024) John Wiley and Sons.
Further permissions related to the material excerpted should be directed to John Wiley and Sons.

Donor nature has also been extensively studied, for instance, with auxiliary methoxy
as a donor, to improve metal-free organic dye performance for DSSCs [75]. Some works
have been devoted to the effect of both donors and π-spacers [76–78] or solely focused on
the latter, for instance, with unconventional helical push–pull, enabling internal charge
transfer and leading to good injection into the conduction band of TiO2 [79], or π-bridge
extension to decrease the gap and widen the light absorption range [80]. Such spectral
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absorption broadening has also been achieved by the co-adsorption of two push–pull
dyes [81]. Moreover, the donor–π-bridge–acceptor (D–π–A) structure represents a conve-
nient configuration for a high charge separation rate on the organic sensitizer. In D–π–A
molecules, intramolecular charge transfer (ICT) occurs efficiently between the donor and
the acceptor parts, and the intramolecular electronic relaxation has been shown to play a
role in the injection process [82]. Improvement in the intramolecular charge transfer rate
is indeed a key issue to improve DSSC efficiency [83,84]. To fulfill the requirement of a
broader spectral response, it is also possible to add an internal electron-withdrawing unit
within some new donor–acceptor–π–acceptor (D–A–π–A) dyes by further grafting benzoth-
iadiazole, benzotriazole, diketopyrrolopyrrole, or quinoxaline to the usual D–π–A structure.
For instance, Demirak et al. [85] worked on novel unsymmetrical push–pull sensitizers
based on triarylamine-substituted quinoxaline push–pull dyes with the aim of improving
the performance of DSSCs. Furthermore, such a strategy can also be completed by the
proper choice of side chains. Indeed, unsymmetrical push–pull porphyrazine has also been
reported by Fernandez-Ariza et al. [86]. With the aim of improving the absorption features
of porphyrins and phthalocyanines, the authors proposed a molecule with a phthalocya-
nine core incorporating a specific design of the peripheral substituents (Figure 5), thus
enabling increased absorption in the red, improved solubility, and the possibility of tuning
the electronic parameters. With such a seminal molecule, they obtained a PCE (power
conversion efficiency) of 3.42% and opened the way for the improvement in panchromatic
light harvesting by properly tuning the peripheral functions.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 25 
 

 

the latter, for instance, with unconventional helical push–pull, enabling internal charge 
transfer and leading to good injection into the conduction band of TiO2 [79], or π-bridge 
extension to decrease the gap and widen the light absorption range [80]. Such spectral 
absorption broadening has also been achieved by the co-adsorption of two push–pull dyes 
[81]. Moreover, the donor–π-bridge–acceptor (D–π–A) structure represents a convenient 
configuration for a high charge separation rate on the organic sensitizer. In D–π–A mole-
cules, intramolecular charge transfer (ICT) occurs efficiently between the donor and the 
acceptor parts, and the intramolecular electronic relaxation has been shown to play a role 
in the injection process [82]. Improvement in the intramolecular charge transfer rate is 
indeed a key issue to improve DSSC efficiency [83,84]. To fulfill the requirement of a 
broader spectral response, it is also possible to add an internal electron-withdrawing unit 
within some new donor–acceptor–π–acceptor (D–A–π–A) dyes by further grafting ben-
zothiadiazole, benzotriazole, diketopyrrolopyrrole, or quinoxaline to the usual D–π–A 
structure. For instance, Demirak et al. [85] worked on novel unsymmetrical push–pull 
sensitizers based on triarylamine-substituted quinoxaline push–pull dyes with the aim of 
improving the performance of DSSCs. Furthermore, such a strategy can also be completed 
by the proper choice of side chains. Indeed, unsymmetrical push–pull porphyrazine has 
also been reported by Fernandez-Ariza et al. [86]. With the aim of improving the absorp-
tion features of porphyrins and phthalocyanines, the authors proposed a molecule with a 
phthalocyanine core incorporating a specific design of the peripheral substituents (Figure 
5), thus enabling increased absorption in the red, improved solubility, and the possibility 
of tuning the electronic parameters. With such a seminal molecule, they obtained a PCE 
(power conversion efficiency) of 3.42% and opened the way for the improvement in pan-
chromatic light harvesting by properly tuning the peripheral functions. 

