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Abstract: The production of green hydrogen using water electrolysis is widely regarded as one
of the most promising technologies. On the other hand, the oxygen evolution reaction (OER) is
thermodynamically unfavorable and needs significant overpotential to proceed at a sufficient rate.
Here, we outline important structural and chemical factors that affect how well a representative nickel
ferrite-modified graphene oxide electrocatalyst performs in efficient water splitting applications.
The activities of the modified pristine and graphene oxide-supported nickel ferrite were thoroughly
characterized in terms of their structural, morphological, and electrochemical properties. This
research shows that the NiFe2O4@GO electrode has an impact on both the urea oxidation reaction
(UOR) and water splitting applications. NiFe2O4@GO was observed to have a current density of
26.6 mA cm−2 in 1.0 M urea and 1.0 M KOH at a scan rate of 20 mV s−1. The Tafel slope provided for
UOR was 39 mV dec−1, whereas the GC/NiFe2O4@GO electrode reached a current of 10 mA cm−2

at potentials of +1.5 and −0.21 V (vs. RHE) for the OER and hydrogen evolution reaction (HER),
respectively. Furthermore, charge transfer resistances were estimated for OER and HER as 133 and
347 Ω cm2, respectively.

Keywords: urea electrooxidation; nickel ferrite; water splitting; graphene oxide; fuel cells

1. Introduction

Urea electrooxidation is an important technology in the field of electrochemical energy
conversion. It enables chemists to convert urea, a renewable resource, into useful forms
of energy. This can be achieved through electrochemical oxidation, which involves the
application of an electrical current to a solution containing urea molecules [1–5].

Low-cost Ni-based catalysts, such as nickel hydroxides, nickel alloys, nickel chalcogen,
and nickel phosphide, have been developed for various applications, including hydro-
gen production, CO2 reduction, and water splitting [6,7]. These Ni-based catalysts have
demonstrated promising activity, stability, and selectivity results, making them a potential
substitute for expensive noble metal catalysts. It has been discovered that nickel hydroxides
(Ni(OH)2) are more promising candidates for UOR [7–9].

Researchers have recently created various green energy systems to efficiently produce
H2, including two-electrode electrolysis of water, water splitting using a photoelectrode
device, solar cells, thermoelectric devices, triboelectric nanogenerator, as well as other
devices like pyroelectric and the water–gas shift (WGS) reaction. These green energy
technologies may efficiently facilitate water splitting for H2 generation [10,11].

The hydrogen evolution reaction (HER) is a crucial element in water splitting devices
and significantly hinders energy efficiency because of slow reaction kinetics [12–15]. The
efficiency of the hydrogen evolution reaction is mostly influenced by the catalyst’s activity.
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Utilizing renewable energy sources like solar and water energy for electrochemical water
splitting is a sustainable method to generate green hydrogen. Commercial Pt/C is the most
effective catalyst for the hydrogen evolution process (HER) (2H+ + 2e−→H2) [16,17]. How-
ever, its high cost and limited availability have hindered its widespread use in industrial
production. Many research have focused on creating a novel catalyst for the hydrogen
evolution reaction using non-precious metals that are common on Earth [18,19].

The oxygen evolution reaction (OER) is a four-electron process. Despite the use of com-
mercial OER catalysts like RuO2 and IrO2 made of precious metals, their scarcity and high
cost have hindered their commercial use [20,21]. Research efforts are now concentrating
more on noble metal-free catalysts, including transition metal-based oxides, phosphates,
and hydroxides [22,23]. Currently, enhancing the efficiency of OER electrocatalysis includes
using metal doping to modify the electrical properties of the reactants. Transition metal
hydroxides, especially those involving oxygen, are being considered as a viable alternative
for electrocatalysts because of their cost effectiveness, abundant availability, environmental
friendliness, unique atomic structure, and strong catalytic capabilities [24,25]. Several
research investigations have shown that FeNi-based materials have outstanding catalytic
performance, making them attractive catalysts for enhancing OER activity [26–28].

