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Abstract: The recycling and utilization of waste alkaline zinc manganese batteries (S-AZMB) has
always been a focus of attention in the fields of environment and energy. However, current research
mostly focuses on the recycling of purified materials, while neglecting the direct reuse of waste
batteries. Here, we propose a new concept of preparing thermal catalysts by combining unpurified
S-AZMB with CeO2 by means of ball milling. A series of characterizations and experiments have
confirmed that the combination with S-AZMB not only enhances the thermal catalytic activity of
CeO2 but also significantly enhances the concentration of surface oxygen vacancies. In the toluene
removal experiment, the temperature (T90) at 90% toluene conversions of CeO2@S-AZMB was
180 ◦C, lower than the 220 ◦C for CeO2. More noteworthy is that this S-AZMB-based thermal catalyst
can maintain a good structure and thermal catalytic stability in cyclic catalysis.
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1. Introduction

As a typical indoor and industrial volatile organic compound (VOC) pollutant, the
removal of toluene has become a research hotspot in the field of VOC treatment. Catalytic
oxidation technology has been widely used in the removal of toluene due to its higher
purification efficiency. Catalysts are the core of thermal catalysis technology. At present,
the catalysts that are widely studied mainly include noble metal catalysts and metal oxide
catalysts. Metal oxide catalysts are widely used because of their stable catalytic activity,
high thermal stability, high availability, and low price [1–4]. A large number of studies have
shown that both MnOx and CeO2 have high thermal catalytic activity, and the combination
of MnOx and CeO2 can form a Mn–Ce composite catalyst with higher activity [5–8]. In
recent years, Mn–Ce composite catalysts have attracted extensive attention from researchers
due to their high catalytic activity, and a large number of studies have been carried out
on the disadvantages of Mn–Ce catalyst particles such as their easy agglomeration and
uncontrollable morphology. These previous studies showed that the morphology of these
catalysts can be changed by controlling the preparation method and conditions of the
catalyst and that microsphere catalysts have good catalytic activity among the many
morphologies [9–13].

Waste zinc manganese batteries contain a large amount of manganese and zinc, and
studies have shown that catalysts prepared from waste zinc manganese batteries have
good catalytic activity [14–16]. Gallegos et al. [17,18] used a biological hydrometallurgy
process to recover manganese in the form of oxides from waste alkaline batteries and
studied the catalytic performance of the samples for ethanol and heptane. The results
showed that the catalytic performance of MnOx recovered from waste batteries was higher
than that of MnOx made in the laboratory. Ethanol was completely oxidized at 200 ◦C,
while heptane was completely oxidized at 400 ◦C. The better performance of the MnOx
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catalyst could be due to the higher Mn/Zn ratio and the absence of a crystallized ZnO
phase. Hoseini et al. [19] recovered manganese oxide powder from waste alkaline batteries,
impregnated manganese oxide onto alumina to synthesize composite catalysts, and applied
them to the catalytic oxidation of mixtures of benzene, toluene, and xylene. The results
indicate that the manganese oxide catalyst prepared from waste batteries has good catalytic
performance for toluene and benzene. Kim et al. [20] treated the internal powder of waste
zinc manganese batteries with 0.1 N of sulfuric acid solution to obtain a black mass-based
catalyst, and prepared Pd/SBM (the black mass of spent Zn/Mn alkaline battery) catalysts
using the impregnation method, applying the catalytic oxidation of benzene, toluene, and o-
xylene (BTX). The results indicate that Pd/SBM has good thermal catalytic activity, and the
complete oxidation temperatures of BTX are 310, 260, and 250 ◦C, respectively. In summary,
catalysts prepared from waste zinc manganese batteries exhibit high thermal catalytic
activity towards VOCs, and the performance of manganese-based catalysts prepared from
waste zinc manganese batteries is superior to that of pure manganese-based catalysts
prepared under the same conditions.

