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Abstract: Zeolites, a group of minerals with unique properties, have been known for more than
250 years. However, it was the development of methods for hydrothermal synthesis of zeolites and
their large-scale industrial applications (oil processing, agriculture, production of detergents and
building materials, water treatment processes, etc.) that made them one of the most important mate-
rials of the 20th century, with great practical and research significance. The orderly, homogeneous
crystalline and porous structure of zeolites, their susceptibility to various modifications, and their
useful physicochemical properties contribute to the continuous expansion of their practical applica-
tions in both large-volume processes (ion exchange, adsorption, separation of mixture components,
catalysis) and specialized ones (sensors). The following review of the knowledge available in the
literature on zeolites aims to present the most important information on the properties, synthesis
methods, and selected applications of this group of aluminosilicates. Special attention is given to the
use of zeolites in agriculture and environmental protection.
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1. Introduction

Zeolites are porous hydrated aluminosilicates with a three-dimensional structure
containing cations of alkaline elements (sodium, potassium), alkaline earth (calcium, mag-
nesium, less frequently barium, and strontium), or other monovalent or multivalent met-
als [1]. Due to their differentiated structure, which contains large free spaces and channels,
zeolites exhibit properties characteristic of nanoporous materials and show the ability to
lose and absorb water in amounts greater than 30% of their dry weight [2]. Zeolites have
an ordered crystalline structure whose primary building units (PBU) are silicon [SiO4] and
aluminum [AlO4] tetrahedra connected by common oxygen atoms [3], forming so-called
secondary building units (SBU). According to Löwenstein’s rule, silicon–oxygen tetrahedra
can be adjacent to each other (Si–O–Si), while aluminum–oxygen tetrahedra can only be
connected to silicon–oxygen tetrahedra (Si–O–Al) [4]. Replacement of the Si4+ cation in
the tetrahedral position by Al3+ results in an excess of electrons, i.e., a negative charge,
which is usually compensated by so-called exchangeable cations (e.g., Na+, K+, NH4

+, H+,
Ca2+, Sr2+, or Mg2+) [5]. These off-grid cations, together with water molecules, are located
in the free spaces of the aluminosilicate skeleton, moving freely inside the mineral and
easily exchanging with other ions present in the environment [6]. The peculiar internal
structure of zeolites is the result of a diverse distribution of tetrahedra, forming a network
of structural chambers and channels of different sizes that, under normal temperature
conditions, are filled with water molecules, the so-called zeolitic water [7]. By means of
thermal treatment, this water can be easily removed without disturbing the crystal structure
of the zeolite (Figure 1). The released pores can be filled with water molecules or other
adsorbates [5,8].
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Figure 1. Scheme of silicon and aluminum tetrahedra in the zeolite structure (own elaboration 
based on Khaleque et al. [9]). 

An example of an elementary cell and channel system of FAU, LTA, and MFI zeolites 
is shown in Figure 2. 
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lite Structures, International Zeolite Association [10]). 

The first zeolite (stilbite) was discovered in 1756 by the Swedish mineralogist Axel 
Frederic von Cronstedt [11,12]. The genesis of zeolite formation in nature is the reaction 
of volcanic rocks and ashes with water of high pH and high salt concentration [13]. Cur-
rently, we can distinguish about 50 natural zeolites, the most important of which are cli-
noptilolite, analcime, mordenite, and chabazite [14], and more than 150 synthetic zeolites 
[2]. Zeolites, both natural and synthetic, are used in various fields of human activity. On a 
larger scale, synthetic zeolites are mainly used because natural zeolites often contain 
various types of impurities, such as other minerals or metals [12,15]. In addition, syn-
thetic zeolites tend to have better chemical and physical properties than natural zeolites 
[16,17]. The advantage of synthetic zeolites over natural zeolite applications is related to 
their greater stability in the reaction environment [18], as well as the pore size, which is 
larger in synthetic zeolites and allows adsorption of larger molecules (e.g., diesel oil) 
[13,18]. The kinetics of the removal of radioactive contaminants and heavy metal ions 
from synthetic materials are also several times higher compared to natural zeolites [9]. 

Figure 1. Scheme of silicon and aluminum tetrahedra in the zeolite structure (own elaboration based
on Khaleque et al. [9]).

An example of an elementary cell and channel system of FAU, LTA, and MFI zeolites
is shown in Figure 2.
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The first zeolite (stilbite) was discovered in 1756 by the Swedish mineralogist Axel
Frederic von Cronstedt [11,12]. The genesis of zeolite formation in nature is the reaction of
volcanic rocks and ashes with water of high pH and high salt concentration [13]. Currently,
we can distinguish about 50 natural zeolites, the most important of which are clinoptilolite,
analcime, mordenite, and chabazite [14], and more than 150 synthetic zeolites [2]. Zeolites,
both natural and synthetic, are used in various fields of human activity. On a larger scale,
synthetic zeolites are mainly used because natural zeolites often contain various types of
impurities, such as other minerals or metals [12,15]. In addition, synthetic zeolites tend to
have better chemical and physical properties than natural zeolites [16,17]. The advantage of
synthetic zeolites over natural zeolite applications is related to their greater stability in the
reaction environment [18], as well as the pore size, which is larger in synthetic zeolites and
allows adsorption of larger molecules (e.g., diesel oil) [13,18]. The kinetics of the removal
of radioactive contaminants and heavy metal ions from synthetic materials are also several
times higher compared to natural zeolites [9].

The aim of this paper is to present the sources in the natural environment as well
as the properties and methods of synthesis of zeolites. The possibilities of using zeolites,
mainly in agriculture and environmental protection, are also presented.
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2. Properties and Classification of Zeolites

The presence of channels and chambers in the skeletal structure of zeolite gives it
a number of desirable physicochemical properties and makes it a material with a wide
range of applications. Zeolites have surface-active centers of acid–base or oxidation–
reduction character. These are responsible for their exceptional adsorption and catalytic
activity [19,20]. A characteristic feature of zeolites is the presence of micropores with
diameters in the range of 0.3 to 1.0 nm [12] and a volume of micropores in the range of 0.10
to 0.35 cm3 g−1 [21]. The classification of zeolites based on the diameter of their pores is
shown in Table 1.

Table 1. Classification of zeolites based on the size of pores in the structure (own elaboration based
on Mijailović et al. [13]; Kulprathipanja [21]).

Type of Zeolite Membered Rings (MR) Pore Diameter [nm] Example of Zeolite

With small pore size 8 0.3–0.45 zeolite A
With medium pore size 10 0.45–0.6 ZSM-5, MCM 22
With large pore size 12 0.6–0.8 zeolite X, Y

With very large pore size and
zeolite-like materials 14 0.8–1.0

UTD 1 (14 MR)
VIP 5 (18 MR)

Cloverite (20 MR)

Another classification of zeolites concerns the molar ratio of Si/Al. According to
Szostak [22], this ratio determines the physicochemical properties of zeolites (Figure 3).
Based on the value of the Si/Al ratio, zeolites with low, medium, and high silicon content
in the structure are distinguished (Table 2).

As the Si/Al ratio increases, the thermal stability of the zeolite structure, i.e., the
resistance to amorphization or dealumination, increases. This relationship means that
the structure of low-silicon zeolites can be affected as early as 700 ◦C, while the stability
of high-silicon zeolites is preserved up to 1300 ◦C [21,23]. Low-silicon zeolites are also
characterized by increased ion exchange capacity and hydrophilicity. High-silicon zeolites,
on the other hand, are more hydrophobic and are characterized by an increased power
of active centers, which predestines them for catalytic applications [13,18]. As the Si/Al
ratio increases, the acidity also increases. On the other hand, under the same conditions,
the amount of off-grid exchangeable cations in the structure and, consequently, the ion
exchange capacity, which is proportional to the number of AlO4

− tetrahedra present in the
zeolite skeleton, decreases [24].