Spinel oxides with a basic structure of AB2O4 (where A and B are metallic cations)
are exceptionally chemically and thermally robust substances suited for various catalytic
purposes. The most attractive anodic materials for electrochemical applications are 3d
transition metal oxides with a spinel phase [29–32].

One significant member of the graphene family is graphene oxide (GO). It has sev-
eral oxygen-containing functional groups. Additionally, despite having -COOH and
COH groups at the ends, the defective GO sheets have many COH and CO-C (epoxide)
groups [33,34]. These groups make GO hydrophilic by facilitating easy solvent dispersion,
resulting in long-term stability [35,36]. GO’s increased functional sites make it a prospective
modifying candidate for the attachment of a range of molecules to the surface due to its
special and beneficial characteristics, such as its extended surface area, low-cost production,
and ease of preparation of dispersions in aqueous media. Due to its special properties, GO
has also demonstrated promising results in several applications, including electrochemical
sensors, energy storage, fuel cells, and solar cells [37–42].

Graphene oxide and nickel ferrite were combined to improve urea electrooxidation.
Thus, comparative studies were investigated between nickel oxide, pristine nickel ferrite,
and modified nickel ferrite. Alternatively, various electrochemical methods were used to
describe the activity of the changed surfaces. Some kinetic parameters were calculated to
identify the best surface for urea electrooxidation. Additionally, the electrode’s performance
in applications for water splitting was examined. In alkaline media, the development of
hydrogen and oxygen was studied.

2. Results and Discussion
2.1. Material Characterization

The chemical structure of the produced NiFe2O4 was studied using the powder X-
ray diffraction method. Figure 1 displays the XRD chart of NiFe2O4. Based on reference
card JCPDS No.54-0964, NiFe2O4 exhibited seven distinct peaks at certain angles, namely
2θ = 22.5, 30.2, 35.3, 36.4, 43.2, 53.7, 57.4, and 63.2◦, which corresponded to miller indices
(111), (220), (311), (222), (400), (422), (511), and (440), respectively. The crystal system of
NiFe2O4 was believed to be cubic, with a crystal point group of m3m.

X-ray photon spectroscopy was also used to discover the oxidation states and types
of bonds between atoms. The XPS spectra of NiFe2O4 elements are shown in Figure 2a–d.
Ni2p spectra had distinctive peaks at 855.5 and 857.76 eV, which corresponded to the
2p3/2 Ni2+ and Ni3+ peaks, respectively, as shown in Figure 2a. Meanwhile, the satellite
of Ni 2p3/2 caused peaks to be observed at 862.1 and 865.62 eV [43]. Ni 2p1/2 and its
satellites were also responsible for the peaks observed at 873.15, 876.67, and 880.14 eV. The
XPS spectrum of Fe’s 2p core level is shown in Figure 2b. The spectrum revealed Fe 2p
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signals attributed to Fe 2p3/2 at 710.69 and 713.08 eV. Peaks for 2p3/2 satellites were also
observed at 716.47 and 719.88 eV [44]. Peaks at binding energies of 724.34, 727.79, and
732.61 eV were attributed to Fe 2p1/2 and its satellite. The peaks at 530.28 and 531.87 eV
in the O1s spectrum in Figure 2c could be correlated to the M–O of Ni and Fe oxygenated
bonds, while the peak located at a binding energy of 532.91 eV was attributed to water
molecules adsorbed on the catalyst surface [45]. The C1s spectrum is shown in Figure 2d.
C1s showed three distinctive peaks at binding energies of 283.83, 285.84, and 288.21 eV.
Additionally, the observed peaks at 283.83 and 285.41 eV were consistent with an extremely
thin carbonaceous layer typically present on most air-exposed sample surfaces. The third
peak indicated the presence of metal carbonate, which had a binding energy of 288.21 eV.
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Scanning electron microscope (SEM) was used to examine the surface morphology
of the modified electrode GC/NiFe2O4@GO electrode. (SEM). Figure 3a shows an SEM
image of the surface of the nickel ferrite embedded on the graphene oxide sheets. SEM
revealed the presence of catalyst particles with sizes ranging from 40 nm to 90 nm all
over the surface. The smaller size structures were aggregated to form the larger size
particles. Moreover, the elemental distribution through the electrode surface was revealed
in Figure 3c–h. Furthermore, transmitted electron microscope (TEM) was employed to
find out the specific distribution of the electrocatalyst on the GO sheet. As represented in
Figure 3b, NiFe2O4 crystal observed on the top of GO sheets confirmed the assumption
of nickel ferrite’s surface stability on GO due to oxygenated functional groups. By the
XRD analysis results, which confirmed the presence of NiFe2O4 as the primary phase in
the catalyst structure, the EDAX measurement of Figure 3i demonstrated the presence of
Ni, Fe, and O with the expected ratio of 1:2:4. The catalyst’s elemental surface mapping
revealed that Ni and Fe were evenly distributed across the electrode’s surface.
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2.2. Electrochemical Urea Oxidation

