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Abstract: Incorporation of a trifluoromethyl group with 1,2,3-triazoles motifs was described. We
explored a click reaction approach for regioselective synthesis of 1-susbstituted-4-trifluoromethyl-
1,2,3-triazoles in which 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) reacts with commercial 2-bromo-
3,3,3-trifluoropropene (BTP) to form 3,3,3-trifloropropyne (TFP) in situ. Arising from merits associated
with the availability and stability of BTP, and the high efficiencies of CuI/1,10-Phenanthroline (Phen)-
catalyzed cycloaddition reactions of azides with alkynes, this readily performed click process takes
place to form the target 1,2,3-triazoles in high yields, and with a wide azide substrate scope. The
potential value of this protocol was demonstrated by its application to a gram-scale reaction.

Keywords: 4-trifluoromethyl-1,2,3-triazole; 2-bromo-3,3,3-trifluoropropene; copper-catalyzed; click
reaction; azide

1. Introduction

Since the time of its discovery in strategies to optimize the pharmacological properties
of drug candidates [1–4], incorporation of the trifluoromethyl group has become a promis-
ing approach to discover new and/or improve existing bioactive compounds [5–8]. Al-
though several valuable methods have been developed for the synthesis of trifluoromethyl-
substituted compounds [9–20], methods that incorporate this group in an efficient and
regiospecific manner remain in high demand [21–27], especially in the case of heterocyclic
compounds [28–35].

In the past 20 years, 1,2,3-triazoles have been shown to be superior substances in drug
discovery and biochemical applications [36–41]. As a result, considerable interest exists in
devising strategies to prepare C4-, C5- or 1-trifluoromethyl-substituted 1,2,3-triazoles [42–55].
Currently, several noteworthy reactions exist that regioselectively generate 5-trifluoromethyl-
1,2,3-triazoles [44–52], including trifluoromethylation of 5-iodotriazole [44,45]/5-stannyl
triazoles [46], copper(I)-catalyzed interrupted click reaction [47,48], 1,3-dipolar cycloaddi-
tion [53] and annulation of perfluoroalkyl N-mesylhydrazones [49] or trifluoroacetimidoyl
chlorides [50]. In contrast, much less attention has been given to the development of con-
cise methods to produce 4-trifluoromethyl-1,2,3-triazoles. Among efforts aimed at this goal
is the 2015 study by Ma and coworkers that demonstrated that silver-catalyzed cycload-
dition reactions of arylisocyanides with 2,2,2-trifluorodiazoethane can be used to prepare
1-substituted-1,2,3-triazoles possessing a trifluoromethyl group at C4 (Scheme 1a) [54]. Un-
fortunately, use of alkylsubstituted isocyanides in this process gave rise to the formation of
the corresponding 1,2,3-triazoles in low 28–54% yields. In 2021, Panish’s group developed
a method to generate 4-trifluoromethyl-1,2,3-triazoles through copper-catalyzed reaction of
4,4,4-trifluoro-3-(2-tosylhdrazineylidene)butanoate with aromatic amines (Scheme 1b) [55].
The scope of substrate explored in this effort suggests that alkyl amines are not compat-
ible with this approach. Although other multistep routes have been devised to prepare
4-trifluoromethyl-1,2,3-triazoles (Scheme 1c,d) [54,56–59], a facile method to produce 1-aryl-
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and 1-alkyl-substituted 4-trifluoromethyl-1,2,3-triazoles from low cost and commercially
available CF3-building blocks is still lacking.
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Click (cycloaddition) reactions of azides with alkynes are well-known, versatile pro-
tocols for construction of 1,2,3-triazoles [60–62]. Our continuing interest in the chemistry 
of 1,2,3-triazoles [63–67] and the importance of trifluoromethyl-substituted 1,2,3-triazoles 
encouraged us to evaluate the possibility of performing click reactions of 3,3,3-trifluoro-
propyne (TFP) with aryl- and alkyl-azides under mild and practical conditions. In con-
templating possible methods to carry out these click reactions, we recognized that 2-
bromo-3,3,3-trifluoropropylene (BTP) is a commercially available reagent [68–72], and 
that its [3+2]-cycloaddition reactions have been employed to produce CF3-substituted py-
razoles [73–76], -isoxazoles [77] and -pyrroles [78]. Particularly informative are the obser-
vations that BTP can be readily transformed to TFP by treatment with bases [79–83] like i-
Pr2NLi and 1,8-diazabicyclo[5.4.0]undec-7-ene DBU, and that compared to gaseous TFP, 
BTP is an inflammable, storage-stable and easily handled liquid. Regrettably, it was in-
scrutably neglected to utilize BTP in click reactions to synthesize the 4-trifluoromethyl 
1,2,3-triazoles. 

Based on this information, we investigated copper-catalyzed click reactions of azides 
with BTP in the presence of DBU. In these processes, we expected that in the presence of 
DBU, BTP would be transformed to TFP, which then would undergo copper-catalyzed 
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Click (cycloaddition) reactions of azides with alkynes are well-known, versatile proto-
cols for construction of 1,2,3-triazoles [60–62]. Our continuing interest in the chemistry of
1,2,3-triazoles [63–67] and the importance of trifluoromethyl-substituted 1,2,3-triazoles encour-
aged us to evaluate the possibility of performing click reactions of 3,3,3-trifluoropropyne (TFP)
with aryl- and alkyl-azides under mild and practical conditions. In contemplating possible
methods to carry out these click reactions, we recognized that 2-bromo-3,3,3-trifluoropropylene
(BTP) is a commercially available reagent [68–72], and that its [3+2]-cycloaddition reactions
have been employed to produce CF3-substituted pyrazoles [73–76], -isoxazoles [77] and
-pyrroles [78]. Particularly informative are the observations that BTP can be readily trans-
formed to TFP by treatment with bases [79–83] like i-Pr2NLi and 1,8-diazabicyclo[5.4.0]undec-
7-ene DBU, and that compared to gaseous TFP, BTP is an inflammable, storage-stable and
easily handled liquid. Regrettably, it was inscrutably neglected to utilize BTP in click reactions
to synthesize the 4-trifluoromethyl 1,2,3-triazoles.