 
Figure 5. Chemical structures of Pc TT1 and Pz TT112 porphyrazine-based sensitizers and IPCE 
(incident photon-to-current efficiency) measured with TT112. Reprinted with permission from ref-
erence [86]. Copyright (2024) John Wiley and Sons. Further permissions related to the material ex-
cerpted should be directed to John Wiley and Sons. 

In particular, in a more recent work, the authors studied the effect of tuning of the 
electron-donor unit of push–pull porphyrazines [87] (Figure 6), showing its effect on both 
adsorption and electron injection processes, thus highlighting that porphyrazine design 
is a delicate process with a significant effect on the electronic properties of organic dyes 
and therefore on DSSC operation. 

Figure 5. Chemical structures of Pc TT1 and Pz TT112 porphyrazine-based sensitizers and IPCE
(incident photon-to-current efficiency) measured with TT112. Reprinted with permission from
reference [86]. Copyright (2024) John Wiley and Sons. Further permissions related to the material
excerpted should be directed to John Wiley and Sons.

In particular, in a more recent work, the authors studied the effect of tuning of the
electron-donor unit of push–pull porphyrazines [87] (Figure 6), showing its effect on both
adsorption and electron injection processes, thus highlighting that porphyrazine design is
a delicate process with a significant effect on the electronic properties of organic dyes and
therefore on DSSC operation.
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Variations on the push–pull structure have been studied on other several chromophores
such as distyryl boron dipyrromethenes as near-infrared sensitizers [88], exhibiting a wide
absorption range from UV-visible to near-infrared. Interestingly the authors also demon-
strated that the size of the TiO2 nanoparticles is also a parameter to tune according to the
molecular size of the dye to improve the DSSC performance. As seen with the porphyrazine
example, macrocycle-based push–pull chromophores such as phthalocyanines [89–91]
(Figure 7) and porphyrins [92–94] are good candidates for use as organic dyes within
DSSCs and have been extensively studied during the last decades.
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Concerning porphyrins, push–pull-type porphyrin-based dyes have shown the best
results [95–102], and, notably, with such compounds, Grätzel et al. managed to obtain
an efficiency of about 13% [103,104]. Panagiotakis et al. [105] have reported increased
efficiency, with PCE ranging from 5 to 7.6%, using carefully designed zinc porphyrin push–
pull derivatives grafted via cyanoacrylic acid on TiO2. Particularly, they showed, using a
π-conjugated spacer between the chromophore and the anchoring group, enhanced electron
transfer and hindered undesirable aggregation on the TiO2 surface. Cheema et al. [106]
have obtained near-infrared absorption by conjugating the porphyrin to indolizine as
a planar strong electron donor, thus inducing π–π interactions such as head-to-tail dye
aggregation (Figure 8).
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As for phthalocyanines, they exhibit very good photo- and electrochemical stability
and high light-harvesting capability in the red/NIR (near-infrared) spectral regions [89].
Interestingly, the optoelectronic properties of phthalocyanines can be tuned through the
proper choice of the organic substituents around the core, since they have a direct impact
on the HOMO–LUMO energy levels as well as on the electron density, but also by the
metalation nature of the core to reach long-living excited states. As is the case for porphyrin-
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based DSSCs, it is necessary to avoid phthalocyanine aggregation at the oxide surface.
Because phthalocyanines easily exhibit aggregation on titanium surfaces, Milan et al.
studied unsymmetrically substituted push–pull Zn phthalocyanines on original SnO2-
based DSSCs [107].