Cyclic voltammetry, an effective electrochemical method, was employed to examine
the redox process that showed the effectiveness of the produced electrocatalysts. Before
the measurement, Ni(OH)2/NiOOH active species were produced by repeatedly perform-
ing 50 CVs in 1.0 M KOH at a scan rate of 50 mVs−1. As a result, the thickness of the
active species NiOOH increased as the number of successively repeated CVs increased.
In the presence of urea, the electrocatalytic activity of the GC/NiO, GC/NiFe2O4, and
GC/NiFe2O4@GO electrocatalysts were compared for urea electrocatalysis. Thus, different
modified electrocatalysts were studied by cyclic voltammetry, as shown in Figure 4, in a
solution of 1.0 M urea and 1.0 M KOH at a scan rate of 20 mV s−1 with a potential window
of 0 to 600 mV. All of the modified GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO showed
two oxidation peaks at a potential range of 420 to 450 mV (vs. Ag/AgCl). The electrode
activity was measured as a function of anodic oxidation current.

Consequently, the anodic oxidation current densities were provided as 13.8, 17.2, and
26.6 mA cm−2 for GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO, respectively. Comparing
the pristine NiO and nickel ferrite, the higher activity of spinel oxide was attributed to the
bimetallic catalyst. On the other hand, grafting the GO with nickel ferrite enhanced the
catalytic activity of the electrode toward the UOR. High surface area along with extended
functional groups increased the adsorption step for UOR. Also, the oxygenated functional
group increased the stability of the electrocatalyst on the electrode surface.
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Figure 4. CVs of the different modified electrodes in 1.0 M urea + 1.0 M KOH at 20 mV s−1.

The presence of Fe along with Ni enhanced the UOR by changing the electronic
properties and charge transfer properties of the Ni-based electrodes. The rule of catalyst
support is important for an efficient catalysis process. Graphene oxide is considered a
carbon-based catalyst with a high surface area. The GO’s functional groups facilitated urea
adsorption on the electrode surface. The output anodic current was within the acceptable
data published in the literature [46,47]. As a result, Table 1 compares various surfaces for
the electrooxidation of urea and shows how different analyte concentrations and scan rates
were considered.

Table 1. Different parameters estimated for the prepared modified electrodes.