Based on this information, we investigated copper-catalyzed click reactions of azides
with BTP in the presence of DBU. In these processes, we expected that in the presence of
DBU, BTP would be transformed to TFP, which then would undergo copper-catalyzed
cycloaddition with azides to form the target 4-trifluoromethyl substituted-1,2,3-triazoles
(Scheme 1e).

2. Results

The initial phase of this study was designed to evaluate the feasibility of the process
described above. We observed that reaction of phenyl azide (2a) and BTP (1) in N,N-
dimethylformamide (DMF) containing DBU or other bases at 100 ◦C did not generate the
desired 1,2,3-triazole 3a (Table 1, entry 1). The result indicated that 1,3-dipolar cycloaddi-
tion of BTP with azide with bases could not construct 1,2,3-triazoles. However, when CuI
was included in the mixture, reaction occurred to form 1-phenyl-4-trifluoromethyl-1,2,3-
triazole (3a) in a highly regioselective manner and <50% yields (1H- and 13C-NMR analysis)
(entry 2). Moreover, when the copper ligand 1,10-phenanthroline (Phen) is included and
CH3CN is utilized as solvent, the 3a-forming click process takes place at temperatures
>35 ◦C for 4 h but with a low 37% yield (entry 3). Importantly, at 65 ◦C, this reaction
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generates 3a at an excellent 95% yield (entry 6). The results of a screening study showed
that when less expensive copper salts (CuBr, CuCl, Cu(OAc)2, CuSO4·5H2O), and other
ligands (see in SI), solvents (entries 10–11, Table 1) or bases (see in SI) are utilized, the
process takes place with lower yields. As in the results of other copper-catalyzed click
reactions, Cu(I)/Phen was shown to have high catalytic efficiency in this process. Two sub-
stituted 1,10-phenanthrolines are included in the mixture as ligands to give similar yields
(entries 12 and 13). Furthermore, reduction in the amount of DBU to 2.0 eq. does not
impact the yield (entry 15), and a decrease in the amount of Phen to 5 mol% lowers the
yield only slightly (entry 16). The survey showed that the optimized condition for the
process forming 3a involves the use of CuI (10 mol%), Phen (10 mol%) and DBU (2.0 eq.) in
CH3CN at 65 ◦C for 4 h.

Table 1. Optimization of the Reaction Conditions 1.
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Entry CuI Ligand 2 Solvent Temp. (◦C) Time (h) Yield 3

1 none none DMF 100 16 n.d.
2 10 mol% none DMF 80 16 47
3 10 mol% Phen CH3CN 35 4 37
4 10 mol% Phen CH3CN 50 4 76
5 10 mol% Phen CH3CN 50 10 87
6 10 mol% Phen CH3CN 65 4 95
7 10 mol% Phen CH3CN 75 4 92
8 10 mol% Phen CH3CN 65 3 93
9 10 mol% Phen CH3CN 65 2 79

10 10 mol% Phen DMF 65 4 94
11 10 mol% Phen DMSO 65 4 51

12 4 10 mol% L1 CH3CN 65 4 93
13 5 10 mol% L2 CH3CN 65 4 93
14 10 mol% Phen CH3CN 65 4 69
15 10 mol% Phen CH3CN 65 4 95

16 6 5 mol% Phen CH3CN 65 4 87
1 Standard reaction conditions: 1 (1.25 mmol, 2.5 equiv), 2a (0.5 mmol, 1.0 equiv.), CuI (0.05 mmol, 10 mol%),
ligand (0.05 mmol, 10 mol%), solvent (4.0 mL), DBU (1.0 mmol, 2.0 equiv.), 65 ◦C, 4 h under air atmosphere. 2 Phen
= 1,10-Phenanthroline. 3 Isolated yield after column chromatography. 4 L1 = 4,7-Dimethoxy-1,10-phenanthroline.
5 L2 = 3,4,7,8-Tetramethyl-1,10-phenanthroline. 6 5 mmol% of CuI was loaded.

Next, the aryl azide scope of this process carried out under the optimized conditions
was evaluated. Firstly, aryl azides bearing both electron-donating and -withdrawing sub-
stituents at para-, meta- and ortho-positions react to produce corresponding 4-trifluoromethyl-
1,2,3-triazoles in high to excellent yields (75–99%, Table 2). These results indicate that the
efficiency of this transformation is not sensitive to electronic density and steric hindrance
of the aromatic substituents. Furthermore, disubstituted aromatic azides participate effi-
ciently in the click protocol (3u–3aa, 80–91%), and α-napththyl azide reacts smoothly to
form triazole 3ab in 84% yield.

To reveal its versatility, we determined if the scope of the click reaction includes
alkyl azides. In the effort, we observed that a wide variety of alkyl azides react with
BTP under the optimized reaction conditions to generate the corresponding 1-alkyl-4-
trifluoromethyl-1,2,3-triazoles in modest to high yields (Table 3). Of particular interest was
the contrast between the earlier finding that 4-trifluoromethyl-1-adamantyl-1,2,3-triazole is
generated at 52% by reaction of trifluorodiazoethane and adamantyl isonitrile [53] and our
observation that this substance (4d, Table 3) is produced at a 91% yield by reaction of BTP
with adamantyl azide. Obviously, this copper-catalyzed click process is more efficient to
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produce 4-trifluoromethyl 1,2,3-triazoles with high compatibility with functional groups.
In addition, both (1-azidoethyl) benzene and (2-azidoethyl) benzene react to form the
corresponding triazoles 4e and 4f, and reactions of arylmethyl azides with BTP produce
the corresponding products in excellent yields. Exceptions to this trend are found in
reactions of 4-pyridylmethyl and N-phthalimidylethyl azide that take place less efficiently.
The decreasing yields might be attributed to the coordination of the nitrogen-containing
substrates with the copper catalyst to affect the catalytic capacity.

Table 2. Substrate Scope of 1-Aryl-4-CF3-1,2,3-Triazoles 1,2.
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1 Reaction conditions: 1 (1.25 mmol, 2.5 equiv.), 2 (0.5 mmol, 1.0 equiv.), CuI (0.05 mmol, 10 mol%), Phen (0.05 mmol,
10 mol%), CH3CN (4.0 mL), DBU (1.0 mmol, 2.0 equiv.), 65 ◦C, 4 h under air atmosphere. 2 Isolated yields.