3. SAMs of Push–Pull Chromophores to Improve Perovskite Solar Cell Performances

Beside DSSCs, which represent the main solar cell type incorporating push–pull
self-assembly, recent works have also been reported with beneficial uses of push–pull
chromophores within perovskite solar cells. Indeed, in addition to energy band alignment
and improvement in electron transfer at the interface, such solar cells undergo a drastic
lack of stability, and push–pull chromophores have been shown to be able to address
all these critical issues. Liu and co-workers have designed an acceptor–donor–acceptor
chromophore as an interfacial organic layer whose push–pull effect promotes the charge
transfer between organic and inorganic layers in 2D perovskite solar cells by lowering
the bandgap of the organic spacer of the perovskite [108]. The push–pull chromophore is
made of dithienyl diketopyrrolopyrrole (DPP-2T) with two ammonium cations attached to
both sides of the DPP unit, thus allowing hydrogen bonds with inorganic [PbI6]4- sheets
within the perovskite cell. Incorporating such DPP-2T push–pull chromophores enables
the improvement of the current (Figure 9) and the performance of the cell with a PCE as
high as 18.6%.
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Still within the use of push–pull chromophores as interfacial layers, the push–pull
nature has also been exploited with layer deposition on top of metal oxides to improve
electron injection from the photoactive absorber to the metal oxide, resulting in the en-
hancement of the device’s photocurrent. For example, Gkini and coworkers [109] have
successfully used a bodypi–porphyrin dyad with this aim but with a spin-coated layer.
Regarding the key issue of passivation and stability improvement in perovskite cells, some
studies have also shown the successful use of push–pull SAMs. For instance, bi-phenyl-
based SAMs have been successfully used recently as an interfacial layer between the ZnO
electron transport layer and CH3NH3PbI3 hybrid perovskite to improve their stability [110],
as shown in Figure 10.
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Figure 10. Interfacial SAM between the ZnO electron transport layer and perovskite (left) and their
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Alagumali and co-workers [111] highlighted the role of push–pull in the passivation of
the defects within perovskite active materials. Indeed, they used push–pull D–π–A organic
small molecules to passivate the undercoordinated Pb2+ defects and to both align the bands
and increase hydrophobicity, which results in the improvement in the solar cell stability by
hindering the moisture effect (Figure 11).
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Still with push–pull compounds attached to the perovskite material, Liu et al. [112]
addressed the passivation issue. With this aim, they used 3D polydendate-complexing
agents to achieve defect passivation and crystal growth modulation. The 3D complexing
agents are phytic acid (PA) and phytate dipotassium (PAD), and the core of the PA material
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is a six-membered carbon ring surrounded by six phosphate groups, which have been
shown to possess 3D structural stability for PA materials. The six branches of the PA
material undergo multiple chemical complexations, which result in 3D skeleton templates
enabling passivate defects and regulating perovskite crystallization. Another example of
passivation is presented in the article by Zhang et al. [113], in which they used polyaromatic
molecules based on naphthalene-1,8-dicarboximide (NMI) (Figure 12) and perylene-3,4-
dicarboximide (PMI) with different molecular dipoles.
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Figure 12. Scheme of the different chemical passivation functions of 4OH-NMI with corresponding
defects in perovskite. Reprinted with permission from reference [113]. Copyright (2024) John Wiley and
Sons. Further permissions related to the material excerpted should be directed to John Wiley and Sons.

It is shown that such push–pull chromophores provide the passivation of defects and,
notably, NMI enables energy band alignment. Particularly, NMI passivation leads to the
reduction in grain boundaries (Figure 13) and defect density by about three times, which
allows for a reduction in the non-radiative recombination rate and for an increase in the
carrier lifetime, thus resulting in an increase of nearly 24% of the perovskite solar cell
efficiency (PCE).
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Figure 13. Thermal admittance spectroscopy images showing the higher grain boundary reductions
for NMI-modified than for PMI-modified perovskite solar cells in comparison to the non-modified
cell (control image). Scanning electron microscopy (SEM) images: (a) control film; (b) 9CN-PMI
-modified film and (c) 4OH-NMI-modified film. The scale is 2 µm. Reprinted with permission from
reference [113]. Copyright (2024) John Wiley and Sons. Further permissions related to the material
excerpted should be directed to John Wiley and Sons.

Moreover, NMI-modified perovskite cells exhibit noticeably higher stability upon
exposure to N2 as well as oxygen and humidity (Figure 14).
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permissions related to the material excerpted should be directed to John Wiley and Sons.

4. SAMs of Push–Pull Chromophores as Dielectric Materials

Self-assembled monolayers of push–pull chromophores are widely used in the design
of self-assembled multilayer nanodielectrics (SANDs). Indeed, the structure of such chro-
mophores promotes the electron transfer from the donor to the acceptor moieties through
the p-conjugated spacer, thus creating a dipole whose strength depends on the nature of
the three different parts of the molecule. Being able to assemble these dipoles oriented in
the same direction using the self-assembled monolayer strategy enables the generation of
dielectric properties in the layers with the dielectric permittivity being higher if the dipoles
are strong and well-oriented. The major applications of these SANDs are in the capacitors
and gate insulators of OFETs (Organic Field Effect Transistors). In the past several years,
Fachetti’s group [114] has been an early leader in the investigation into special types of self-
assembled nanodielectrics (SANDs) grown by depositing an alternating σ (Alk) and π (STB)
molecular layers with an octochlorotrisiloxane-derived capping layer to stabilize/planarize
the assembly and to regenerate a reactive hydroxyl surface for subsequent monolayer
deposition. (Figure 15).