GC/NiO GC/NiFe2O4 GC/NiFe2O4@GO

Anodic oxidation current (mA cm−2) 13.8 17.2 26.6

Diffusion coefficient (D)/(cm2 s−1) 6.41 × 10−6 4.27 × 10−5 5.08 × 10−5

Tafel Slope (mV dec−1) 75 69 39

Charge transfer coefficient (α) 0.86 0.85 0.74

Surface coverage(Γ)/(mol cm−2) 3.98 × 10−8 4.71 × 10−8 5.49 × 10−8

Onset potential (V) 0.34 0.32 0.33

The study also evaluated how the GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO
modified electrodes responded electrochemically to changes in fuel concentration. As
shown in Figure 5a–c, the effect of varying urea concentration (0.05 to 1.0 M) was studied
using a scan rate of 20 mV s−1 in a solution containing 1.0 M KOH. The anodic peak
current increased along with the concentration of urea. These findings demonstrated
the potential of the suggested composite for urea electrooxidation in fuel cells, hydrogen
production, and wastewater treatment where urea concentrations vary noticeably. The
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relationship between the urea concentration and the anodic peak current is shown in
Figure 5d. According to the study’s findings, the proposed composite can be a good
replacement for urea electrooxidation because of its versatility in how well it operates at
various urea concentrations. The anodic current of modified NiFe2O4@GO composite was
compared with other nickel-based electrodes in the literature, as reported in Table 2.
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Table 2. Comparison between different surfaces used for UOR.

Electrode
Fuel

Concentration
(M)

Electrolyte
Concentration

(M)

Scan Rate
(mV s−1)

Oxidation Current
(mA cm−2) Reference

GC/NiFe2O4@GO 1.0 1.0 20 26.6 This work

Ni0.85Se/rGO 0.5 1.0 50 10 [48]

Ni0.9Cu0.1 0.3 0.5 20 32 [49]

IN738 supper alloy 1.0 1.0 20 12 [50]

NiO/Fe3O4@chitosan 0.3 0.5 20 34 [51]

Ni(OH)2 meshes 0.3 1.0 50 20 [52]

As shown in Figure 6a–c, changing the scan rate affected the electrochemical behavior
of the GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO electrodes in 1.0 M urea and 1.0 M
KOH ranging from 5 to 200 mV s−1. Using the Randles–Sevcik equation (Equation (1)),
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the relationship between the scan rate’s square root and anodic peak current was plotted
to determine the diffusion coefficient. The findings revealed that the oxidation current
increased with the scan rate.

Ip = 2.99 × 105 n (1 − α) noA Co D0.5ν0.5 (1)

where Ip is the maximum oxidation peak current, n is the number of electrons, no is the
number of electrons of the rate-determining step, v is the scan rate, and Co is the urea
concentration. The electrode’s surface area was equal to 0.0707 cm2, and its diffusion
coefficient (D) was in (cm2 s1). The linear relationship between the current Ip at the anodic
peak and the square root (ν) of the sweep rate was used to estimate the diffusion coeffi-
cient value, as shown in Figure 6d. As a result, all electrocatalysts were prepared using a
diffusion-controlled kinetics process to oxidize urea. The diffusion coefficients were pro-
vided as 6.41 × 10−6, 4.27 × 10−5, and 5.08 × 10−5 cm2 s−1 for GC/NiO, GC/NiFe2O4, and
GC/NiFe2O4@GO, respectively. The diffusion coefficient value of the GC/NiFe2O4@GO
electrode reflected its good electrocatalytic activity for urea oxidation.
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In Figure 7, CVs of the modified electrodes for the Ni(OH)2/NiOOH redox pair,
namely GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO, were plotted as a function of
scan rate at lower values ranging from 5 to 200 mV s−1. Because of the electrochemical
activity of retained redox species at the surface of the modified electrocatalysts, straight
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line relationships were observed. The surface coverage (Γ) values of electrocatalysts could
be estimated using Equation (2) [50] and the slope values of the obtained linear plots:

Ip =
n2F2

4RT
νAΓ (2)

where Ip is the current of the urea oxidation peak, A is the electrode surface area, and Γ is
the redox species surface coverage in mol cm2. Table 1 shows the average Γ value for the
anodic and cathodic sides of all prepared, GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO
electrocatalysts. Figure 7d shows the linear relationship between the scan rate versus the
peak current to calculate the surface coverage.

Molecules 2024, 29, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 7. CVs of (a) GC/NIO, (b) GC/NiFe2O4, and (c) GC/NiFe2O4@GO in 1.0 M KOH at a wide scan 
range. (d) Linear relationship between scan rate vs. anodic and cathodic currents. 