At present, most studies on the process of recycling waste zinc manganese batteries
to prepare catalysts introduce a large volume of an acid and alkali solution, resulting in a
large amount of waste liquid and causing secondary pollution. In addition, research mainly
focuses on the recycling and utilization of one or two specific useful substances in waste
zinc manganese battery core powder. Other substances have not been effectively treated,
making it impossible to fully recycle and solve the problem of waste battery pollution.
Therefore, it is imperative to develop a catalyst preparation method without secondary
pollution and to achieve the complete recovery of waste zinc manganese batteries, which
has high research significance and practical value.

In order to fully study the application prospects of catalysts for purifying VOCs in the
preparation of waste zinc manganese batteries, and to better align with the development
trend of VOC treatment technology, this paper conducted research on the preparation
of thermal catalysts by using spent alkaline Zn-Mn batteries (S-AZMB) as raw materials.
Using S-AZMB as the raw material, a composite with self-made microsphere-shaped CeO2
was created using the ball milling method to form CeO2@S-AZMB, and we tested the
catalytic oxidation activity of the catalyst with toluene as the target pollutant. At the
same time, the widely used hydrothermal synthesis method was also used to prepare a
Ce-S-AZMB catalyst, which was compared with the catalyst prepared by means of the
ball milling method. The purpose was to explore more effective and efficient catalyst
preparation methods, providing better ideas and methods for the recovery of waste zinc
manganese batteries and the preparation of catalysts for the degradation of VOCs.

2. Results and Discussion
2.1. Phase and Microstructure

The phase structure of the catalyst was characterized by X-ray diffraction (XRD), and
the results are shown in Figure 1. The main diffraction peak positions of the CeO2 catalyst
(which was synthesized in our laboratory) were 28.36◦, 33.47◦, 47.38◦, 59.17◦, 69.24◦, and
77.31◦, respectively. These diffraction peaks corresponded to the (111), (200), (220), (311),
(222), and (400) crystal planes of the CeO2 cubic fluorite structure in the Fm-3m space
group, respectively [21]. It can be seen from the figure that the diffraction peak position of
the corresponding CeO2 from CeO2@S-AZMB was basically the same as that of the catalyst
CeO2, indicating that the crystal structure of CeO2 was not changed after ball milling. An
obvious MnO2 diffraction peak was found in the catalyst CeO2@S-AZMB. In the catalyst
Ce-S-AZMB, no obvious CeO2 diffraction peak was found, indicating that the addition
of S-AZMB hindered the hydrothermal synthesis of CeO2. Analyzing the reason, it is
possible that CeO2 was reduced to other substances by the carbon from the S-AZMB under
hydrothermal conditions.
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Figure 1. XRD patterns of CeO2@S-AZMB, Ce-S-AZMB, and CeO2.

The specific surface area and pore size distribution of the different catalysts were
characterized via BET, and the results are shown in Figure S1a. It can be seen from Figure 2a
that all catalysts present with obvious type IV isotherm H3 hysteresis loops, indicating
that all samples are mesoporous materials [22]. Figure S1b shows the pore size distribution
of the catalysts. The pore size of CeO2 was mainly distributed around 4 nm and 30 nm.
When combined with S-AZMB, the pore size of CeO2 was occupied and the pore volume
decreased. Compared with Ce-S-AZMB, CeO2, and S-AZMB in CeO2@S-AZMB were more
evenly distributed. The specific surface area, pore volume, and average pore size of the
catalysts are shown in Table 1. The specific surface area of the self-made nanospherical
CeO2 was 143.99 m2/g. The specific surface area of the catalyst CeO2@S-AZMB was only
44.04 m2/g after ball milling with waste battery core powder. The specific surface area of
CeO2-S-AZMB prepared by means of the hydrothermal synthesis method was 92.93 m2/g,
indicating that the hydrothermal synthesis method was more conducive to the synthesis
of catalysts with a large specific surface area than the ball milling method. However,
the distribution of active components in CeO2@S-AZMB was more uniform, which was
conducive to the interaction between active components and improved the catalytic activity.
Compared with CeO2, the specific surface area of CeO2@S-AZMB decreases significantly.
Research experience has shown that the decrease in specific surface area in thermal catalytic
reactions can lead to a decrease in catalytic performance.
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Table 1. Structural properties of catalysts.