From capacitance measurements at 102 Hz, the authors found that the capacitance
values depend on the constituent molecules. The higher value was obtained for Type II
(710 nF·cm−2), while for Type I and III, the values were 400 and 390 nF·cm−2, respectively.
These results show the importance of the highly polarizable dipolar layer in improving
the dielectric constant k, hence increasing the capacitance, which gives SANDs excellent
insulating properties. These structures were integrated as gate dielectrics in both p-type
and n-type OFETs [115]. The carrier mobilities are comparable to OFETs obtained with
SiO2 dielectrics but at a lower operating voltage, allowing for a reduction in the power
consumption of the device.

Several groups have shown that the turn-on characteristics of Organic Thin-Film
Transistors (OTFTs) are related to the dipole moment of the molecule used in the SAM.
The permanent dipole feature of push–pull chromophores well-oriented in the SAM on
the surface generates the formation of an electrostatic potential, which modulates the
densities of carrier charges in the semiconductor channel [116–118]. In 2012, Salinas et al.
described and correlated the dipole moment of SAM molecules with the threshold voltage of
OTFTs [119]. They investigated a set of functionalized n-alkane phosphonic acid molecules
with various dipole moments that was deposited on a thin aluminum oxide (Al2O3) layer
to form a hybrid gate dielectric. They showed that the Vth is shifted from negative to
positive values with the increasing dipole moment of the SAM molecule. Although it was
demonstrated that the polarization of the SAM can play an important role in the charge
injection into the channel and can therefore impact the Vth, other parameters like charge
trapping or impurities can also affect it. An optimum interface between dielectric and
semiconductor is fundamental for efficient device function.
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Figure 15. Schematic of three different self-assembly of nanodielectrics (I–III) on highly n-type doped
Si(100) wafers with a 1.5 nm native oxide or smooth ITO as substrate/gate electrodes. Nanodielectric
layers were sequentially deposited from solutions of silane precursors Alk, Stb, or Cap (conditions
were as follow i: 5 mM Alk in dry toluene at 0 ◦C in N2 for 1h; ii: 34 mM Cap in dry pentane
at room temperature in N2 for 25 min.; or iii: 10 mM Stb in dry tetrahydrofuran at 60 ◦C in N2

for 15 min. followed by hydrolysis with acetone-H2O solution). Reprinted with permission from
reference [114]. Copyright (2024) National Academy of Sciences. Further permissions related to the
material excerpted should be directed to National Academy of Sciences.

A major part of a SAND studied in the literature was composed of an alternating
monolayer of polarized molecules such as phosphonic acid derivatives of stilbazolium salts
and high-k dielectric metal oxide (ZnO2; HfOx) deposited on a metal or semiconductor
substrate. These organic–inorganic assemblies provide high gate capacitances, lower gate
leakage currents than inorganic film, limited trapped charges, and chemical and thermal
stability, as discussed below.

SAND fabrication requires annealing, and such thermal annealing limits SAND com-
patibility with many plastic or biocompatible substrates and restricts applications such
as in biointegrated electronics. This is associated with the densification of the metal ox-
ide layer. In this contribution, the study of the growth, nano structural, and dielectric
properties as well as their implementation into the TFTs of zirconium oxide-based SANDs
self-assembled using UV radiation processing to make a ZrOx thin film was carried out by
Huang et al. [120]. The very high UV photon decomposes the metal oxide precursor and
significantly densifies the film (vide infra) [121].