Therefore, a modified electrode with graphene oxide GC/NiFe2O4@GO electrocata-
lysts had a comparable nickel surface coverage value compared to a pristine NiFe2O4 elec-
trode. The surface coverage values are reported in Table 1. 

As shown in Figure 8, a chronoamperometry (CA) test was conducted to determine 
the stability of the synthesized electrocatalysts by applying a constant potential to a 1.0 M 
KOH and 1.0 M urea solution for 8 h. Thus, the durability of the different electrodes 
(GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO) was studied. The electrodes showed high 
long-term stability toward urea oxidation. The current retention was recorded as 73, 79, 
and 88% of the initial current values for GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO, re-
spectively. The presence of an oxygenated functional group in graphene oxide enhanced 
the oxidation stability by increasing the interaction between the support layer and metal 
oxides.  

Figure 7. CVs of (a) GC/NIO, (b) GC/NiFe2O4, and (c) GC/NiFe2O4@GO in 1.0 M KOH at a wide
scan range. (d) Linear relationship between scan rate vs. anodic and cathodic currents.

Therefore, a modified electrode with graphene oxide GC/NiFe2O4@GO electrocat-
alysts had a comparable nickel surface coverage value compared to a pristine NiFe2O4
electrode. The surface coverage values are reported in Table 1.
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As shown in Figure 8, a chronoamperometry (CA) test was conducted to determine the
stability of the synthesized electrocatalysts by applying a constant potential to a 1.0 M KOH
and 1.0 M urea solution for 8 h. Thus, the durability of the different electrodes (GC/NiO,
GC/NiFe2O4, and GC/NiFe2O4@GO) was studied. The electrodes showed high long-term
stability toward urea oxidation. The current retention was recorded as 73, 79, and 88% of
the initial current values for GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO, respectively.
The presence of an oxygenated functional group in graphene oxide enhanced the oxidation
stability by increasing the interaction between the support layer and metal oxides.
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Tafel graphs for urea electrooxidation were generated using the redesigned electrode
from quasi-steady state polarization for GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO
in a solution containing 1.0 M urea and 1.0 M KOH. The relationship between the anodic
current and overpotential logarithm is shown in Figure 9a. To determine the kinetics of the
electrode reactions, Equation (3) is frequently used in electrochemical studies. The Tafel
slope value is a crucial parameter that expects the speed of electrons to transfer across
the electrode surface. Using the Tafel slope values (75, 69, and 39 mV dec−1 for GC/NiO,
GC/NiFe2O4, and GC/NiFe2O4@GO electrodes, respectively) and the following equation,
one can calculate the electron transfer coefficient:

Tafel Slope =
2.303 RT
(1 − α) nF

(3)
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F is Faraday’s constant, T is the absolute temperature, R is the universal gas constant,
and n is the number of electrons. Therefore, the calculated electron transfer coefficients
were 0.86, 0.85, and 0.74 for GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO electrodes,
respectively.

Compared to other modified electrodes, this finding suggested that the UOR process
is kinetically preferred over the GC/NiFe2O4@GO electrode.

For various modified glassy carbon electrodes (GC/NiO, GC/NiFe2O4, and GC/
NiFe2O4@GO), the electrochemical impedance experiment was conducted using a 1.0 M
urea and 1.0 M KOH solution at a constant AC potential of 480 mV. Figure 9b displays the
Nyquist plots for several modified surfaces. The Nyquist plots comprised two slightly offset
overlapping capacitive semicircles in the high and low-frequency regions. An equivalent
circuit inset in Figure 9b was created to fit and simulate the EIS results. The electrode’s
outer and inner layers were represented by the R2 charge transfer resistance for the outer
layer, the R3 charge transfer resistance for the inner layer, the C1 capacitance for the
inner layer, and the C2 capacitance for the outer layer. Table 3 provides the values for
various EIS parameters. When compared to the other electrodes, it was found that the
GC/NiFe2O4@GO electrode exposed the lowest charge transfer resistance; thus, the quicker
the electron transfer occurred during the oxidation process. The electrode with the highest
activity displayed a minor diameter, which was correlated with the semi-circuit’s diameter
and electrode activity. Therefore, the previously mentioned data successfully demonstrated
the activity toward urea electrooxidation based on the EIS results.