Samples Specific Surface Area (m2g−1) Pore Volume (cm3/g) Pore Size (nm)

CeO2@S-AZMB 44.04 0.12 13.63
Ce-S-AZMB 92.93 0.26 11.02

CeO2 143.99 0.29 8.06

The morphology of the catalyst was characterized by scanning electron microscopy
(SEM), and the results are shown in Figure 2. Figure 2d shows the morphology of nanospher-
ical CeO2. It can be seen that spherical CeO2 with a diameter of about 100 nm was
successfully prepared. Figure 2a,b shows the morphology of CeO2@S-AZMB. From the
morphology, it can be observed that ball milling did not change the spherical structure of
CeO2, and the spherical CeO2 and S-AZMB were uniformly mixed, which was consistent
with the BET pore size distribution analysis results. It can be seen from Figure 2c that the
direct hydrothermal reaction of a cerium-based precursor with S-AZMB failed to produce
spherical CeO2, and the product had a rhombic irregular structure.

2.2. Oxidation-Reduction Capacity

The surface composition and chemical state of the catalyst were determined and
analyzed by means of the X-ray photoelectron spectroscopy (XPS) characterization method,
and the C 1s peak (BE = 284.8 eV) was used as the standard for binding energy calibration.
Figure 3a shows the high-resolution XPS spectrum of O 1s. The position of the characteristic
peak of CeO2@S-AZMB shifted significantly in the direction of lower binding energy,
decreasing the activation energy of the reaction, which was conducive to the reaction [23].
Figure 3b shows the high-resolution XPS spectrum of Ce 3d, which can be divided into
seven peaks, of which 1, 2, 3, and 4 are the characteristic peaks of Ce3+ and 5, 6, and 7 are
the characteristic peaks of Ce4+. A large number of studies have shown that the greater
the Ce3+ content in the catalyst, the higher the concentration of oxygen vacancies on its
surface [24–26]. According to our calculations, the Ce3+/(Ce3+ + Ce4+) content of the three
catalysts was 45.65% (CeO2@S-AZMB), 18.15% (Ce-S-AZMB), and 16.5% (CeO2), from
which we could see that the Ce3+ content of CeO2@S-AZMB was the highest, and it could
be inferred that the concentration of oxygen vacancies on its surface was the highest. The
higher the surface oxygen vacancy concentration, the stronger the oxidation performance of
the catalyst [27,28], indicating that the CeO2@S-AZMB had the highest catalytic oxidation
activity. Figure 3d shows the high-resolution XPS spectrum of Mn 2p. Three peaks at 640.7,
641.7, and 642.9 eV can be obtained by means of peak division, which correspond to Mn2+,
Mn3+, and Mn4+ [29,30]. The higher the content of Mn4+, the more favorable it is for the
catalytic oxidation of VOCs. The content of Mn4+ of CeO2@S-AZMB is much higher than
that of Ce-S-AZMB. The higher the content of Mn4+, the stronger the oxidation performance
of the catalyst, further confirming that CeO2@S-AZMB had high catalytic oxidation activity.