The specific structure of zeolites gives them a number of unique properties [18].
They are good sorbents for water and adsorbents for uncharged molecules, effective ion
exchangers and molecular sieves [25], and environmentally friendly catalysts [26]. Other
important properties include the large internal surface area of the zeolite framework
(several hundred m2 g−1) [13] and the cation exchange capacity, which varies between
200 and 300 cmol(+) kg−1 [27]. In addition, zeolites are characterized by low crystal density
(from 1.9 to 2.2 Mg m−3) and low bulk density (e.g., 0.8 to 1.5 Mg m−3) [27]. Due to their
unique physicochemical properties, zeolites have found applications in many industries,
including environmental protection and agriculture [28,29].

Table 2. Classification of zeolites in terms of Si/Al ratio values (own elaboration based on Guisnet,
Gilson [23]; Payra, Dutta [24]; Sharma et al. [30]).

Type of Zeolite Si/Al Ratio Example of Zeolite

Low silicon 1.0–1.5 4A, X, UZM-4, UZM-5
Medium silicon ~2.0–5.0 mordenite, zeolite Y, L
High silicon >10 Beta, ZSM-5, ZSM-12
Silica molecular sieves >100 silicites
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Figure 3. Changes in the physicochemical properties of zeolites as a function of the molar ratio of
silicon to aluminum (own elaboration based on Payra, Dutta [24]; Jakubowski et al. [31]).

3. Zeolite Synthesis Methods

Interest in synthetic zeolites has increased as newer possibilities for their application
in various industrial fields have been discovered. Modern synthesis techniques make
it possible to obtain zeolite material with specific parameters that can be modeled and
adapted for different applications. In the zeolite process, the starting materials are usually
silica and clay minerals, which are sources of aluminum and silicon. The reactants can also
be waste materials such as red sludge, glass pellets, or fly ash [6], which show considerable
similarity to zeolites in terms of chemical composition.

The hydrothermal synthesis method is considered to be the most common technique
for zeolite synthesis, where the solvent is always water [11]. In solvothermal synthesis,
water can be used, but mainly organic solvents are used, including alcohols (methanol,
ethanol), ethylene glycol, hydrocarbons, and pyridine [9], while in the ionothermal method,
ionic liquids are used, whose main advantage is their low melting point (<100 ◦C) [11].
Based on the above division of zeolite synthesis methods, it can be seen that all hydrother-
mal and ionothermal methods are, in principle, included in solvothermal methods, while
solvothermal methods are not [32].

3.1. Hydrothermal Synthesis

Conventional zeolite synthesis is a time-consuming hydrothermal process carried
out in an alkaline environment in the temperature range of 90–150 ◦C at a pressure of
1–15 bar [6] in a closed system for 24–96 h [17,33]. This involves several steps in which
the aluminosilicate hydrogel, organic molecules, and metal cations are converted into
crystalline aluminosilicate [34]. Aluminosilicate hydrogels are most commonly obtained
from a mixture of compounds containing aluminum (aluminate, aluminum nitrate, and
aluminum sulfate) and silicon (water glass, kaolinite, and SO2 colloid). Due to the high
cost of pure substrates, natural clay materials (e.g., halloysite or kaolin) [9] and waste
materials (e.g., fly ash [35], rice husk [36], and paper sludge [37]) are often used as reactants.
Crystal nuclei are formed throughout the crystallization process, but the highest formation
rate is observed in the initial phase. Hydrothermal synthesis of zeolites at about 100 ◦C
generally results in the formation of crystals between 0.1 and 10 µm [33]. Depending on the
transformation parameters used, hydrothermal synthesis can produce different types of
zeolite materials, including chabazite, Na-P1, phillipsite, faujasite, or zeolite (Y, X, A, P) [17].
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As reported by Johnson and Arshad [32], several key factors must be considered in the
hydrothermal synthesis of kaolin-based zeolites as follows:

(a) the Si/Al molar ratio; low (Si/Al ≤ 5) gives SAPO, different types of LTA, and zeolites
X, while high (Si/Al ≥ 5) gives beta and ZSM-5 zeolites and different types of zeolite Y;

(b) the appropriate concentration of NaOH (optimum ≤ 3 Mol L−1); higher reduces the
relative crystallinity and favors the formation of (hydroxy)sodalites as impurities;

(c) the crystallization temperature, which should be between 70 ◦C and 200 ◦C; a temper-
ature ≤ 70 ◦C is not sufficient for the synthesis of crystalline compounds;

(d) the crystallization time (interval < 24 h < 120 h).

Novembre et al. [38] carried out an experiment to obtain Na-X zeolite by a hydrother-
mal method using natural substrates (naturally zeolitized alkaline volcanic rock and
siliceous opaque). The process was carried out at 80 ◦C using a sodium hydroxide solution
at a concentration of 3 Mol L−1. The authors showed that the synthesis of the Na-X zeolite
started after 5 h and reached the peak of crystallization after 18 h of the process, and the
zeolite obtained had a wide (temporal) stability range (500 h).

3.2. Various Techniques of Hydrothermal Synthesis
3.2.1. Alkali Fusion

In zeolite synthesis, the fusion method precedes conventional hydrothermal treatment.
In this process, the raw material is fused with an alkali (e.g., solid sodium hydroxide),
which acts as an activator for zeolitization [34]. The first synthesis step in the process
discussed above is the thermal activation of the starting material, which is carried out
at temperatures in the range of 500–650 ◦C [17,39]. This is followed by the aging of the
reaction mixture at temperatures between 20 and 50 ◦C for a period of several to tens of
hours [32]. The final step is the crystallization of the reaction mixture, which is typically
performed at 100 ◦C for 24 to 48 h [39,40]. During the fusion process, sodium ions, when
the introduced base is sodium hydroxide, act as stabilizers of the crystal structure of the
zeolite subunit, increasing the amount of zeolite formed during chemical synthesis [34].

Among others, colloidal silica and sodium silicate are used as siliceous components
in the method described above, while aluminum isopropanolate and sodium aluminate
are used as zeolitic components [40,41]. The quality of the resulting synthesis product
depends on the Na2O:SiO2:Al2O3:H2O molar ratio, the temperature and activation time,
the aging time of the reaction mixture, and the crystallization temperature and time [42].
According to Aylele et al. [43], the advantage of alkaline fusion in the synthesis of zeolite
A is the possibility of using low-quality primary kaolin without purification, whereas the
conventional hydrothermal method requires high-quality raw material. The suitability
of the hydrothermal method preceded by alkaline fusion in the synthesis of Na-A zeolite
(Z-S1) from one of the volcanic rocks (scoria) was demonstrated by Lee et al. [44]. Based on
their results, the authors concluded that control of the NaOH/precursor ratio is important
to ensure high crystallinity of the zeolite product, as well as the size of the particles,
which decreases with increasing alkali content in the medium. Thuadaij and Nuntiya [45]
also used alkali fusion to obtain Na-X zeolites from fly ash, powdered amorphous silica,
metakaolin, and their mixtures. The authors demonstrated that a mixture of metakaolin
should be used to produce this type of zeolite and achieved high efficiency in converting
mixtures to Na-X zeolite for a SiO2/Al2O3 = 3.25 ratio, where fly ash, amorphous silica,
and metakaolin were present in a 1:3:6 ratio.