To illustrate the value of the newly developed method further, a gram-scale reaction of
2a with BTP was carried out under the standard conditions. Notably, this process formed
1,2,3-triazole 3a at a relatively high isolated yield of 88% (Scheme 2).

When heating the mixture of phenyl azide (2a), BTP (1) and bases, the product 3a
was not observed. We speculated that this process is not 1,3-dipolar cycloaddition of BTP
with azide. Based upon experiments and the literature [81–84], a possible pathway was
proposed as Scheme 3. Firstly, BTP is converted to TFP by treatment with DBU as the base.
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Then, TFP undergoes copper-catalyzed cycloaddition with azide to form trifluoromethyl
1,2,3-triazoles 3 or 4.

Table 3. Substrate Scope of 1-Alkyl-4-CF3-1,2,3-Triazoles 1,2.
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3. Materials and Methods
3.1. General Information

Melting points were measured with a Beijing-Taike X-4 apparatus without correction.
1H NMR, 19F NMR and 13C NMR spectra were recorded using a Bruker Advance 400 MHz
(Bruker, Faellanden, Switzerland) or a JEOL RESONANCE ECZ600R spectrometer (Ak-
ishima, Tokyo, Japan). Chemical shifts were reported in ppm from the solvent resonance
as the internal standard (CDCl3: δH = 7.26 ppm, δC = 77.16 ppm). Coupling constants (J)
are reported in Hertz (Hz). The following abbreviations are used to describe peak splitting
patterns when appropriate: s = singlet, d = doublet, dd = double doublet, ddd = double
doublet of doublets, t = triplet, dt = double triplet, q = quatriplet, m = multiplet. HRMS was
obtained on an LCMS-IT-TOF (Thermo Fisher Scientific, Waltham, MA, USA). Reagents
were received from commercial sources. Solvents were freshly dried and degassed ac-
cording to the published procedures prior to use. Isolation was performed by column
chromatography on silica gel (200~300 mesh) (Qingdao, China). 1H NMR, 19F NMR and
13C NMR spectra shown in the Supplementary Materials.

3.2. General Procedure for the Synthesis of Triazoles 3 and 4

A 10 mL crimp-seal veal was charged with an azide (2) (0.50 mmol), 2-bromo-3,3,3-
trifluoropropylene (1) (219 mg, 1.25 mmol), acetonitrile (4.0 mL), CuI (9.5 mg, 10 mol%),
1,10-phenanthroline (9.0 mg, 10 mol%) and DBU (152 mg, 1.0 mmol). The mixture was then
stirred at 65 ◦C for 4 h. After cooling to room temperature, the mixture was diluted with
ethyl acetate (40 mL), and then washed with water (10 mL × 4). The organic phase was
washed with saturated brine, dried by anhydrous Na2SO4 and concentrated in vacuo to give
a residue that was subjected to silica gel column chromatography (petroleum ether/ethyl
acetate) (V:V = 20:1 − 1:1.2) to give 1-substituted-4-trifluoromethyl-1,2,3-triazoles.

3.3. Data for Compounds of 4-Trifluoromethyl-1,2,3-Triazole

1-Phenyl-4-(trifluoromethyl)-1H-1,2,3-triazole (3a) [53].
White solid (101 mg, mp: 77–78 ◦C, yield: 95%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (400 MHz, CDCl3,
ppm) δ 8.29 (s, 1H), 7.74 (dd, J = 7.5, 2.1 Hz, 2H), 7.61–7.49 (m, 3H). 19F NMR (377 MHz,
CDCl3, ppm) δ −61.19 (s). 13C NMR (101 MHz, CDCl3, ppm) δ 139.57 (q, J = 39.6 Hz),
136.26, 130.10, 129.89, 121.73, 120.99, 120.49 (q, J = 267.9 Hz).

1-(o-Tolyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3b) [53].
Pale red oil (94 mg, yield: 83%). Isolated by column chromatography on silica gel

(petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (400 MHz, CDCl3, ppm) δ 8.08 (s,
1H), 7.45 (td, J = 7.2, 1.6 Hz, 1H), 7.41–7.37 (m, 1H), 7.36–7.30 (m, 2H), 2.20 (s, 3H). 19F
NMR (377 MHz, CDCl3, ppm) δ −61.01 (s). 13C NMR (101 MHz, CDCl3, ppm) δ 138.85 (q,
J = 39.5 Hz), 135.56, 133.81, 131.28, 126.60, 124.81, 120.57 (q, J = 267.8 Hz), 17.75.

1-(m-Tolyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3c) [53].
Yellowish solid (109 mg, mp: 59–61 ◦C, yield: 96%). Isolated by column chromatog-

raphy on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (400 MHz,
CDCl3, ppm) δ 8.30 (d, J = 2.5 Hz, 1H), 7.56 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.42 (t, J = 7.8 Hz,
1H), 7.31 (d, J = 7.5 Hz, 1H), 2.45 (s, 3H). 19F NMR (377 MHz, CDCl3, ppm) δ −61.20 (s).
13C NMR (101 MHz, CDCl3, ppm) δ 139.31 (q, J = 39.2 Hz), 136.23, 130.63, 129.87, 121.67 (d,
J = 5.3 Hz), 120.52 (q, J = 267.8 Hz), 118.07, 21.42. HRMS (ESI): calcd. for C10H8F3N3
[M + Na]+: 250.0563, found: 250.0557.

1-(p-Tolyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3d) [53].
Yellowish solid (113 mg, mp: 94–95 ◦C, yield: 99%). Isolated by column chromatog-

raphy on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (400 MHz,
CDCl3, ppm) δ 8.26 (s, 1H), 7.63–7.57 (m, 2H), 7.34 (d, J = 8.2 Hz, 2H), 2.43 (s, 3H). 19F NMR
(377 MHz, CDCl3, ppm) δ −61.18 (s). 13C NMR (101 MHz, CDCl3, ppm) δ 140.23, 139.48 (q,
J = 39.4 Hz), 134.00, 130.61, 121.61, 120.92, 120.54 (q, J = 267.8 Hz), 21.22.