A H2-TPR spectrogram was used to characterize the active oxygen content of the
catalyst, and the results are shown in Figure 4. There were three characteristic peaks at
358 ◦C, 440 ◦C, and 659 ◦C, representing the hydrogen consumed by the active oxygen
released during the oxidation-reduction reaction on the catalyst surface. The higher the
consumption of H2, the higher the active oxygen content of the catalyst, contributing to the
increase in the oxidation capacity [23,31]. By comparing the integral values of the hydrogen
consumption peaks of the three catalysts, the hydrogen consumption of CeO2@S-AZMB
was determined to be the highest, much higher than that of spherical CeO2. It can be seen
that the oxidation ability and thermal catalytic oxidation activity of CeO2 were enhanced
after mixing with S-AZMB.
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The distribution of oxygen species on the catalyst surface was characterized by means
of the O2-TPD method, and the results are shown in Figure 5. Generally, the oxygen species
of metal oxides mainly included surface active oxygen, surface lattice oxygen, and bulk
lattice oxygen, of which the surface active oxygen was most easily desorbed from the
catalyst surface. The desorption peak below 500 ◦C belongs to the surface active oxygen
species, the desorption peak at 500 ◦C–700 ◦C belongs to the surface lattice oxygen species,
and the desorption peak above 700 ◦C belongs to the bulk lattice oxygen species [32,33].
It can be clearly observed that CeO2@S-AZMB had strong desorption peaks at 237 ◦C,
311 ◦C, and 433 ◦C, and the intensity was significantly higher than that of CeO2 at low
temperatures, proving that the catalyst CeO2@S-AZMB had more surface active oxygen,
which was consistent with the XPS analysis results and indicated that CeO2@S-AZMB has
higher thermal catalytic oxidation activity.
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The structural difference and oxygen vacancy information of the catalyst were ana-
lyzed and measured by means of Raman spectroscopy. The experimental results are shown
in Figure 6. It can be clearly seen from the figure that the characteristic peak patterns of the
three samples at 324 and 421 cm−1 were similar, and there was no obvious shift, indicating
that the structure of CeO2 had not changed significantly. In addition, it was also observed
that the intensity of the F2g symmetric stretching vibration peak of the three catalysts was
different. The stronger the peak intensity was, the better the long-range order of CeO2 was,
and the higher the crystallinity was. However, it also meant that the higher the disorder of
the Ce-O bond was, the more likely it was to form oxygen vacancies [27,28]. As can be seen
from the figure, CeO2@S-AZMB F2g symmetric stretching vibration peak intensity was
the lowest, proving it could more easily form surface oxygen vacancies and had a higher
surface oxygen vacancy concentration, which was consistent with the analysis results of
XPS and O2-TPD. The increase in surface oxygen vacancy concentration was beneficial
to the increase in oxygen adsorption on the catalyst surface, thus improving the thermal
catalytic oxidation activity of the catalyst. The peak at 643.5 cm−1 of CeO2@S-AZMB
corresponded to the symmetric tensile vibration of v2 (MnO) in the MnO6 octahedron.
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In order to more directly prove the presence of oxygen vacancies in the catalyst, ESR
technology was used to characterize the oxygen vacancy formation in the catalyst, and
the results are shown in Figure 7. It can be clearly observed from the figure that the peak
intensity of oxygen vacancy diffraction of CeO2@S-AZMB was the highest, proving that
the surface oxygen vacancy concentration of CeO2@S-AZMB was the highest, which was
consistent with the results of XPS and Raman characterization. This also more directly
proved that CeO2@S-AZMB had the highest surface oxygen vacancy concentration, which
could further imply that the thermal catalytic oxidation activity of CeO2@S-AZMB was
the highest.
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2.3. Thermal Catalytic Activity and Stability