3.2.2. Alkaline Activation

Synthetic zeolites can be obtained by crystallization in a process known as alkaline
activation. This process is mainly used to obtain geopolymers, which are inorganic poly-
mers produced at low temperatures (<100 ◦C) and consist of chains or networks of mineral
molecules linked by covalent bonds [46]. The geopolymers are produced by reacting a low-
calcium aluminosilicate, such as silica fly ash, with an alkaline solution [47]. The alkaline
activator in this process is a concentrated base, which can be hydroxide, silicate, carbonate,
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or sulfate [30]. The reactive aluminosilicates are dissolved in an aqueous alkaline solution,
then the [SiO4]4− and [AlO4]5− tetrahedra join corners in a polycondensation process and
form subcrystalline or amorphous aluminosilicate space structures with polymeric Si–O–
Al–O bonds [48,49]. The process of alkaline activation of aluminosilicate phases contained
in fly ash has been described by Garcia-Lodeiro et al. [50]. According to these authors, in
materials with significant aluminosilicate content, amorphous hydrated aluminosilicates,
zeolites, and gels are formed as a result of alkaline activation. The next reaction products
can be zeolites:hydrosodalite, zeolite P, chabazite-Na, and faujasite-Ca. The mechanism of
the geopolymerization reaction is not fully understood, and the simultaneous occurrence
of stages in the process makes it even more difficult to understand. However, three main
stages can be distinguished [51] as follows:

(1) dissolution of silica and alumina in a strong alkaline solution (decomposition of
solid aluminosilicates, whose products are a mixture of silicates, aluminosilicates,
and aluminates);

(2) diffusion or transport of solutes, polycondensation, and gel formation (condensa-
tion reaction of alumina and hydroxylated silica to form the inorganic gel phase
of a geopolymer);

(3) hardening of the gel phase—polymerization (formation of a three-dimensional alumi-
nosilicate structure by increasing the connectivity in the geopolymer gel, crosslinking,
and reorganization of the network).

Villa et al. [47] synthesized geopolymers by alkaline activation of natural zeolite. They
used sodium silicate and sodium hydroxide as activators in proportions of 0.4, 1.5, 5, 10,
and 15, using a 7 M sodium hydroxide solution. The time and temperature conditions used
during setting and curing were variable, while the activator/precursor ratio was kept con-
stant at 0.6. The results of this experiment showed that increasing the activator/precursor
ratio, as well as the curing time, promoted the mechanical strength of the material, with the
best results obtained at conditions of 90 days and 40 ◦C.

Alkaline activation is a polycondensation reaction and leads to the formation of new
structures where the resulting negative charge is compensated by monovalent cations (Na+

or K+) from the alkaline activator (KOH or Na2SiO3) [3,52]. The combined use of alkali
metal silicate with alkali metal hydroxide allows the reaction to occur to a greater extent [3].
Alkali metal cations play a fundamental role in controlling synthesis steps such as curing
and crystal formation [53]. Alkali-activated materials are characterized by exceptional
mechanical strength, fire and corrosion resistance, durability, rapid curing, and low thermal
conductivity. Due to these advantages, the aforementioned materials are mainly used in the
construction and thermal insulation industries, but also as catalysts or membranes [3,54].

3.3. Molten Salt Method

This method of zeolite synthesis was developed by Park et al. [55]. It involves the
reaction of a mixture of NaOH–NaNO3 or NaOH–KNO3 with fly ash under anhydrous
conditions at temperatures above 250 ◦C [34]. The advantages of this method are the
simplicity and versatility of the implementation, the low temperatures, and the favorable
cost/purity ratio of the products obtained in one phase. In addition, this method allows
the synthesis of zeolites from various types of mineral wastes, has a shorter synthesis
time compared to other methods, and does not generate alkaline liquid waste due to the
anhydrous conditions [56]. Unfortunately, the lack of water in the environment can lead
to insufficient contact between the reactants during the crystallization process, which can
reduce the rate of conversion of the precursor to the product and result in an irregular
morphological structure of the zeolite [34]. In their experiment, Park et al. [55] used
different combinations of salt mixtures on zeolite fly ash, using NaOH, KOH, or NH4F as
mineralizers and NaNO3, KNO3, or NH4NO3 as stabilizers. The reaction mixture contained
0.7 g fly ash, 0.3 g alkali, and 1 g salt, and the whole mixture was heated at 350 ◦C. The
zeolite materials obtained by the authors consisted of sodalite and cancrinite as the main
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crystalline phases. The suitability of the molten salt method for the synthesis of zeolite
materials from sewage sludge was demonstrated by Yoo et al. [57].

3.4. Microwave Assisted Synthesis

Zeolites can also be obtained by synthesis using microwave irradiation. This is a
simple and effective technique that can reduce the synthesis time of zeolites, improve the
homogeneity of their dimensions and composition, and improve the dissolution of the
precursor gel [58]. As reported by Panzarella et al. [59], the efficiency of microwave-assisted
synthesis is affected by the size of the vessel in which it is performed and the volume of
the reaction mixture. For example, microwave heating has been used to obtain zeolite A,
ZSM-5, faujazyite, analcime, AIPO4-5, and VPI-5 [60,61]. The advantages of synthesizing
zeolites using microwave radiation include [61,62]:

(a) much faster heating of the reaction mixture compared to conventional methods,
(b) high reaction efficiency,
(c) ability to control morphology, phase purity, and pore size,
(d) rapid formation of crystallization nuclei,
(e) uniform heating of the entire volume of the reaction mixture.

Anuwattana et al. [63] showed that microwave heating at 150 ◦C (frequency 2.45 GHz,
maximum power up to 1200 W) increased the rate of formation of ZSM-5 zeolite from iron
slag by a factor of four compared to hydrothermal heating. It also affected the formation
of smaller ZSM-5 particles (0.3 µm vs. 3 µm in diameter). Serrano et al. [64] also demon-
strated the usefulness of microwave heating in the synthesis of TS-2 zeolite. The authors
demonstrated that it allows a shorter process time, with 100% crystalline samples being
obtained after only 15 h, as opposed to the 48 h required by the conventional process.

3.5. Other Methods

An interesting method to obtain zeolites is the synthesis inside an inert mesoporous
material (confined space synthesis), which is usually carbon. In this preparative technique,
the zeolite is crystallized inside the pore system of an inert matrix. In this way, the crystals
cannot grow larger than the surrounding pores [65]. The crystals are then separated from
the matrix by pyrolysis at 550 ◦C. The undoubted advantages of confined space synthesis
are [66,67] as follows:

(a) high reproducibility,
(b) control of the maximum crystal size by the size of the matrix mesopores,
(c) high purity of the obtained samples,
(d) the possibility of selecting the synthesis conditions to obtain highly crystalline zeolites.

With this method of synthesis, the zeolites obtained are characterized by a well-
developed specific surface area and have the same number of acid sites as in the corre-
sponding large zeolite crystals [68].

Another method of obtaining zeolites is the use of dry aluminosilicate gels, amines,
and water in the vapor phase (vapor phase transport synthesis, VPT) [69,70]. According to
Kim et al. [71], in the first stage of the process, water vapor condenses on the micropores
of the precursor, resulting in the establishment of a liquid–vapor equilibrium after some
time. The silica present in the gel then reacts with organic cations. The formation of crystal
nuclei and the growth of the crystals take place on the outer surface of the precursor.
The main influence on crystallization during VPT synthesis is the amount of water in the
solvent mixture. The greater the amount of water, the more crystalline and structurally
complex the product obtained [70]. The alkalinity of the system also has a significant effect
on the crystallization process, determining the rate of this step and the particle size [72].
Liu et al. [73] synthesized MCM-22 zeolite and Niu et al. [72] beta zeolite using this method.