The assembly of the PAE (4-[[4-[bis(2-hydroxyethyl)amino]phenyl]diazenyl]-1-[4-
(diethoxyphosphoryl) benzyl]pyridinium bromide) layers between the two ZrOx is known
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to enhance the stack orientational stability and durability (Figure 16) [115]. To further en-
hance the insulating properties, the repetition of the PAE-ZrOx bilayer (the self-assembling
of PAE in methanol and the UV irradiation of ZrOx) deposition n times achieves the
fabrication of (Zr-SAND)n superlattices, where n = 1 to 4 (Figure 16b).
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Figure 16. (a) Schematic representation of ZrOx film fabrication by UV irradiation. (b) Fabrication
procedure for UV-densified zirconia self-assembled nanodielectric (UVD-Zr-SAND)n multilayers and
molecular structure of the PEI organic component of SAND. (c) Absorbance spectra of a primer-ZrOx-
PAE film without the ZrOx capping layer before and after irradiation. Reprinted with permission
from reference [120]. Copyright (2024) American Chemical Society. Further permissions related to
the material excerpted should be directed to American Chemical Society.

An important question in this fabrication process is whether the stilbazolium unit of the
PAE layer is affected by exposure to strong UV irradiation. The data from optical absorption
evolution suggest that the overlying ZrOx layer stabilizes the PEA layer against UV damage,
likely because PAE is not only sandwiched between oxide layers but also chemically locked
onto them by the chemistry of the chromophore head and tail. Furthermore, in this way, the
PAE layer is also essentially encapsulated and protected from ambient air. The XPS spectra
argue that oxide precursor decomposition by UV irradiation is more effective than thermal
annealing. The data indicate that upon UV exposure, the ZrOx films become thinner and
plausibly denser.

The new UV-irradiated Zr-SANDs (UVD-ZrSANDs) were imaged by AFM to quan-
tify their surface characteristics. All AFM images are essentially featureless, and such
exceptionally smooth surfaces are ideal for the fabrication of back-gated transistor de-
vices where even moderate interface roughness can detrimentally affect TFT properties,
such as carrier mobility, and illustrate the precise level of control afforded by the present
processing methodology. MIS (metal-insulator-semiconductor) sandwich structures
containing (UVD-ZrSAND)n layers were fabricated. The results indicate that combining
UV-irradiated ZrOx and PAE at room temperature is an efficient route to replace the
conventional thermal processing method, thereby realizing high-performance SAND
dielectric layers at room temperature.

The molecular dipolar orientation affects the thin-film transistor (TFT) threshold and
turn-on voltages for devices based on either p-channel pentacene or n-channel copper
perfluorophthalocyanine.

Inverted SANDs are made from inverted PAE units, namely IPAE (Figure 17) [122],
which affects the principal OTFT parameters relevant to circuit design and fabrication. Note
that although the π-conjugated azastilbazolium cores of PAE and IPAE are identical, there
are minor differences in the structures such as a larger distance between the phenylphos-
phonic acid portion and the core (one atom in PAE and two atoms in IPAE) and, more
evidently, two hydroxylethyl fragments in the latter versus one in the former structure.
However, the hydroxyethyl group is not the anchoring point of the chromophore to the
surface but is simply used to achieve good chemical adhesion to the overlying ZrOx layer.
More importantly, it does not drive the self-assembly process, as judged from the kinetics
of PAE/IPAE absorption, which are governed by the phosphonic acid fragment and are
identical for the two systems.
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Figure 17. Dielectric stacks comprising four-chromophore/ZrOx layers on top of the ZrOx (p-ZrOx)
primer film. (a) Conventional Zr-SAND with a phosphonate π-electron (PAE) unit. (b) Inverted
IZr-SAND with an inverted PAE (IPAE) π-unit. Reprinted with permission from reference [122].
Copyright (2024) American Chemical Society. Further permissions related to the material excerpted
should be directed to American Chemical Society.

Even if the main structure of the push–pull chromophore is the pyridinium (+) and
aromatic amine (the two different anchors have different impacts on the electronic density
along the molecular backbone. The phosphonic acid is electron-withdrawing and aliphatic
alcohol is electron-donating. Thus, the push–pull characteristic is more significant in the
case of the phosphoric acid being connected to pyridinium and the aliphatic alcohol being
connected to the aromatic amine (as is the case of PAE). And for IPAE, the hypsochromic
shift is due to the diminished intrinsic electric dipole strength inside the molecule. Specifi-
cally, Zr–SAND shifts the threshold and turn-on voltages to more positive values, whereas
IZr–SAND shifts them in the opposite direction. Capping these SANDs with –SiMe3
groups enhances the effect, affording a 1.3 V difference in turn-on voltage for IZr–SAND vs.
Zr–SAND-gated organic TFTs. Such tunability should facilitate the engineering of more
complex circuits. This type of junction metal/SAM/dielectric can also be used to modulate
the interface thermal conductance.