The thermal catalytic oxidation performance of catalysts was evaluated using toluene
as the pollutant. The thermal catalytic oxidation efficiency of different catalysts for toluene
is shown in Figure 8. It can be observed in the figure that the catalytic oxidation efficiency
of p-toluene of CeO2@S-AZMB is higher than that of CeO2 and Ce-S-AZMB. The T90
(temperature required when the catalytic oxidation efficiency reaches 90%) of CeO2@S-
AZMB was 180 ◦C, lower than 220 ◦C of CeO2 and Ce-S-AZMB. The complete catalytic
oxidation of toluene of CeO2@S-AZMB was achieved at 220 ◦C, which is 40 ◦C lower than
that of CeO2. The thermal catalytic activity of CeO2@S-AZMB was higher than that of CeO2
and Ce-S-AZMB. The reaction of toluene on the surface of the metal oxide catalysts followed
the Mars–Van Krevelen mechanism. Therefore, the activation of oxygen on the surface
of the catalysts was an important factor in the thermal catalytic process of toluene. The
stronger the oxidation ability of the catalyst, the higher the thermal catalytic performance
was. It can be seen from the experimental results of the catalytic oxidation of toluene that
CeO2@S-AZMB had the best catalytic oxidation degradation efficiency of toluene, which
was consistent with the previous XPS, Raman, H2-TPR, EPR, and other characterization
results. After mixing CeO2 with S-AZMB, the new composite catalyst had a higher surface
oxygen vacancy concentration, a stronger catalytic reduction performance, and a higher
catalytic oxidation degradation efficiency.
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In order to further study the activity difference between catalysts, the Arrhenius point
of each sample at a low temperature (when the toluene removal efficiency was less than
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20%) was calculated and linearly fitted, and the results are shown in Figure 9. The slope of
the fitting line in the figure corresponded to the apparent activation energy of the sample in
the reaction. The apparent activation energy usually represents the difference between the
average energy required for activating molecules and the average energy of all molecules.
The lower the apparent activation energy, the more easily a reaction will occur, indicating
the higher activity of the catalyst [28,29]. The apparent activation energies of CeO2@S-
AZMB, Ce-S-AZMB, and CeO2 were 39.17, 49.85, and 44.51 kJmol−1, respectively. The
lowest apparent activation energy of the CeO2@S-AZMB reflects that the catalyst modified
by ball milling with waste zinc manganese batteries was more conducive to the adsorption
and activation of reactant molecules on its surface, and the catalytic oxidation of toluene
was more likely to occur. According to the previous characterization results, although
CeO2@S-AZMB has the smallest specific surface area, it has the highest toluene removal
efficiency, which can be attributed to the abundant surface oxygen vacancies and ultra-high
oxidation-reduction ability of CeO2@S-AZMB.
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In order to determine the stability and reusability of the catalyst, continuous and cyclic
experiments were carried out on the catalyst, respectively. The continuous test was carried
out at 180 ◦C, the catalyst was continuously reacted for 48 h, and a sample was taken every
30 min to test the purification efficiency of toluene. The experimental results are shown
in Figure 10. It can be seen from the figure that the stability of the three catalysts was
very good. After 48 h of continuous reaction, the purification efficiency of the catalyst
for toluene experienced little change. We found that spherical CeO2 prepared by means
of the hydrothermal method had good stability, and the CeO2@S-AZMB modified with
ball-milled waste zinc manganese battery core powder not only had greatly improved
catalytic activity but also maintained good stability.
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In general, during the cooling process after the completion of the thermal catalytic
reaction, the catalyst would retain some intermediate products and experience carbon
deposition on its surface due to the incomplete degradation of pollutants. This carbon
deposition can lead to a reduction in catalyst activity and even poisoning and deactivation.
Therefore, it was of great significance to test the cyclic service life of the catalyst for the
practical application of the catalyst. The catalyst’s function was regarded as a cycle from
the beginning of heating up to the complete degradation of toluene and then to room
temperature. Three consecutive cycle experiments were carried out to evaluate CeO2@S-
AZMB, and the experimental results are shown in Figure 11. It could be observed that the
results of the three-cycle experiments were similar. Each time, the purification efficiency of
toluene reached 90% at 180 ◦C, and the completed removal of toluene could be achieved at
220 ◦C. This not only proved that it had good recycling performance, but also demonstrated
that toluene could be completely converted into CO2 and H2O at 240 ◦C, and there was
almost no by-product at the end of the reaction, reducing the impact of carbon deposition.
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WHSV: 120,000 mL g−1 h−1; catalyst amount: 200 mg).