An increasingly popular method of obtaining zeolites is mechanochemical synthesis,
in which crude precursors are subjected only to mechanical energy in an environment
with little or sometimes no solvent [74]. This method reduces waste, energy consumption,
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and overhead costs and allows the type, density, and availability of active sites to be
influenced by controlled amorphization [75]. Wu et al. [76] synthesized zeolites in the
presence of NH4F by grinding anhydrous starting solids and heating at 140–240 ◦C. Under
these conditions, they obtained zeolites with MFI, BEA, EUO, and TON structures. The
process itself was characterized by a simplified procedure (compared to hydrothermal
synthesis) and high efficiency. Ren et al. [77] demonstrated that grinding (10–20 min) of a
mixture of chemical reactants (Na2SiO3·9H2O, NH4Cl fumed silica, and TPABr) followed
by heating at 180 ◦C for 24–48 h leads to the formation of ZSM-5 type zeolite. The suitability
of ball milling in the synthesis of ZSM-5 zeolite and mordenite has also been confirmed
by Nada et al. [78]. The obtained zeolites were characterized by a high specific surface
area (~300 m2 g−1), and the whole process took place in the absence of solvents, organic
structure directing agents, or grafting crystals.

4. Applications of Zeolites

Zeolites, as microporous materials, have unique physicochemical properties and a
unique structure, making them widely used in many modern scientific and industrial
fields [79,80] (Figure 4).
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The magnitude of the negative charge, compensated by mobile cations, determines the
sorption and ion exchange capacity and ion exchange selectivity of the zeolite. Their spatial
structure allows for molecular-scale and thread processes and catalytic activity, which
can be further enhanced by modifying their surfaces and pores [81]. Due to their unique
properties, they are used in catalysis, ion exchange, adsorption, and separation of mixture
components [25]. They are also a perspective material in the synthesis of nanostructures,
inclusion chemistry, or guest–host complexes [82].

The industrial use of zeolites began in the 1960s, when the US-based Mobil Oil Corpo-
ration and Union Carbide used zeolite Y (FAU) as a cracking catalyst in oil processing [83].
A few years later, modified forms of zeolite Y, including rare earth Y (REY) and ultra-
stable Y (USY), were obtained in the company’s laboratories, and in 1973, an innovative
method for synthesizing high-silicon zeolite ZSM-5 using organic alkylammonium cations
as crystallization guides was developed [83]. In the following years, a number of new and
modified zeolites were synthesized and found wide applications in industrial processes
related to adsorption, ion exchange, and catalysis [11].

Hierarchical (or mesoporous) zeolites are of increasing interest. They are obtained
by top–down (desilication, dealumination, recrystallization, and irradiation) and bottom-
up (template-free, soft templating, hard templating, double templating with surfactant,
nanoparticle assembly, and zeolization of materials) methods [84]. However, the most
efficient and cost-effective way to synthesize hierarchical zeolites is the desilication process,
which involves the preferential removal of silicon from the zeolite structure by OH− ions in
an alkaline medium (usually a NaOH solution) [85]. The obtained product is characterized
by the presence of a secondary mesopore system within each grain (which ensures a
relatively free diffusion of reactants to and from the active centers and the transport of
branched molecules) while maintaining its microporous nature and high-performance acid
centers [84]. The best-studied technique for removing silicon from the zeolite skeleton is
treatment with NaOH solution (0.2 Mol L−1) at 65 ◦C for 30 min at a ratio of 1 g of zeolite
per 30 mL of solution [86]. Hierarchical zeolites have been used primarily as catalysts in
reactions such as cracking, hydrocracking, alkylation, or isomerization [87].

4.1. Zeolite Applications in Agriculture

Worldwide, agriculture is the main user of natural zeolites. However, in the agricul-
tural sector, zeolites are mainly used in animal husbandry (bedding and feed additives),
and about 30% of the mineral is used as a soil additive [88].

4.1.1. Soil Amendment with Multidirectional Action

Zeolites are considered to be one of the most widely used natural inorganic agents
to improve the physical and chemical properties of soils [89]. The presence of large pores
in zeolites allows them to retain water in their structures [29], and thus, due to their
unique properties, zeolites can increase water use efficiency (WUE) by increasing the
water holding capacity (WHC) of the soil [90]. Xiubin and Zhanbin [91] showed that the
WHC of zeolite-treated soil increased by 0.4–1.8% under drought conditions and by 5–15%
under normal conditions compared to the control soil. According to the authors, zeolite
application can reduce surface runoff and protect the soil from erosion, as well as regulate
crop water supply under severe drought conditions. Zeolites also improve infiltration
rate and saturated hydraulic conductivity [92], cation exchange capacity (CEC) [93], water-
holding capacity, and aeration [28,89]. Soils with zeolites can, therefore, better retain rain
and snowmelt water and prevent it from percolating deep into the soil profile (beyond the
root zone) [89]. Zeolites have a positive effect on the geometric properties of soils, including
specific surface area and porosity [88]. An increase in specific surface area and a decrease
in pore size can result in, among other things, reduced oxygen diffusion, mineralization
of humic compounds, and loss of organic carbon stocks. This phenomenon is particularly
beneficial in soils with low organic matter content and relatively poor aeration [94]. Zeolite
incorporation can also improve nutrient retention [14] and help buffer soil pH, reducing
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the need for lime [28]. Bikkinina et al. [95] demonstrated in a field experiment that the
application of zeolites to leached black soil resulted in an increase in soil pH, plant-available
phosphorus and potassium, improved microbial activity in the rhizosphere, and accelerated
microbial biomass growth. Due to its alkaline nature and the presence of a negative charge,
phosphorus availability is increased in zeolite-enriched soils following an increase in soil
pH and a decrease in the amount of exchangeable iron and aluminum ions [90,96]. The
specific physicochemical properties of zeolites make them capable of releasing nutrients
gradually, increasing productivity and efficiency of fertilizer use, reducing losses, and thus
reducing environmental pollution [97].

By reducing the intensity of the nitrification process, the addition of zeolites reduces
the risk of nitrate leaching into groundwater [98]. Zeolites have been shown to have a
particularly high affinity for NH4

+ [99,100]. The presence of small pores (nominal pore
size 4–5 Å) in the structure of the zeolite crystal lattice, in which ammonium cations are
easily adsorbed, makes them unavailable to nitrifying microorganisms and conversion to
NO3

+ [90]. Thus, in zeolite-treated soils, there is improved retention of this cation and
slower release into the soil substrate, which increases the efficiency of its utilization and
improves crop yields [101]. Ahmed et al. [102] showed that the application of inorganic
fertilizers mixed with zeolites significantly increased the uptake of nitrogen, potassium,
and phosphorus and their application efficiency in maize crops. Similar observations were
made by Li et al. [103], who found an increase in spinach yield and plant nutrient assimi-
lation in a greenhouse experiment after the combined application of zeolite, ammonium,
and potassium.