Lu et al. [123] demonstrated that by using PAE or IPAE chromophores and mixtures
of the two as organic linkers between Au and SiO2 thin films, the interface thermal conduc-
tance of the molecular junction can be tuned based on the relative density of the PAE and
IPAE chromophores. The PAE chromophore has two CH2CH2OH terminal groups com-
pared to one for the IPAE, and these terminal groups control the weak hydrogen bonding
between the organic molecule and the Au film. The transition from PAE to IPAE SAMs leads
to a 20% decrease in the cross-plane thermal conductance of the junction. Furthermore,
the thermal conductance of the mixed PAE–IPAE SAMs (50%:50% molar ratio) is close to a
linear combination of the PAE and IPAE SAMs, suggesting that the chromophores act as
independent channels for heat conduction.

In the SAND-n samples, on the other hand, we predict that the conductance of the
PAE–ZrO2 contact is enhanced compared to the conductance of the Au–PAE–SiO2 contacts,
possibly due to a stronger chemical affinity between the phosphonic acid headgroup and
ZrO2 compared to SiO2 in addition to the stronger adhesion between the hydroxylate tail
group with ZrO2 versus Au. Although the cross-plane thermal conductance of the SAND-n
decreases monotonically with an increasing number of PAE–ZrO2 layers, the cross-plane
thermal conductivity increases with n. Heat buildup at the organic/inorganic interfaces
in the SAND-n resulting from the low thermal conductivity of the ZrO2 layers and the
interface thermal resistance at the PAE–ZrO2 interface can lead to increased temperatures
in these films beyond their suitable operational limits, leading to thermoelastic strain and
the reconfiguration of the PAE molecules.
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A new hafnium oxide–organic self-assembled nanodielectric (Hf-SAND) material con-
sisting of regular, alternating π-electron layers of 4-[4-[bis(2-hydroxyethyl)amino]phenyl]
diazenyl]-1-[4-(diethoxyphosphoryl) benzyl]pyridinium bromide) and HfO2 nanolayers
is reported in [124]. The goal of this research is to develop enhanced-performance hybrid
superlattice dielectrics using alternative oxides as the SAND oxide component. The mo-
tivation for extending to hafnia is based on reports indicating the differential affinity of
phosphonic acids for various oxides versus ZrO2, along with HfO2 thermodynamic and
surface chemical differences that may beneficially affect the dielectric properties at low
process temperatures [125].

Figure 18 shows the fabrication scheme for the new Hf-SAND-n films. Multilayer
variants can be prepared by repeating the indicated self-assembly steps in an iterative
fashion, where the n index indicates the number of π-electron/HfOx bilayers grown on top
of the initial HfOx priming layer. The resulting HfOx/π-electron bilayer is then “capped”
with a second layer of HfOx by spin-coating and baking. This process regenerates the metal
oxide surface for additional layers (if desired) of phosphonic acid PAE SAM to initiate the
next nanodielectric repeat unit.
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Figure 18. (a) Solution-based Hf-SAND self-assembly procedure employed in this study. (b) Schematic
of the various Hf-SAND multilayers produced including the corresponding X-ray reflectivity-derived
thicknesses (Hf-SAND-1, -4) and estimated thicknesses (HfSAND-2, -3). Reprinted with permission
from reference [124]. Copyright (2024) American Chemical Society. Further permissions related to the
material excerpted should be directed to American Chemical Society.

Hf-SAND-n variants ranging from one to four bilayers (Hf-SAND-1∼4) were imaged
by AFM to quantify the surface roughness, conformality, and contiguity. These films
exhibited RMS (Root Mean Square) roughness values ranging from 1.3 Å for a single layer
to 1.7 Å for the four-layer variant, highlighting a negligible additional roughness compared
to the native Si oxide surface [126]. This modest increase in roughness is consistent with the
deposition of additional dielectric layers. The exceptionally smooth surfaces are ideal for
the fabrication of back-gated transistor devices where even moderate interface roughness
can detrimentally affect TFT properties [127]. To analyze the elemental and chemical
composition of the completed Hf-SAND multilayers, XPS was employed. It was concluded
that the O 1s signal observed after the present 150 ◦C processing is qualitatively like the
metal oxide spectra of samples processed at much higher temperatures (300 ◦C) [128].