1-(2-Fluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3e) [53].
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White solid (87 mg, mp: 57–58 ◦C, yield: 75%). Isolated by column chromatography
on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (400 MHz, CDCl3,
ppm) δ 8.41 (s, 1H), 7.99–7.92 (m, 1H), 7.55–7.48 (m, 1H), 7.40–7.30 (m, 2H). 19F NMR
(377 MHz, CDCl3, ppm) δ −61.25 (s), −123.77–123.86 (m). 13C NMR (101 MHz, CDCl3,
ppm) δ 153.51 (d, J = 251.5 Hz), 139.44 (q, J = 39.8 Hz), 131.42 (d, J = 8.0 Hz), 125.66 (d,
J = 3.8 Hz), 125.12, 124.61 (dd, J = 8.5, 2.9 Hz), 124.49 (q, J = 267.8 Hz), 117.43, 117.23.

1-(3-Fluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3f) [53].
White solid (90 mg, mp: 87–88 ◦C, yield: 78%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.34 (d, J = 0.8 Hz, 1H), 7.57–7.53 (m, 3H), 7.24–7.21 (m, 1H). 19F NMR (565 MHz,
CDCl3, ppm) δ −61.23 (s), −108.75 (dd, J = 14.0, 7.4 Hz). 13C NMR (151 MHz, CDCl3, ppm)
δ 163.24 (d, J = 250.0 Hz), 139.89 (q, J = 39.8 Hz), 137.37 (d, J = 9.9 Hz), 131.71 (d, J = 8.9 Hz),
121.70, 120.34 (q, J = 268.0 Hz), 116.95 (d, J = 21.2 Hz), 116.37, 108.96 (d, J = 26.4 Hz).

1-(4-Fluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3g) [53].
White solid (112 mg, mp: 84–85 ◦C, yield: 97%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.21 (s, 1H), 7.69–7.64 (m, 2H), 7.22–7.17 (m, 2H). 19F NMR (565 MHz, CDCl3,
ppm) δ −61.16 (s), −110.16–−110.24 (m). 13C NMR (151 MHz, CDCl3, ppm) δ 163.15 (d,
J = 250.9 Hz), 139.76 (q, J = 39.7 Hz), 132.57, 123.22 (d, J = 8.8 Hz), 121.90, 120.41 (q,
J = 267.9 Hz), 117.21 (d, J = 23.4 Hz).

4-(Trifluoromethyl)-1-(3-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3h).
White solid (136 mg, mp: 87–89 ◦C, yield: 97%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.41 (s, 1H), 8.04 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.75 (t,
J = 7.9 Hz, 1H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.26 (s), −62.86 (s). 13C NMR
(151 MHz, CDCl3, ppm) δ 140.13 (q, J = 39.8 Hz), 136.67, 132.93 (q, J = 33.6 Hz), 131.07,
126.63 (d, J = 3.5 Hz), 124.20, 121.77 (d, J = 3.1 Hz), 121.48 (q, J = 90.9 Hz), 120.31 (q,
J = 273.0 Hz), 118.09 (d, J = 3.8 Hz). HRMS (ESI): calcd. for C10H5F6N3 [M + H]+: 282.0460,
found: 282.0454.

4-(Trifluoromethyl)-1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3i) [53].
White solid (122 mg, mp: 137–138 ◦C, yield: 87%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.39 (s, 1H), 7.93 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H). 19F NMR (565 MHz,
CDCl3, ppm) δ −61.24 (s), −62.70 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 140.17 (q,
J = 39.7 Hz), 138.72, 132.02 (q, J = 32.8 Hz), 127.56 (d, J = 3.4 Hz), 125.28 (q, J = 272.6 Hz),
123.82 (q, J = 261.38 Hz), 121.65, 121.16.

1-(4-(Trifluoromethoxy)phenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3j) [59].
White solid (127 mg, mp: 115–116 ◦C, yield: 86%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.26 (s, 1H), 7.77–7.72 (m, 2H), 7.36 (d, J = 8.7 Hz, 2H). 19F NMR (565 MHz, CDCl3,
ppm) δ −57.94 (s), −61.24 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 149.95, 139.97 (q,
J = 39.8 Hz), 134.61, 123.04 (q, J = 259.7 Hz), 122.68, 122.61, 122.14 (q, J = 268.8 Hz), 121.79 (d,
J = 3.0 Hz).

1-(4-Methoxyphenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3k) [53].
Pale yellowish solid (104 mg, mp: 120–122 ◦C, yield: 86%). Isolated by column

chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR
(600 MHz, CDCl3, ppm) δ 8.21 (s, 1H), 7.62 (d, J = 9.0 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 3.87 (s,
3H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.05 (s). 13C NMR (151 MHz, CDCl3, ppm) δ
160.69, 139.42 (q, J = 39.5 Hz), 129.60, 122.73, 121.73, 120.55 (q, J = 267.7 Hz), 115.13, 55.79.

1-(2-Chlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3l) [53].
Yellowish oil (99 mg, yield: 80%). Isolated by column chromatography on silica gel

(petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm δ 8.32 (s,
1H), 7.65–7.60 (m, 2H), 7.55–7.47 (m, 2H). 19F NMR (565 MHz, CDCl3, ppm) δ −60.98 (s).
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13C NMR (151 MHz, CDCl3, ppm) δ 138.89 (q, J = 39.7 Hz), 134.02, 131.78, 131.08, 128.79,
128.33, 127.96, 125.45 (d, J = 2.4 Hz), 120.45 (q, J = 267.9 Hz).

1-(3-Chlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3m) [53].
White solid (105 mg, mp: 76–78 ◦C, yield: 85%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.33 (s, 1H), 7.80 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 11.4 Hz, 2H). 19F
NMR (565 MHz, CDCl3, ppm) δ −61.19 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 139.89 (q,
J = 39.7 Hz), 137.10, 136.07, 131.26, 130.05, 121.67, 121.37, 120.33 (q, J = 268.0 Hz), 119.03.

1-(4-Chlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3n) [53].
White solid (100 mg, mp: 126–128 ◦C, yield: 81%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.32 (s, 1H), 7.71 (d, J = 9.0 Hz, 2H), 7.57 (d, J = 9.0 Hz, 2H), 19F NMR (565 MHz,
CDCl3, ppm) δ −61.17 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 139.83 (q, J = 39.7 Hz),
135.89, 134.75, 130.35, 122.24, 121.68, 120.36 (q, J = 267.9 Hz).