4.1.2. Crop Protection

The ion exchange capacity and potentially high sorption capacity of zeolites can also be suc-
cessfully exploited when used as carriers for pesticides and herbicides [14]. Shirvani et al. [104]
conducted a study to develop slow-release formulations (SRFs) of 2,4-dichlorophenoxyacetic
acid (2,4-D) using, among others, zeolite modified with cetyltrimethylammonium bromide
(CTAB) as a surfactant. The authors showed that the SRF had the same herbicidal efficacy as
free (technical) 2,4-D. In addition, it significantly reduced the mobility of the herbicide in the
soil and reduced its desorption. After 168 h, between 62% and 64% of the adsorbed 2,4-D was
released into the solution phase. According to the researchers, the SFR can be considered an
effective tool for weed control in sustainable agriculture. The formulations release the active
ingredients of the herbicides gradually, reducing their loss through leaching and biodegradation,
thereby reducing the negative environmental impact of herbicides. Similar conclusions were
reached by Bakhtiary et al. [105].

Another use of zeolites in agriculture is as plant protection products against pests
and fungal diseases. Calzarano et al. [106] used a spray of crushed zeolite (15 kg L ha−1)
to control gray mold and sour rot in a white grapevine variety. The researchers showed
that this strategy was effective, reducing the risk of infection by more than 70% for both
diseases. The antifungal effect of zeolite is based on the formation of a layer of mineral
particles on the treated plant, which forms a physical barrier that inhibits the germination
and development of acid rot and gray mold fungi. According to the authors, reflectance
measurements performed on the leaves of the treated grapevines showed no differences
compared to the control series in terms of NDVI (Normalized Difference Vegetation Index)
and GNDVI (Green Normalized Difference Vegetation Index), whose values correlate
with the amount of biomass and chlorophyll content. A similar study was carried out
by Prisa [107], which confirmed the usefulness of micronized zeolite as a fungicide in
viticulture. Its foliar application effectively reduced the development of diseases caused by
Botrytis cinerea, Oidium tuckeri, and powdery mildew compared to the application of copper
and sulfur. At the same time, zeolite had a positive effect on the vegetative and root growth
of Vitis vinifera and showed no phytotoxicity. In his opinion, zeolite is an ecological and
cost-effective tool for increasing plant productivity in sustainable agriculture.
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4.1.3. Heat Stress and Photosynthesis Enhancement on Crops

Another advantage of the foliar application of zeolites is the increase in carbon dioxide
near the stomata and the reduction in leaf temperature by reflecting infrared radiation [108].
Zeolites are able to adsorb carbon dioxide molecules and release them gradually into the
ecosystem [109], which in turn can increase the photosynthetic rate of C3 plants [108], such
as grapevines, tomatoes, apple, and orange trees [14]. This results in increased vegetative
growth [110], an increased leaf area production rate, and a reduced transpiration rate [111].

4.1.4. Aquaculture

In aquaculture, zeolites are used to reduce the amount of algae in water reservoirs or
farm ponds, assist in the elimination of ammonia from water [112], and are also used to
aerate aquatic organisms with oxygen produced by air separation [14]. The addition of
zeolites to fish ponds reduces turbidity, with positive effects on water quality, fish health,
and growth performance [113].

4.2. Zeolites in Environmental Protection

The use of zeolites in environmental protection is mainly based on their ion exchange
properties [114]. Other properties that determine their suitability in this field are their
significant adsorption capacity, long-term mechanical and physical stability, and strong
selectivity and molecular sorption capacity [11,115].

4.2.1. Sorption of Radionuclides

Zeolites are widely used to sequester cationic contaminants such as the trace elements
lead, cadmium, zinc, nickel, manganese, chromium, copper, and iron [90]. They are also
used to extinguish chemical fires and to deactivate nuclear and other hazardous industrial
wastes [114]. A study by Osmanlioglu [116] evaluated the usefulness of clinoptilolite in the
removal of radionuclides (137Cs, 60Co, 90Sr, and 110Ag) from liquid radioactive waste. It
was found to be an effective sorbent of radionuclides under dynamic processing conditions
and can be used as a cheaper alternative to chemicals in the chemical precipitation process.
A limitation in the use of clinoptilolite is the high content of inactive salts in the radioactive
waste, which reduces the ion exchange capacity of zeolite towards 90Sr and 60Co.

Lihareva et al. [117] also demonstrated the usefulness of clinoptilolite for the removal
of Cs+ and Sr+ from aqueous solutions, reporting a maximum adsorption capacity of 122.7
and 21.50 mg g−1, respectively. Borai et al. [118] evaluated four different zeolite minerals
(natural clinoptilolite, chabazite, mordenite, and synthetic mordenite) for their utility in
removing certain radionuclides from low-level radioactive liquid waste (LLRLW). They
demonstrated that of the materials tested, natural chabazite had the highest decay rates
and Cs ion exchange capacity. Promising results for the removal of radium isotopes from
mine water using zeolite NaP1 were obtained by Chałupnik et al. [119]. The water purifi-
cation efficiency exceeded 98% for the radium isotopes 226Ra and 228Ra. In addition, they
confirmed the possibility of removing radium from very saline waters (TSD > 100 g L−1)
using the zeolite material.

4.2.2. Immobilization of Trace Elements in the Soil

Zeolite remediation of contaminated soils reduces the amount of phytoavailable forms
of trace elements, leading to the restoration of soil homeostasis [120,121]. When mixed
with Portland cement, zeolites are an effective stabilizing agent and, in the case of trace
elements, an immobilizing agent [122]. The mechanism of trace element adsorption using
zeolites includes the following phenomena: (1) ion exchange; (2) electrostatic attraction;
(3) intrapore adsorption; (4) surface complexation; and (5) surface precipitation [123]. The
pH value of the solution has an important influence on the above-mentioned processes,
as it affects the surface charge of the zeolite and, consequently, the adsorption of trace
elements [124]. The presence of free cations in the zeolite skeleton allows ion exchange
with cations present in solution (mainly off-grid sodium participates in the exchange
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process) [125]. The effect of zeolites as contaminant sorbents is to bind harmful trace
elements into insoluble compounds or organic–mineral complexes [126], which are less
available to plants and immobilized in the soil in a safe form for a long time [127]. This
is confirmed by our study [128], in which the application of a molecular sieve (crystalline
aluminosilicate with a micropore size of 0.3 nm) reduced the concentration of iron (by 5%),
nickel (by 8%), cadmium (by 18%), chromium (by 22%), zinc (by 22%), copper (by 13%),
and manganese (by 44%) in the aerial parts of sunflowers grown in copper-contaminated
soil compared to the control. In contrast, in the roots of sunflowers, zeolite application to
soil contributed to a decrease in chromium and zinc content by 15% and 4%, respectively.
The beneficial effect of zeolite application on the immobilization of trace elements in
contaminated soil was also demonstrated by Cadar et al. [79]. They showed that a 10%
addition of this material to the soil reduced the bioaccumulation of Co, Cr, Cu, Mn, Ni, Pb,
and Zn in the roots and shoots of spinach, parsley, and lettuce, with the exception of Cd in
the spinach roots. Zeolite had an analogous effect on the content of nickel and copper in
oat roots [129]. Li et al. [130] also confirmed the usefulness of zeolite in the remediation
of lead-contaminated garden soil. The addition of natural zeolite (20 g kg−1) increased
soil pH, exchange capacity, and organic matter content and facilitated the formation of
soil aggregates. It also reduced the bioavailability of lead and its uptake by canola. At the
highest level of soil contamination with lead (2000 mg kg−1), the content of the analyzed
element in plant roots decreased by 49% and in shoots by 30% compared to the control
series. In a study by Wyszkowski and Brodowska [131], zeolite reduced the content of
zinc, manganese, and cobalt, and in the experiment by Kosiorek and Wyszkowski [132],
it reduced the content of copper and nickel in maize. The application of zeolite to soil
contaminated with trace elements also affects the structure and microbial activity by
increasing the activity of the enzyme dehydrogenase, thus improving soil condition and
fertility [133].