In all electronic circuits, it is critical to limit TFT gate dielectric leakage currents for ef-
ficient switching and to minimize power consumption during device operation. In the case
of the present capacitor structures, Hf-SAND-n dielectric layers’ leakage is several orders of
magnitude lower than that of native SiO2 capacitors (1 A/cm2 at±2 MV/cm) and is compa-
rable to previous reports utilizing either solution phase self-assembly or vacuum deposition
dielectric growth techniques, such as ALD [129], which typically afford optimized leakage
current densities of∼10−8 A/cm2 or less. The thicker, multilayer Hf-SAND variants exhibit
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significantly lower electric field normalized leakages, which should allow larger voltage
biasing windows, useful for several transistor applications. A single layer of Hf-SAND
can achieve a capacitance density greater than 1 µF/cm2 (1.1 µF/cm2 measured) versus
0.75 µF/cm2 for a single layer of Zr-SAND and 0.71 µF/cm2 for the silane-based SAND
type II structure reported in the literature [114]. This represents a capacitance enhancement
of nearly 50% over current-generation SAND materials and enables microfarad capacitance
densities for the first time from a solid-state SAM–metal oxide hybrid dielectric, which
is processable at low temperatures in an ambient atmosphere. In the literature, a study
using ZrP as the solid support for the PAE SAM showed 700 nF/cm2 for 1p-SAND and
520 nF/cm2 for 2p-SAND in the accumulation regime (0 to +1.0 V). Figure 19 graphically
illustrates Hf-SAND dielectric trends in terms of capacitance density versus the bilayer n
number, inverse capacitance versus n, EOT, and the overall dielectric permittivity (k) of
Hf-SAND versus thickness. Also note that as n increases, the overall dielectric constant
(keff) also increases. This implies that the PAE layer, which is the majority component in
subsequent layers, has a larger k than that of the inorganic oxide. This supports the conclu-
sion of Yoon et al. [114] that the stilbazolium group has very high permittivity, generally
greater than what can normally be achieved with low-temperature sol–gel oxides.
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of capacitance density versus Hf SAND layer number n. (b) Inverse capacitance versus layer number
linear relationship. (c) Increasing effective dielectric constant keff versus layer number n. (d) EOT
versus layer number n. Reprinted with permission from reference [124]. Copyright (2024) American
Chemical Society. Further permissions related to the material excerpted should be directed to
American Chemical Society.

Recently, this type of SAND has been deposited on an IGZO semiconductor as the under-
lying channel layer. This device exhibits impressive electron mobility (µsat = 19.4 cm2 V−1 s−1)
and low threshold voltage (Vth = 0.83 V) compared to a similar device without a push–pull
layer combined with Hf oxide [130].
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5. Various Electrical and Photonic Properties Generated by Push–Pull
Chromophore Assemblies