1-(2-Bromophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3o).
Yellowish oil (126 mg, yield: 86%). Isolated by column chromatography on silica

gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm)
δ 8.27 (s, 1H), 7.78 (dd, J = 8.1, 1.3 Hz, 1H), 7.57–7.51 (m, 2H), 7.46 (td, J = 8.1, 1.8 Hz,
1H). 19F NMR (565 MHz, CDCl3, ppm) δ −60.93 (s). 13C NMR (151 MHz, CDCl3, ppm)
δ 138.77 (q, J = 39.7 Hz), 135.62, 134.21, 132.15, 128.88, 128.33, 125.51 (d, J = 2.0 Hz),
120.44 (q, J = 267.9 Hz), 118.67. HRMS (ESI): calcd. for C9H5BrF3N3 [M + Na]+: 313.9511,
found: 313.9506.

1-(3-Bromophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3p).
White solid (140 mg, mp: 77–79 ◦C, yield: 96%). Isolated by column chromatogra-

phy on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz,
CDCl3, ppm) δ 8.32 (s, 1H), 7.94 (s, 1H), 7.70 (dd, J = 8.1, 1.2 Hz, 1H), 7.64 (d, J = 8.1 Hz,
1H), 7.45 (t, J = 8.1 Hz, 1H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.17 (s). 13C NMR
(151 MHz, CDCl3, ppm) δ 139.89 (q, J = 39.8 Hz), 137.16, 132.99, 131.47, 124.19, 123.70,
121.69, 120.32 (q, J = 268.0 Hz), 119.54. HRMS (ESI): calcd. for C9H5BrF3N3 [M + Na]+:
313.9511, found: 313.9504.

1-(4-Bromophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3q) [53].
White solid (120 mg, mp: 134–136 ◦C, yield: 82%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.31 (s, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 9.0 Hz, 2H). 19F NMR (565 MHz,
CDCl3, ppm) δ −61.15 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 139.87 (q, J = 39.7 Hz),
135.24, 133.35, 123.81, 122.45, 121.59, 120.34 (q, J = 268.0 Hz).

4-(4-(Trifluoromethyl)-1H-1,2,3-triazol-1-yl)benzonitrile (3r) [59].
White solid (105 mg, mp: 160–161 ◦C, yield: 88%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.42 (s, 1H), 7.98–7.94 (m, 2H), 7.92–7.89 (m, 2H). 19F NMR (565 MHz, CDCl3, ppm)
δ −61.26 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 140.32 (q, J = 40.1 Hz), 139.07, 134.30,
121.93 (q, J = 265.1 Hz), 121.59, 121.28, 117.45, 113.81.

1-(3-Nitrophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3s).
Yellowish solid (110 mg, mp: 141–142 ◦C, yield: 88%). Isolated by column chromatogra-

phy on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.64 (t, J = 2.1 Hz, 1H), 8.44 (s, 1H), 8.40 (dd, J = 8.2, 1.9 Hz, 1H), 8.21 (dd, J = 8.1,
2.0 Hz, 1H), 7.83 (t, J = 8.2 Hz, 1H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.23 (s). 13C
NMR (151 MHz, CDCl3, ppm) δ 149.15, 140.66 (q, J = 39.3 Hz), 137.01, 131.54, 126.55, 124.45,
121.95 (q, J = 271.6 Hz), 121.72, 115.96. HRMS (ESI): calcd. for C9H5F3N4O2 [M + H]+:
259.0437, found: 259.0435.

Methyl 2-(4-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)benzoate (3t).
Yellowish oil (114 mg, yield: 84%). Isolated by column chromatography on silica gel

(petroleum ether/ethyl acetate = 8:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm) δ 8.17 (s,
1H), 8.07 (dd, J = 7.7, 1.6 Hz, 1H), 7.71 (td, J = 7.7, 1.6 Hz, 1H), 7.66 (td, J = 7.7, 1.3 Hz,
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1H), 7.49 (d, J = 7.8 Hz, 1H), 3.70 (s, 3H). 19F NMR (565 MHz, CDCl3, ppm) δ −60.87 (s).
13C NMR (151 MHz, CDCl3, ppm) δ 164.91, 138.61 (q, J = 39.5 Hz), 135.40, 133.26, 131.77,
130.94, 127.34, 125.66 (d, J = 2.1 Hz), 120.53 (q, J = 267.7 Hz), 52.73. HRMS (ESI): calcd. for
C11H8F3N3O2 [M + Na]+: 294.0461, found: 294.0454.

1-(3-Fluoro-4-methylphenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3u).
White solid (100 mg, mp: 111–113 ◦C, yield: 82%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.29 (s, 1H), 7.47 (d, J = 9.6 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H),
2.35 (s, 3H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.20 (s), −112.68–−112.79 (m). 13C
NMR (151 MHz, CDCl3, ppm) δ 161.46 (d, J = 248.3 Hz), 139.71 (q, J = 39.7 Hz), 135.05 (d,
J = 9.9 Hz), 132.79 (d, J = 6.0 Hz), 127.16 (d, J = 17.3 Hz), 121.61, 120.40 (q, J = 268.0 Hz),
116.06 (d, J = 3.6 Hz), 108.52 (d, J = 27.4 Hz), 14.47 (d, J = 2.9 Hz). HRMS (ESI): calcd. for
C10H7F4N3 [M + H]+: 246.0649, found: 246.0644.

1-(3-Bromo-4-methylphenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3v).
Yellowish solid (139 mg, mp: 87–89 ◦C, yield: 91%). Isolated by column chromatogra-

phy on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.28 (s, 1H), 7.94 (d, J = 2.2 Hz, 1H), 7.59 (dd, J = 8.2, 2.2 Hz, 1H), 7.42 (d, J = 8.2 Hz,
1H), 2.47 (s, 3H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.13 (s). 13C NMR (151 MHz,
CDCl3, ppm) δ 140.20, 139.74 (q, J = 39.7 Hz), 134.85, 131.91, 125.80, 124.77, 121.62, 120.38 (q,
J = 268.0 Hz), 119.69, 22.79. HRMS (ESI): calcd. for C10H7BrF3N3 [M + Na]+: 327.9668,
found: 327.9661.