In the catalytic oxidation of toluene, H2O usually affects the activity of the catalyst.
When the concentration of H2O is too high, it will even cause the deactivation of the
catalyst. Therefore, it is also important to test the water resistance of the catalyst. Taking
CeO2@S-AZMB as the research object, water vapor was introduced into the catalytic
oxidation reaction at 180 ◦C, and the reaction was stopped in the presence of water for
20 h. The purification effect of toluene in the presence or absence of water vapor is shown
in Figure 12. It can be seen from the figure that, with the addition of water vapor, the
purification efficiency of toluene of CeO2@S-AZMB decreased from about 90% to about
86%, and remained stable in the reaction lasting 20 h. When the application of water vapor
ceased, the purification efficiency of toluene of CeO2@S-AZMB recovered to about 90% and
remained relatively stable. The experimental results indicate that although the presence
of water vapor can have a certain inhibitory effect on the activity of the catalyst, the effect
was not significant, and CeO2@S-AZMB had good water resistance. Some studies have
shown that water vapor will not only engage in competitive adsorption with toluene on
the catalyst surface but also lead to the reduction in the catalyst’s active oxygen capacity,
thereby reducing the catalyst’s catalytic activity and affecting the purification efficiency [34].
Combined with the characterization results, although the specific surface area of CeO2@S-
AZMB was low, the rich surface oxygen vacancies provide more reactive sites and stronger
oxidation-reduction ability, providing the reason for its good water resistance.
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3. Materials and Methods
3.1. Materials and Fabrication

All reagents used in this work were of analytical grade. Spent alkaline Zn-Mn batteries
powder were obtained by a simple process. The spent alkaline Zn-Mn batteries (NANFU
Battery Plant, Nanping, China) were collected in our daily lives and the internal residues
were collected after the battery metal shell was mechanically removed. Then, the internal
residues were washed repeatedly with deionized water and dried at 105 ◦C for 10 h. At
last, the product was obtained and grinded into powder, labeled as S-AZMB.

Nano-spherical CeO2 was prepared. First, Ce(NO3)3·6H2O (4 g) and deionized water
(4 mL) were mixed into a beaker and were stirred under magnetic force until they were
completely dissolved. Then, glycol (120 mL) was added to the solution and continued
stirring for 5 min. Finally, propionic acid (4 mL) was also injected into the solution, fully
stirred for 30 min, until the solution became viscous and suspended. The fully stirred
solution was put into a 200 mL hydrothermal reactor and reacted for 12 h at 180 ◦C. After
the reaction, it naturally fell to room temperature. The solid-liquid mixture was centrifuged
at 10,000 r/min for 10 min. The centrifuged solid was taken out and washed with water.
The solid was washed and centrifuged repeatedly until the centrifuge solution was neutral.
Finally, the solid was dried completely at 105 ◦C. The yellow powder was CeO2, named
CeO2. The preparation method of Ce-S-AZMB is the same as CeO2, but S-AZMB (2.378 g)
needs to be added during solution stirring.

The waste Zn-Mn battery composite catalyst was prepared by the ball milling method.
The self-made nanospheres CeO2 (2 g) and S-AZMB (6 g) were added into the ball milling
tank. An appropriate amount of anhydrous ethanol was added in, and ball milling at
500 r/min for 6 h. The sample was taken out after ball milling and completely dried at
80 ◦C. Then the dried sample was put into the muffle furnace and calcined at 200 ◦C for 4 h
in an air atmosphere. The solid obtained after natural cooling was named CeO2@S-AZMB.