4.2.3. Gas Adsorption and Catalysis

All natural and synthetic zeolites can be used for the selective adsorption of compo-
nents of gas mixtures, their drying and purification, and odor control due to the variation
in pore size and the presence of cations in the structure [14]. They are used in intensive
livestock farming to reduce odors caused by H2S and NH3 [134,135]. They also reduce
the humidity in such areas [14]. The ammonium adsorption capacity of zeolites ranges
from 8.149 mg N g−1 to 15.169 mg N g−1 [136]. In addition, zeolite can be widely used
in combination with other additives to reduce gas emissions, salinity, and nutrient loss
during the composting process [137,138]. Wang et al. [139] evaluated the effect of adding
zeolite, wood vinegar, and biocarbon on the composting process of pig manure. After
50 days, the authors reported a reduction in methane (by 50.39–61.15%), carbon dioxide
(by 33.90–46.98%), and nitrous oxide (by 79.51–81.10%), and a reduction in ammonia loss
(by 64.45–74.32%) compared to the control (no additives). The positive effect of zeolite
addition on the composting process of dewatered fresh sludge has also been demonstrated
by Awasthi et al. [137]. The best results were observed in the series with a 30% zeolite
and 1% lime addition. This treatment significantly reduced ammonia, methane, nitrous
oxide emissions, and nitrogen losses (by 50%) compared to the control series. The addition
of zeolite increased the initial pH, had an activating effect on the total aerobic bacterial
population, and increased the porosity of the feedstock and the composting rate. Under
these conditions, compost maturity was achieved in 37% less time (35 days versus 56 days)
than in the control sample.

The specific size of the channels inside the structure of zeolites allows them to act
as molecular sieves and selectively adsorb components of gaseous mixtures. In addition,
physicochemical modification of zeolites makes it possible to obtain materials with desired
properties. Akyalcin et al. [140] conducted an experiment to develop a method for obtaining
hydrogen (H2) storage materials. The authors used clinoptilolite, which they treated with
various chemical compounds (HCl, C2H2O4, and HNO3). The authors evaluated the
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effects of the applied solution concentration (0.1–1.0 Mol L−1), temperature (60–80 ◦C),
and treatment time (2–4 h) on the hydrogen adsorption capacity of the zeolite. The best
results were observed after treatment with 0.5 Mol L−1 HNO3 at 80 ◦C for 2 h. Clinoptilolite
modified under these conditions exhibited a 7.3-fold higher H2 adsorption capacity relative
to the crude material. The better H2 adsorption capacity of the modified clinoptilolite
was associated with an increase in the zeolite’s specific surface area, volume, and size of
micropores, as well as an increase in the strength of the acid centers.

The catalytic properties of zeolites are related to their unique properties with respect
to the specific surface area, pore size (shape-selective catalysis), crystallinity, and thermal
stability. In addition, the presence of proton donor (bridged -OH; Brønsted acid centers),
electron acceptor (Al cross-linked tri-correlated; Lewis acid centers), and electrodonor (O2

−

and AlO4
2−; Lewis base (alkali) centers) groups enables zeolites to catalyze many reactions

on an industrial scale [25]. Clinoptilolite and mordenite are used as adsorber catalysts
for the removal of SO2 from gas and flue gas streams from factory stacks [141]. Zeolites
are also used in environmental catalysis as adsorbents and catalysts for the reduction of
nitrogen oxides (NOx) and volatile organic compounds (VOCs) [142]. The aforementioned
compounds are major air pollutants, and their source is the combustion of fossil fuels, both
stationary (power plants) and mobile (automobiles) [143], as well as metallurgy [142] and
nitric acid plants [144]. Most techniques to reduce the formed nitrogen oxides involve the
introduction of a reductant (e.g., ammonia or urea) into the waste gas and its reduction to
molecular nitrogen and water [145,146]. Due to its high efficiency and wide temperature
window (150–450 ◦C), the most widely used NOx abatement technology is selective catalytic
reduction using ammonia as the reducing agent (NH3-SCR) [147]. A commonly used
commercial catalyst in the NH3-SCR process is vanadium oxide supported on titanium
oxide (V2O5-TiO2) [148]. However, due to its unsatisfactory efficiency and the toxicity of
vanadium compounds to the environment [144], alternative catalysts are being sought for
the NH3-SCR process. Zeolite systems doped with transition metal ions (mainly copper
and iron) are promising [149].

The characteristics of zeolites that support their usefulness in the deNOx (NOx de-
struction) process are mainly high catalytic activity, favorable temperature window, high
thermostability, chemical resistance [150,151], and hydrothermal stability [152]. Zeolites
of great interest for application in the deNOx process include zeolite ZSM-5 [153,154],
SAPO-34 [155], Fe-Beta [156], or iron-modified clinoptilolite (after its application, the NOx
conversion rate exceeded 90%) [144]. Iron-enriched zeolite catalysts are mainly active at
medium, and high temperatures [150]. An example is the Fe-ZSM-5 zeolite, which shows
high activity in the temperature range of 300 ◦C to 450 ◦C [157]. However, at such high
temperatures, carbon deposition can occur and slow down the process [158]. Consequently,
copper-based zeolite catalysts, which are highly active at lower temperatures (<300 ◦C)
despite their lower hydrothermal stability, are of greater interest [150,159]. The deposition
of copper in the zeolite support (in the amount of 2–4 wt%) increases the deNOx efficiency
up to 95% [158]. The Cu-SSZ-13 catalyst has found commercial application in diesel engines
to reduce nitrogen oxides in the exhaust [160]. Paolucci et al. [161] presented the mechanism
of the deNOx process on Cu-SSZ-34, paying particular attention to the redox cycle of copper
forms that change their degree of oxidation: CuII ↔ CuI. The desired N2 product is formed
within two half-cycles (reduction and oxidation), which is a new insight into the mecha-
nism of the SCR reaction. Ammonia as a reductant in the SCR process can be replaced by
methane, which has an inert chemical character and lower cost [162]. Cobalt-ion-supported
zeolite-based systems catalyze the selective NO reduction reaction with methane in the
presence of water [163,164]. The addition of a second metal, such as palladium or platinum,
favorably affects their catalytic properties and improves the efficiency of the reduction
process [165,166]. Cobalt-enriched zeolites alone exhibit high NOx reduction activity and
nearly 100% reduction to nitrogen at temperatures above 400 ◦C [167,168]. In contrast, the
ZSM-5 zeolite based on cobalt, platinum, and nickel shows high activity in the catalytic
oxidation of VOCs such as benzene and toluene to CO2 and H2O [169].
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In terms of energy and heating solutions, zeolites can serve as components of heat ex-
changers [170]. They are used to store heat from solar radiation, off-peak electricity, or waste
heat and then use this energy in air temperature control or water heating processes [171].