1-(3-Chloro-4-fluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3w) [53].
White solid (112 mg, mp: 70–71 ◦C, yield: 84%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.31 (s, 1H), 7.87 (dd, J = 6.1, 2.7 Hz, 1H), 7.66 (ddd, J = 8.9, 3.8, 2.8 Hz, 1H),
7.36 (t, J = 8.5 Hz, 1H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.22 (s), −112.22 (dd, J = 13.1,
7.3 Hz). 13C NMR (151 MHz, CDCl3, ppm) δ 158.75 (d, J = 253.5 Hz), 139.99 (q, J = 39.8 Hz),
132.79 (d, J = 3.2 Hz), 123.77, 123.16 (d, J = 19.4 Hz), 122.04 (q, J = 268.18 Hz), 121.87,
120.96 (d, J = 7.8 Hz), 118.13 (d, J = 23.0 Hz).

1-(3-Bromo-4-fluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3x).
Yellowish solid (126 mg, mp: 95–98 ◦C, yield: 81%). Isolated by column chromatog-

raphy on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz,
CDCl3, ppm) δ 8.30 (s, 1H), 8.01 (dd, J = 5.7, 2.7 Hz, 1H), 7.71 (ddd, J = 8.9, 3.9, 2.7 Hz,
1H), 7.33 (dd, J = 8.8, 7.7 Hz, 1H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.19 (s),
−104.28 (dd, J = 13.0, 6.5 Hz). 13C NMR (151 MHz, CDCl3, ppm) δ 159.78 (d, J = 252.0 Hz),
139.98 (q, J = 39.8 Hz), 133.04, 126.55, 122.01–121.62 (m), 120.26 (q, J = 268.0 Hz), 117.98,
117.82, 110.80 (d, J = 23.0 Hz). HRMS (ESI): calcd. for C9H4BrF4N3 [M + H]+: 309.9597,
found: 309.9592.

1-(4-Bromo-3-fluorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3y).
Yellowish solid (127 mg, mp: 115–117 ◦C, yield: 82%). Isolated by column chro-

matography on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR
(600 MHz, CDCl3, ppm) δ 8.34 (s, 1H), 7.77 (dd, J = 8.6, 7.1 Hz, 1H), 7.64 (dd, J = 8.5, 2.5 Hz,
1H), 7.47 (ddd, J = 8.7, 2.4, 1.1 Hz, 1H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.25 (s),
−101.84 (t, J = 8.6 Hz). 13C NMR (151 MHz, CDCl3, ppm) δ 159.68 (d, J = 250.9 Hz),
140.08 (q, J = 39.9 Hz), 136.33 (d, J = 8.9 Hz), 135.10, 121.59 (d, J = 2.9 Hz), 120.21 (q,
J = 268.1 Hz), 117.26 (d, J = 3.8 Hz), 110.72 (d, J = 21.1 Hz), 109.75 (d, J = 27.3 Hz). HRMS
(ESI): calcd. for C9H4BrF4N3 [M + Na]+: 331.9417, found: 331.9411.

1-(3-Bromo-4-chlorophenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3z).
Yellowish solid (137 mg, mp: 111–113 ◦C, yield: 84%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz, CDCl3, ppm) δ
8.33 (d, J = 0.8 Hz, 1H), 8.07 (d, J = 2.5 Hz, 1H), 7.69 (dd, J = 8.7, 2.5 Hz, 1H), 7.65 (d, J = 8.6 Hz, 1H).
19F NMR (565 MHz, CDCl3, ppm) δ −61.20 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 140.04 (q,
J = 39.8 Hz), 136.34, 135.16, 131.66, 126.00, 124.07, 121.87–121.67 (d, J = 2.0 Hz), 120.69, 120.22 (q,
J = 268.2 Hz). HRMS (ESI): calcd. for C9H4BrClF3N3 [M + K]+: 363.8861, found: 363.8876.
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1-(3-Chloro-4-(trifluoromethoxy)phenyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3aa).
Yellowish solid (132 mg, mp: 72–74 ◦C, yield: 80%). Isolated by column chromatogra-

phy on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.4). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.35 (s, 1H), 7.96 (d, J = 2.6 Hz, 1H), 7.74 (dd, J = 8.9, 2.6 Hz, 1H), 7.54 (d, J = 8.8 Hz,
1H). 19F NMR (565 MHz, CDCl3, ppm) δ −57.83 (s), −61.29 (s). 13C NMR (151 MHz, CDCl3,
ppm) δ 146.09, 140.19 (q, J = 39.9 Hz), 135.01, 129.55, 123.89, 123.61, 122.22 (d, J = 260.9 Hz),
121.99 (d, J = 268.3 Hz), 121.77 (d, J = 2.9 Hz), 120.30. HRMS (ESI): calcd. for C10H4ClF6N3O
[M + K]+: 369.9579, found: 369.9582.

1-(Naphthalen-1-yl)-4-(trifluoromethyl)-1H-1,2,3-triazole (3ab) [53].
Pale red oil (110 mg, yield: 84%). Isolated by column chromatography on silica gel

(petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm) δ 8.24 (s,
1H), 8.06 (dd, J = 7.3, 2.2 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.62–7.59 (m, 1H), 7.59–7.54 (m,
3H), 7.51 (d, J = 8.5 Hz, 1H). 19F NMR (565 MHz, CDCl3, ppm) δ −60.78 (s). 13C NMR
(151 MHz, CDCl3, ppm) δ 139.01 (q, J = 39.6 Hz), 134.24, 132.65, 131.36, 128.57, 128.45,
128.30, 127.49, 125.89, 125.02, 123.95, 121.76, 120.60 (q, J = 267.9 Hz).

1-Octyl-4-(trifluoromethyl)-1H-1,2,3-triazole (4a).
Yellowish oil (106 mg, yield: 85%). Isolated by column chromatography on silica gel

(petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm) δ 7.87 (s,
1H), 4.40 (t, J = 7.3 Hz, 2H), 1.96–1.89 (m, 2H), 1.35–1.18 (m, 10H), 0.85 (t, J = 7.1 Hz, 3H). 19F
NMR (565 MHz, CDCl3, ppm) δ −61.01 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 138.89 (q,
J = 39.3 Hz), 123.04, 120.64 (q, J = 267.6 Hz), 50.99, 31.75, 30.23, 29.06, 28.94, 26.45, 22.65,
14.09. HRMS (ESI): calcd. for C11H18F3N3 [M + Na]+: 272.1345, found: 272.1339.