3.2. Characterization

The morphology of the samples was characterized by scanning electron microscopy
(Nova Nano SEM 460, FEI, Hillsboro, OR, USA) and transmission electron microscopy
(TEM, Talos F200X, FEI). The detailed information of structural phase, chemical compo-
sition, and elemental of the samples were determined by X-ray diffraction (Shimadzu
XRD-6100, Shimadzu, Kyoto, Tokyo, Cu Kα radiation, λ = 1.5418 Å) and X-ray photoelec-
tron spectroscopy (phi-5700 ESCA, Al Kα X-ray). C 1s peak (BE = 284.8 eV) was used
as the standard for binding energy calibration. The specific surface area and pore size
distribution of the samples were determined by Brunauer–Emmett–Teller (BET, ASAP
2020 HD88). The redox performance of the samples was determined by O2 temperature
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programmed desorption and H2 temperature programmed reduction (O2-TPD and H2-
TPR, Micromeritics AutoChem II 2920). The oxygen vacancy formation of samples was
characterized by room-temperature electron spin resonance (EMXplus-6/1) and Raman
spectroscopy (Thermo Fischer DXR, Waltham, MA, USA).

3.3. Thermal Catalytic Degradation of Toluene

Toluene is selected as the target pollutant, and the fixed bed reactor equipped with
a quartz reaction tube is used to test the thermal catalytic oxidation performance of the
catalyst. The experimental device is shown in Figure 13. The 400 ppm toluene standard gas
is selected as the toluene reaction gas, and oxygen and nitrogen are introduced into the gas
mixing bottle at the same time. After the gas mixture is uniform, it is introduced into the
thermal catalytic oxidation reaction system. The thermal catalytic oxidation reaction system
includes a resistance heating furnace, quartz reaction tube, and temperature controller.
Before the reaction, the catalyst shall be pressed into pieces, then ground and crushed,
and 40~60 mesh particles shall be screened, 200 mg of catalyst shall be weighed, and the
catalyst shall be placed in the quartz reaction tube, and both ends shall be blocked with
quartz cotton. After the catalyst is installed, connect the gas circuit, where the oxygen flow
is 40 mL/min, the N2 flow is 320 mL/min, and the toluene flow is 40 mL/min. Under
normal temperatures, the catalyst is subject to toluene adsorption saturation treatment
(excluding the influence of catalyst adsorption performance), and the tail gas is collected
with a polytetrafluoroethylene sampling bag. After collection, the concentration of toluene
is measured by gas chromatography (GC), and a sample is taken every 20 min until the
concentration of toluene does not change, and the catalyst reaches adsorption saturation. At
this time, the concentration of toluene is taken as the initial concentration of toluene, which
is recorded as C0. After the catalyst reaches adsorption saturation, raise the temperature
of the reaction system. After each temperature point is stabilized for 30 min, sample and
measure the concentration of toluene after thermal catalytic oxidation, which is recorded
as C1.
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The purification efficiency of toluene is calculated by the following Formula (1):

X = (1 − C1/C0) × 100% (1)

At the same time, the temperature (T90) when the toluene purification efficiency is 90%
is used to indicate the catalyst activity. In order to further discuss the catalytic oxidation
activity of the catalyst, the Arrhenius equation was used to calculate the apparent activation
energy of the catalyst at low temperatures:

lnr = − Ea
RT

+ lnA (2)
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where r is the reaction rate of toluene catalytic oxidation (mol/s), Ea is the apparent
activation energy of the catalyst (J/mol), R is the gas constant (J/(mol · K)), and T is the
reaction temperature (K).

4. Conclusions

This article reports on a new method for recovering unpurified S-AZMB by combining
it with CeO2 to construct a thermal catalytic system. A thermal catalyst was successfully
prepared through a simple ball milling and calcination process. Multiple characterizations
and experiments have shown that the combination with S-AZMB not only significantly
enhances the thermal catalytic activity of CeO2 but also effectively increases the content of
surface oxygen vacancies. The catalyst has a good thermal catalytic effect on toluene. More
importantly, we have confirmed that good thermal catalytic activity, structural stability, and
water resistance can be maintained in cyclic reactions. These findings provide new insights
into the recycling and reuse of wastebatteries and offer new opportunities for improving
the activity of thermal catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29030616/s1, Figure S1: (a) N2 adsorption/desorption isotherms
and (b) Barrett-Joyner-Halenda (BJH) pore size distribution of CeO2@S-AZMB, Ce-S-AZMB and CeO2.
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