4.2.4. Wastewater Treatment

In wastewater treatment technologies, zeolites are mainly used for the removal of
biogenic compounds (nitrogen and phosphorus), radioactive elements, and trace ele-
ments [172]. Natural zeolites allow the removal of ammonium nitrogen from wastew-
ater in amounts ranging from 0.4 to 25.5 mg g−1 adsorbent [173,174]. According to
Huang et al. [175], the equilibrium state of ammonium ion sorption on zeolites is reached
after about 60–120 min. The following parameters influence the efficiency of the process:
the contact time of the wastewater with the zeolites, the pH of the solution, the dose and
type of zeolites, and the presence of other ions in the solution [172]. Modification of zeolite
surfaces with alkalis and strong acids improves the sorption capacity of the mineral for
cations [90]. Liang and Ni [176] carried out a modification of a natural zeolite (55% was
clinoptilolite) to increase the absorption of ammonium ions. The modification included
pretreatment (grinding and sieving), treatment with 1.5 Mol L−1 sodium chloride (NaCl),
and calcination. After these processes, the specific surface area, total pore volume, and av-
erage pore size of the initial zeolite increased. The authors noted the most favorable effects
after the combined use of NaCl modification and calcination. Such treatment increased
the temperature resistance of the zeolite (from 150 ◦C to 400 ◦C) and also increased the
ammonium ion uptake rate (AIU) by 4.3 times compared to the raw zeolite. The effect of
clinoptilolite modification with ultrasound-assisted chemicals (NaOH, HCl, and FeCl3) on
the efficiency of ammonium ion removal from water was evaluated by Jahani et al. [177].
The highest ammonium removal efficiency (≥99%) was observed after the acid-modified
zeolite. In comparison, the original zeolite removed the contaminant with an efficiency of
51.66%. Importantly, the authors used the modified zeolite five times in the ammonium
removal process, and it showed stability in terms of its structural and adsorption properties.

Clinoptilolite shows high selectivity towards heavy metal cations in the following
order: Pb2+ > Cd2+ > Cu2+ > Co2+ > Cr3+ > Zn2+ > Ni2+ > Hg2+ [178]. For this reason,
Galletti et al. [179] conducted an experiment to evaluate the suitability of clinoptilolite
as a low-cost adsorbent for the removal of Zn2+ and Cd2+ ions from wastewater in a
batch system. Complete adsorption for both analyzed ions was achieved by the authors
at a solution pH of 4.5 and a sorbent concentration of 10 mg L−1. Interestingly, in the
presence of both ions, clinoptilolite showed a higher affinity towards Zn2+ than towards
Cd2+, i.e., the opposite of the single system. This was probably due to a higher partition
coefficient for zinc than for cadmium and a stronger binding of the zeolite to zinc. In
contrast, Senila et al. [180] showed that clinoptilolite, in addition to being an adsorbent
of contaminants, can also act as a carrier for biofilm formation and microbial growth
involved in biological wastewater treatment, which has a beneficial effect on the overall
process. The usefulness of silver-modified clinoptilolite in immobilizing Cr(VI) ions from
model wastewater was demonstrated by Panayotova [181]. In this study, the effect of the
reaction (pH 4, 6, and 8) and initial Cr(VI) ion concentration (10 and 20 mg L−1) on the
removal efficiency of the analyzed pollutant was evaluated. The studies were conducted at
a constant ratio of v:m = 100, i.e., 100 mL of wastewater per 1 g of zeolite. It was shown
that Cr(VI) immobilization increased with increasing pH values. The best results were
obtained after 45 min at pH 8 and an initial Cr(VI) concentration of 20 mg L−1. Under these
conditions, 82.4% of the chromium ions were removed from the model solution. In the case
of industrial wastewater, the analyzed zeolite allowed a reduction of Cr(VI), Cu(II), and
Zn(II) contents of more than 80%, 75%, and 70%, respectively, within 30 min. Zeolites can
also be used to remove phosphorus compounds from wastewater, but only at an acidic
pH. Under these conditions, sites on the zeolite surface become protonated, acquiring a
positive electrical charge and attracting phosphate ions. A chemical interaction then takes



Molecules 2024, 29, 1069 15 of 25

place between the zeolite surface and the phosphate molecules, which are immobilized [6].
This is confirmed by the studies of Zhang et al. [182] and Goscianska et al. [183].

Table 3 summarizes the directions of application of selected natural and synthetic zeolites.

Table 3. Examples of practical applications of selected zeolites in various industries.

Kind of Application Zeolite Type Reference

Removal of radionuclides (137Cs, 60Co, 90Sr, and
110Ag) from liquid radioactive waste by clinoptilolite

clinoptilolite [116]

Removal of radium isotopes from mine water Na-P1 [119]
Catalyst-adsorbent for fuel oil desulfurization faujasite [184]
Adsorption of NH3 faujasite [185]
Selective catalytic reduction of NOx with ammonia ZSM-5 [153]
Catalytic decomposition of NOx SAPO-34 [155]
Adsorption separation of CO2/CH4
(e.g., biogas upgrading) zeolite 5A [186]

Separation of H2S from Butane Gas Mixture 13X [187]
Industrial wastewater treatment (removal of Co2+,
Cu2+, Zn2+, Mn2+)

clinoptilolite [188]

Removal of organic pollutants (including toluene,
styrene, hexadecane, octadecane) from wastewater zeolite Y [189]

Removal of phosphorus compounds
from wastewater Na-P1 and Na-A [183]

Aromatic alkylation (petrochemical industry) MCM-22 [190]
Dewaxing catalysts for hydrocarbon feeds SAPO-11, ZSM-23 [191]
Trace element immobilization in soil clinoptilolite [79]
Reduction of NO3 leaching from soil and
optimization of plant growth chabasite [97]

Buffering soil pH, increasing cation exchange
capacity (CEC) clinoptilolite [88]

Increasing soil water holding capacity and
infiltration rate of mordenite mordenite [91]

Slow Release of Herbicides zeolite Y [192]
Retention of nutrients (N, P, and K) clinoptilolite [102]
Drug Delivery System (DDS) (antibiotic) Na-Y [193]
Drug Delivery System (DDS) (NO, antibacterial) zeolite A [194]
Bone tissue engineering ZSM-5 [195]

The application of a particular type of zeolite in a particular field is determined by the
properties it exhibits. These include the chemical nature of the surface, the strength of the
active sites, the porous structure, the number, type, and distribution of pores, or the molar
ratio of Si/Al. For example, Garshasbi et al. [187] used synthetic zeolite 13X in their study
of H2S separation from a butane gas mixture because of its high operating efficiency at low
partial pressures of the recovered components and high selectivity at temperatures up to
100 ◦C. In addition, it tends to adsorb smaller molecules due to its uniform pore entrance
diameter. In contrast, Hashemi et al. [189] used a synthetic faujasite or zeolite Y to remove
organic pollutants from wastewater, mainly because of its structural stability and large
available pore volume, as well as its Si/Al ratio of ≥1.5, which increases its affinity for
non-polar substances.

Clinoptilolite is the most abundant natural zeolite, forming extensive and abundant
deposits throughout the world. It has a two-dimensional structure of 8-ring and 10-ring
channels [116], and the Si/Al ratio is greater than 4, which makes it characterized by the high
thermal stability of the structure [140]. It is also characterized by a high ion exchange capacity
and a particular affinity for heavy metal cations. It can adsorb elements such as 137Cs, 90Sr,
and other radioactive isotopes from solution and hold them in its three-dimensional crystal
structure [117]. The low cost of clinoptilolite makes its use in the treatment of radioactive
waste very attractive [116]. In addition, synthetic zeolites are produced by hydrothermal
methods using fly ash as a raw material, which may contain elevated levels of radionuclides.
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This, in turn, requires monitoring of the natural radioactivity of synthetic zeolites during
their synthesis [119]. The aforementioned properties of clinoptilolite support its superior-
ity in the application of radionuclide sorption processes, as confirmed in their studies by
Osmanlioglu [116] or Lihareva et al. [117].