1-Nonyl-4-(trifluoromethyl)-1H-1,2,3-triazole (4b).
Yellowish oil (109 mg, yield: 83%). Isolated by column chromatography on silica

gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm) δ
7.87 (s, 1H), 4.40 (t, J = 7.3 Hz, 2H), 1.92 (dt, J = 14.6, 7.3 Hz, 2H), 1.35–1.18 (m, 12H), 0.85 (t,
J = 7.0 Hz, 3H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.01 (s). 13C NMR (151 MHz, CDCl3,
ppm) δ 138.89 (q, J = 39.2 Hz), 123.04, 120.64 (q, J = 267.5 Hz), 50.99, 31.86, 30.23, 29.36,
29.21, 28.98, 26.44, 22.70, 14.12. HRMS (ESI): calcd. for C12H20F3N3 [M + Na]+: 286.1502,
found: 286.1497.

1-Cyclohexyl-4-(trifluoromethyl)-1H-1,2,3-triazole (4c) [53].
Yellowish solid (88 mg, mp: 34–36 ◦C, yield: 80%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 7.84 (s, 1H), 4.51 (tt, J = 11.9, 3.9 Hz, 1H), 2.25 (dd, J = 13.8, 2.4 Hz, 2H), 1.95 (dd,
J = 11.1, 3.1 Hz, 2H), 1.76 (dt, J = 16.1, 12.4 Hz, 3H), 1.48 (dt, J = 13.2, 3.3 Hz, 2H), 1.33 (s,
1H). 19F NMR (565 MHz, CDCl3, ppm) δ −60.93 (s). 13C NMR (151 MHz, CDCl3, ppm) δ
138.63 (q, J = 39.2 Hz), 120.94, 120.74 (q, J = 267.7 Hz), 60.89, 33.59, 25.15, 25.09.

1-((3s,5s,7s)-Adamantan-1-yl)-4-(trifluoromethyl)-1H-1,2,3-triazole (4d) [53].
White solid (125 mg, mp: 146–148 ◦C, yield: 92%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 7.90–7.89 (s, 1H), 2.27 (dd, J = 21.5, 2.9 Hz, 9H), 1.84–1.76 (m, 6H). 19F NMR
(565 MHz, CDCl3, ppm) δ −60.81 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 138.11 (q,
J = 39.0 Hz), 120.87 (q, J = 267.8 Hz), 119.78, 60.92, 43.02, 35.83, 29.50.

1-(1-Phenylethyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (4e) [53].
White solid (114 mg, mp: 57–58 ◦C, yield: 95%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (400 MHz, CDCl3,
ppm) δ 7.69 (d, J = 7.4 Hz, 1H), 7.29 (q, J = 7.2, 6.7 Hz, 3H), 7.23–7.18 (m, 2H), 5.77 (q,
J = 7.1 Hz, 1H), 1.92 (d, J = 7.1 Hz, 3H). 19F NMR (377 MHz, CDCl3, ppm) δ −61.05 (s). 13C
NMR (101 MHz, CDCl3, ppm) δ 138.84, 138.80 (q, J = 39.1 Hz), 129.34, 129.11, 126.69, 122.21,
120.61 (q, J = 267.8 Hz), 61.16, 21.23. HRMS (ESI): calcd. for C11H10F3N3 [M + Na]+: 264.0719,
found: 264.0713.

1-Phenethyl-4-(trifluoromethyl)-1H-1,2,3-triazole (4f).
White solid (91 mg, mp: 59–61 ◦C, yield: 80%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 8:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
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ppm) δ 7.54 (s, 1H), 7.30 (dd, J = 7.9, 6.4 Hz, 2H), 7.28–7.25 (m, 1H), 7.08 (d, J = 7.0 Hz,
2H), 4.65 (t, J = 7.2 Hz, 2H), 3.23 (t, J = 7.2 Hz, 2H). 19F NMR (565 MHz, CDCl3, ppm) δ
−61.01 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 138.63 (q, J = 39.3 Hz), 136.41, 129.10, 128.71,
127.53, 123.55, 120.53 (q, J = 267.6 Hz), 52.27, 36.63. HRMS (ESI): calcd. for C11H10F3N3
[M + Na]+: 264.0719, found: 264.0715.

4-((4-(Trifluoromethyl)-1H-1,2,3-triazol-1-yl)methyl)pyridine (4g).
White solid (60 mg, mp: 104–105 ◦C, yield: 53%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 4:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 8.63 (s, 2H), 7.90 (s, 1H), 7.13 (d, J = 5.4 Hz, 2H), 5.61 (s, 2H). 19F NMR (565 MHz,
CDCl3, ppm) δ −61.07 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 150.89, 142.43, 139.70 (q,
J = 39.6 Hz), 123.62, 122.33, 120.30 (q, J = 267.9 Hz), 53.24. HRMS (ESI): calcd. for C9H7F3N4
[M + H]+: 229.0696, found: 229.0692.

1-(Thiophen-3-ylmethyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (4h).
White solid (100 mg, mp: 82–83 ◦C, yield: 86%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 7.76 (s, 1H), 7.40 (dd, J = 5.0, 3.0 Hz, 1H), 7.34 (d, J = 1.9 Hz, 1H), 7.03 (dd,
J = 5.0, 1.3 Hz, 1H), 5.61 (s, 2H). 19F NMR (565 MHz, CDCl3, ppm) δ −60.99 (s). 13C NMR
(151 MHz, CDCl3, ppm) δ 139.26 (q, J = 39.3 Hz), 133.86, 128.09, 127.08, 125.39, 122.98,
120.49 (q, J = 267.8 Hz), 49.55. HRMS (ESI): calcd. for C8H6F3N3S [M + Na]+: 256.0127,
found: 256.0122.