The ordered assembly of push–pull chromophores at the surface is mandatory to
settle the expected right functionalization property. Obviously, the nature of the linker
between the chromophore and the surface plays a key-role in the organization. Hupfer and
coworkers [131] have studied the role of aryl versus alkyl linker on the supramolecular
structure and the optoelectronic properties of tripodal push–pull thiazoles. Despite its
more insulating property, the alkyl linker has been found to give higher conductivity to the
assembly, presumably because it promotes more degrees of freedom, enabling supramolec-
ular rearrangement upon electrical measurement. There are very few studies on push–pull
electrical properties within single push–pull molecule thick junctions [132]. Some works
dealing with single push–pull junctions are noticeable, such as the use of mechanically
controlled break junction to study the electrical conductance modification activated by an
external electric field, such as resonance features with oligo(phenyleneethynylene) wires
with donor–acceptor substitution on the central ring [133], or the electrical bistability of FeII-
bis-terpyridine push–pull complexes activated by an external electric field which triggers a
spin crossover transition [134] (Figure 20).
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In the literature, self-assembled push–pull chromophores are mainly used to form
supramolecular ordered layers. For instance, Li et al. [135] have processed the layer-by-layer
stacking of self-assembled push–pull derivatives to form 2D organic crystals by layering
amphiphilic-like stacking with alternating attractive layers (AL) and repulsive layers (RL)
to build supramolecular “push–pull” assemblies within a liquid surface-assisted solution
self-assembly strategy (Figure 21). A monolayer (~1.5 nm thick) is made of two outside RLs
and a sandwiched AL with such high packing density that, interestingly, the stacks exhibit
outstanding photoelectric integrated properties, with high mobility, a high crystalline state,
and superior deep-blue laser characteristics.
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Organization-dependent photoelectric properties have also been studied on inter-
molecular charge transfer push–pull derivatives, such as strong dithiole–nitrofluorene
push–pull dyads [136]. On such dyad assemblies controlled by symmetrical or asymmetri-
cal dipole–dipole interaction, the authors have reported aggregation-induced emission and
particularly the red-emitting behavior of the well-formed hierarchical micro- and nanostruc-
tures, which could find interest in OLEDs. Aggregation-induced emission enhancement
and strong intermolecular charge transfer have also been used within a solution-processed
non-doped orange-red-emitting multifunctional organic fluorophore made of two terminal
attachments of a push–pull moiety separated by a biphenyl free rotor and its copolymers
(Figure 22) [137]. Still controlling the interaction, Kim and co-workers have developed
a 2D single-crystal down to two monolayers of (2E,2′E)-3,3′-(2,5-difluoro-1,4-phenylene)
bis (2-(5-(4-(trifluoromethyl)phenyl) thiophen-2-yl)acrylonitrile), which exhibit field-effect
electron mobility and photoresponsivity of 3.6 × 103 A W−1 under green-light-emitting
diode irradiation [138]. Such results constitute the first example of green-sensitive 2D
organic phototransistors. All these studies point out the role of the organization within
self-assembled push–pull multilayers that could be profitably further developed within a
self-assembled monolayer strategy.
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BPPTA under irradiation at ~360 nm. Reprinted with permission from reference [137]. Copyright
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directed to the Royal Society of Chemistry.



Molecules 2024, 29, 559 19 of 25

6. Conclusions

In this paper, we have reviewed the beneficial use of organized layers of push–pull
chromophores to generate photoelectrical and electrical properties, mainly focusing on the
self-assembled monolayer strategy to arrange push–pull assemblies. Regarding electrical
properties, self-assembled monolayers have mostly been devoted to high-k dielectric thin
layers for possible applications in nanoelectronic devices such as nanotransistors. Push–
pull assemblies have also been extensively studied for improving DSSC and perovskite
solar cell operation. Within DSSC push–pull assemblies, they could behave as efficient
sensitizers, whereas for perovskite solar cells, they have been shown to be able to address
the critical issues of energy band alignment, improvement in the electron transfer at the
interface, and the increase in stability as a passivating interfacial layer. At last, some other
photo-electrical properties such as high mobility, high crystalline state, superior deep-blue
laser characteristics, bistability, and aggregation-induced emission, particularly red-emitting
behavior, finding interest in OLEDs or green-sensitive 2D organic phototransistors, have
also been shown to arise from ordered assemblies of push–pull chromophores. In all these
studies, the intrinsic push–pull properties are of crucial importance. Indeed, acceptor, donor,
and spacer natures must be carefully chosen to tune the desired properties. For example, to
achieve high dielectric properties within SANDs, the strength of the acceptor and the donor
must be maximized as well as the spacer electron transfer rate. Within DSSC, the moieties
should promote a strong and wide molar spectral absorption (e.g., using porphyrins and
phthalocyanines) and a high intramolecular charge transfer rate (spacer). Moreover, the
right design of push–pull chromophores through the nature and length of the π-bridge
groups, together with using various acceptor and donor groups with different electron
affinities, enables the development of the energy-level engineering of chromophores on
metal oxide surfaces. In interfacial layers, the moieties are chosen to match the energy
levels. Furthermore, their organization appeared to play a key role in generating the desired
properties. For instance, in DSSC applications, the dyes should be grafted onto the inorganic
mesoporous semiconductor oxide film in controlled organized stacks, thanks to an adequate
anchoring group and avoiding aggregation, in order to allow high charge-transfer kinetics.
For this purpose, various parameters could be optimized such as introducing a flexible
linker between the chromophore and the surface and the use of non-charged push–pull
chromophores in order to promote an organized packed assembly.
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56. Burěs, F. Fundamental aspects of property tuning in push-pull molecules. RSC Adv. 2014, 4, 58826–58851. [CrossRef]
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