Clinoptilolite contains the exchangeable cations Na+, K+, Ca2+, and Mg2+ [140], which
allow ion exchange and are the basis of many processes, including drinking water treatment.
These properties of zeolite, as well as economic considerations, determined the use of this
natural zeolite in a study by Erdem et al. [188] to remove Co2+, Cu2+, Zn2+, and Mn2+ ions
from industrial wastewater.

In an experiment carried out by Goscianska et al. [183], zeolites Na-P1 and Na-A were
used to remove phosphorus compounds from wastewater, since synthetic zeolites obtained
from fly ash have a high cation exchange capacity and are able to capture phosphates from
solution in oxyanionic forms.

4.3. Other Applications of Zeolites

As mentioned earlier in this paper, zeolites are mainly used in traditional industries,
such as catalysts in the petroleum industry, molecular sieves, adsorbents in environmental
protection, or soil additives in agriculture. Their innovative and future applications seem
to be in medicine and biotechnology. According to Pavelić and Hadžija [196], natural
and synthetic zeolites have great potential for biomedical applications and can, therefore,
contribute to significant advances in the pharmaceutical industry and biology.

Zeolites have found medical applications in modern drug delivery systems [197],
wound healing [198], hemodialysis [199], and tooth root canal filling [200]. The adsorption
and ion exchange properties of natural clinoptilolite have been exploited in the development
of an anti-diarrheal drug [201] and a gastric acid neutralizer [202]. The aforementioned
chewable tablets proved effective in the treatment of people suffering from hyperacidity
due to gastric dyspepsia and gastric and duodenal ulcers. They had no side effects, did not
alter the structure of pepsin, and their physical and chemical properties remained stable
after three years of storage at room temperature [202].

4.3.1. Adsorption of Harmful Substances

Due to their detoxifying properties, zeolites are used as materials to remove harmful
substances such as pesticides, mycotoxins, or heavy metals. The neuroprotective potential of
clinoptilolite in mice exposed to Pb2+ was demonstrated by Basha et al. [203]. The experiment
consisted of intraperitoneal administration of lead acetate (100 mg kg bw−1 day−1) to three-
week-old mice for 21 days, followed by combined treatment with EDTA and clinoptilolite
(100 mg kg bw−1) for 2 weeks. The authors observed that this contributed to a reduction in
lipid peroxidation and the induction of antioxidant mechanisms, as manifested by an increase
in catalase, superoxide dismutase, glutathione peroxidase, and glutathione activity.

4.3.2. Tissue Engineering

Zeolites are also used in tissue engineering [204], in the formation of implant coat-
ings, and in the preparation of fungicidal dressings and antibacterial agents [194]. Their
porous nature and high biocompatibility make them ideal materials for bone tissue cell
adhesion and proliferation [205]. The high osteogenic potential of zeolite materials and
the ability to customize pore shape and size allow the creation of diverse scaffolds with
a wide range of biomedical applications. As implant coatings, zeolites increase bone con-
ductivity, aid in local elastic modeling, and reduce local inflammation [204]. As reported
by Banu et al. [206], zeolites may also help prevent postmenopausal bone loss. In their
experiment, Bedi et al. [195] prepared biocompatible zeolite coatings for use in biomedical
implants. Synthesized on commercially pure titanium and Ti6Al4V alloys, the MFI zeolite
coating had higher corrosion resistance than the titanium alloy and reduced the release of
cytotoxic Al and V ions into the surrounding tissue. In addition, it had excellent adhesion
to the substrate, which could potentially prevent implant loosening. The tested coating also
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reduced the mismatch between the module and the bone tissue and had a positive effect on
implant osteointegration. The aforementioned benefits of MFI zeolite coating indicate its
potential in dental and orthopedic applications to facilitate patient recovery after surgery.

4.3.3. Carriers of Bioactive Compounds

Zeolites, due to their high specific surface area, stability, and susceptibility to modifi-
cation, provide encapsulation of biologically active substances and their controlled release,
making them an excellent biomaterial for drug delivery systems [207]. Linares et al. [208]
conducted a study to use zeolite cancrinite as a carrier for acetylsalicylic acid and to deter-
mine the hydrolytic stability of the drug. They demonstrated that it is possible to administer
zeolite as an anti-acid drug and an acetylsalicylic acid carrier at the same time, since no loss
of individual pharmaceutical effect was observed for either substance analyzed. In an ex-
periment carried out by Arruebo et al. [193], nanocomposites of magnetite and commercial
Na-Y zeolite were formed by mechanical activation during high-energy milling at room
temperature. They were characterized by a high specific surface area (442.9 m2 g−1) and
cationic capacity, which allowed the adsorption, storage, and release of significant amounts
of doxorubicin, an antibiotic widely used in cancer chemotherapy. Such a drug carrier
can be directed directly to the tumor cells and released upon application of an external or
internal magnetic field. In this way, the therapeutic dose used to date can be reduced, and
the side effects associated with drug application can be reduced [209].

Zeolites can also be used as carriers for substances with antimicrobial properties. Nei-
drauer et al. [194] evaluated the usefulness of an antimicrobial ointment for the treatment
of acute and chronic wounds, in which the active ingredient was nitric oxide embedded
in zeolite A. The researchers observed that the zeolite, when subjected to ion exchange
with zinc ions and loaded with nitric oxide, gradually released it over 3 h after contact
with water in the skin. The minimum microbicidal concentrations (MMC) of the tested
ointment against bacterial organisms (5 × 107 c.f.u.) ranged from 50 to 100 mg, while
against the yeast C. albicans (5 × 104 c.f.u.), the MMC was 50 mg. After 8 h of exposure to
zeolite ointment, a reduction in bacterial (by 5–8 log cycles) and fungal (by 3 log cycles) cell
viability was observed compared to the control series. In addition to its therapeutic effect,
zeolite also promotes the healing process of bacterially infected wounds. The mechanism
of antimicrobial action of zeolites is not fully understood but is probably based on physical
adsorption, ion exchange, and indirect catalysis [210]. Due to their physical adsorption
capacity, zeolites immobilize microbial cells on their surface, leading to their death [211].
In contrast, the chemical interaction of zeolites with microorganisms involves the release
of positively charged metal ions (e.g., copper and silver) [212] or reactive oxygen species
(e.g., hydrogen peroxide) from their structures into the microenvironment [213], resulting in
damage to microbial cell walls and membranes, loss of membrane potential, and ultimately
cell destruction and death.

Zeolites, therefore, have many applications. Applications related to the reduction in
agriculture and environmental pollution appear to be particularly interesting.

5. Conclusions

The popularity of zeolites has been growing steadily since their first industrial ap-
plications (second half of the 20th century) until the present day, and research into their
properties, synthesis methods, and directions of use has not lost its relevance. This is
evidenced by the ever-increasing number of known zeolite structures described in the
IZA (International Zeolite Association) database. This environmentally and economically
friendly material remains a challenge for science, contributing to the further development
of highly active catalysts, adsorbents, and ion exchangers with high selectivity.

The development of methods for the chemical synthesis of zeolites and the modification of
their surface has led to materials with new porous structures and physical properties, contribut-
ing to almost unlimited possibilities for their commercial and environmental applications.
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Zeolites remain a material of the future. Increasing industrialization, climate change,
and many years of anthropopressure are expected to be the main factors influencing the
development of the market for the aforementioned materials due to the potential for the
use of zeolites in environmental protection and agriculture, as well as the growing demand
for innovative materials in biomedical processes, active substance delivery systems, and
other applications.
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