1-(Benzo[b]thiophen-2-ylmethyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (4i).
White solid (122 mg, mp: 127–129 ◦C, yield: 86%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 7.91 (s, 1H), 7.81 (dd, J = 8.4, 1.8 Hz, 1H), 7.78 (dd, J = 6.5, 2.5 Hz, 1H), 7.42–7.36 (m,
4H), 5.85 (s, 2H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.00 (s). 13C NMR (151 MHz,
CDCl3, ppm) δ 140.47, 139.45 (q, J = 39.6 Hz), 139.10, 135.38, 125.72, 125.67, 125.17, 124.28,
123.16, 122.65, 120.42 (q, J = 268.2 Hz), 49.86. HRMS (ESI): calcd. for C12H8F3N3S [M + Na]+:
306.0283, found: 306.0280.

2-(2-(4-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)ethyl)isoindoline-1,3-dione (4j).
White solid (84 mg, mp: 165–167 ◦C, yield: 54%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 4:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 7.98 (d, J = 0.9 Hz, 1H), 7.81 (dd, J = 5.4, 3.0 Hz, 2H), 7.72 (dd, J = 5.5, 3.0 Hz, 2H),
4.76 (dd, J = 12.0, 6.0 Hz, 2H), 4.19 (dd, J = 12.0, 6.0 Hz, 2H). 19F NMR (565 MHz, CDCl3,
ppm) δ −61.01 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 167.73, 139.31 (q, J = 39.5 Hz),
134.58, 131.65, 123.79, 123.73 (d, J = 2.6 Hz), 120.41 (q, J = 267.8 Hz), 48.63, 37.57. HRMS
(ESI): calcd. for C13H9F3N4O2 [M + Na]+: 333.0570, found: 333.0565.

1-(2-Phenoxyethyl)-4-(trifluoromethyl)-1H-1,2,3-triazole (4k).
White solid (102 mg, mp: 69–71 ◦C, yield: 80%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 20:1, Rf = 0.3). 1H NMR (400 MHz, CDCl3,
ppm) δ 8.09 (s, 1H), 7.31 (dd, J = 8.7, 7.4 Hz, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.88 (dd, J = 8.7,
0.9 Hz, 2H), 4.83 (t, J = 4.8 Hz, 2H), 4.38 (t, J = 4.8 Hz, 2H). 19F NMR (565 MHz, CDCl3,
ppm) δ −60.97 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 157.61, δ 139.21 (q, J = 39.7 Hz),
129.92, 124.44, 122.18, 120.54 (q, J = 267.7 Hz), 114.61, 65.98, 50.42. HRMS (ESI): calcd. for
C11H10F3N3O [M + Na]+: 280.0668, found: 280.0665.

1-(2,5,8,11-Tetraoxatridecan-13-yl)-4-(trifluoromethyl)-1H-1,2,3-triazole (4l).
Yellowish oil (120 mg, yield: 73%). Isolated by column chromatography on silica

gel (petroleum ether/ethyl acetate = 1:1.2, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm) δ
8.20 (s, 1H), 4.61 (t, J = 4.8 Hz, 2H), 3.87 (t, J = 4.8 Hz, 2H), 3.63–3.60 (m, 10H), 3.54–3.50 (m,
2H), 3.34 (s, 3H). 19F NMR (565 MHz, CDCl3, ppm) δ −60.86 (s). 13C NMR (151 MHz,
CDCl3, ppm) δ 138.80 (q, J = 39.3 Hz), 124.85, 120.72 (q, J = 267.6 Hz) 71.96, 70.63, 70.60,
70.55, 70.50, 69.03, 59.06, 50.75. HRMS (ESI): calcd. for C12H20F3N3O4 [M + Na]+: 350.1298,
found: 350.1292.

Ethyl 4-(4-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)butanoate (4m).
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Yellowish oil (80 mg, yield: 64%). Isolated by column chromatography on silica gel
(petroleum ether/ethyl acetate = 4:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3, ppm) δ 7.90 (s,
1H), 4.51 (t, J = 7.0 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 2.36 (t, J = 7.0 Hz, 2H), 2.26 (t, J = 7.0 Hz,
2H), 1.25 (t, J = 7.1 Hz, 3H). 19F NMR (565 MHz, CDCl3, ppm) δ −61.01 (s). 13C NMR
(151 MHz, CDCl3, ppm) δ 172.23, 139.07 (q, J = 39.3 Hz), 123.44, 120.54 (q, J = 267.6 Hz),
61.01, 49.87, 30.60, 25.41, 14.25. HRMS (ESI): calcd. for C9H12F3N3O2 [M + Na]+: 274.0774,
found: 274.0770.

1-Cinnamyl-4-(trifluoromethyl)-1H-1,2,3-triazole (4n).
White solid (102 mg, mp: 66–67 ◦C, yield: 81%). Isolated by column chromatography

on silica gel (petroleum ether/ethyl acetate = 10:1, Rf = 0.3). 1H NMR (600 MHz, CDCl3,
ppm) δ 7.88 (s, 1H), 7.35 (d, J = 7.1 Hz, 2H), 7.30 (t, J = 7.3 Hz, 2H), 7.27 (d, J = 7.1 Hz, 1H),
6.69 (d, J = 15.8 Hz, 1H), 6.29 (dt, J = 15.7, 6.9 Hz, 1H), 5.15 (dd, J = 6.8, 1.4 Hz, 2H). 19F
NMR (565 MHz, CDCl3, ppm) δ −60.97 (s). 13C NMR (151 MHz, CDCl3, ppm) δ 139.29 (q,
J = 39.3 Hz), 136.88, 135.17, 129.05, 128.95, 126.94, 122.96, 120.59, 120.56 (q, J = 267.8 Hz),
52.94. HRMS (ESI): calcd. for C12H10F3N3 [M + Na]+: 276.0719, found: 276.0714.

4. Conclusions

In the study chronicled above, we demonstrated an efficient protocol to produce
1-substituted-4-trifluoromethyl-1,2,3-triazoles from BTP with azides. In this reaction, cop-
per salt and ligands were necessary to catalyze the click process, and CuI (10 mol%)/Phen
(10 mol%) gave the best yield with 2.0 eq. DBU as the base in CH3CN at 65 ◦C. With the
mild reaction conditions, both aryl azide and alkyl azides bearing a range of electronically
and sterically different groups participate in this process to give good to excellent yields.
Moreover, this process can be conducted readily and on modestly large scales. Further stud-
ies are in progress to develop the chemistry of 4-trifluoromethyl-1,2,3-triazoles generated
using this click reaction platform.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29061191/s1, Table S1: Optimization of the Reaction Conditions;
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