Table 3. EIS fitting parameters for Nyquist plots of different modified surfaces.

Electrode. Rs (Ω) Rct (Ω) C1 (F) R2 (Ω) C2 (F)

GC/NiO 18.063 592 0.00008864 2575 0.00025987

GC/NiFe2O4 19.608 37.492 0.00021398 1242 0.00045225

GC/NiFe2O4@GO 15.131 25.889 0.000292024 1022 0.00065193

2.3. Water Splitting Studies

Oxygen evolution significantly converts molecular energy into electrical energy in
fuel cells and batteries. It is possible to carry out the anticipated oxygen evolution reaction
mechanism via a number of different electrochemical pathways. Usually, two distinct
electrochemical mechanisms are used to convert hydrogen oxide to molecular oxygen. The
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adsorption of [OH]− onto the electrode surface is the first stage, which produces the OHads
species. The second process entails the medium’s interaction with the adsorbed hydroxide
group to produce Oads. The bound atomic oxygen must be released to produce molecular
oxygen. The mechanism of OER has been described as the following:

(Ni − Fe) + OH− ↔ (Ni − Fe)OH + e− (4)

(Ni − Fe)OH + OH− ↔ (Ni − Fe)O− + H2O (5)

(Ni − Fe)O− ↔ (Ni − Fe)O + e− (6)

2(Ni − Fe)O ↔ 2 (Ni − Fe) + O2 + 2e− (7)

Figure 10a shows the OER measured over GC/NiO, GC/NiFe2O4 and GC/NiFe2O4@GO
in 1.0 M KOH. In comparison to GC/NiO equivalents, high current density for OER was
observed in the GC/NiFe2O4 and GC/NiFe2O4@GO samples at a lower potential. Addi-
tionally, the modified electrodes’ current density reached 10 mA cm−2 at potentials of 1.7,
1.6, and 1.5 V (vs. RHE) for GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO, respectively.
Thus, graphene oxide played an essential role in nickel iron composite for enhancing the
oxygen evolution ability of the surface. Thus, graphene oxide has been reported in the
literature to enhance the OER by shifting the potential to a less positive value [53–55]. As de-
picted in Figure 10b, Tafel plots of the oxygen evolution reaction for GC/NiO, GC/NiFe2O4,
and GC/NiFe2O4@GO electrodes were examined to determine the influence of electrode
composition on the kinetics of electrooxidation. At a scan rate of 1 mV s−1, Tafel plots were
measured in a 1.0 M KOH solution. Therefore, Tafel slopes were provided as 186, 172 and
162 mV dec−1 for GC/NiO, GC/NiFe2O4 and GC/NiFe2O4@GO electrodes, respectively.
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Over GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO modified surfaces, hydrogen
evolution processes were investigated by linear sweep voltammetry (Figure 11a) in 1.0 M
KOH solution. Thus, the higher catalytic activity of the binary catalyst, like nickel ferrite,
was observed by shifting the overpotential of hydrogen evolution toward lower values.
Additionally, the electrode activity was enhanced by graphene oxide compared to the
pristine nickel ferrite sample owing to the extended surface area and adsorption ability of
graphene oxide. The following equation can be used to determine the HER in a very basic
environment [56]:

2 H2O + 2e− ↔ 2 Hads + 2 OH− Volmer Step-water dissociation (8)
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2 Hads ↔ H2 Tafel step (9)

H2O + Hads + e− ↔ H2 + OH− Heyrovsky step (10)
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electrodes. (b) Tafel slopes of the HER for different surfaces.

The first stage of the HER process involves the adsorption of hydrogen ions (Volmer
step) on the electrode surface. Next, a hydrated proton in the medium forms a covalent link
with an adsorbed hydrogen atom on the surface (Tafel step) or recombines with two existing
hydrogen ions on the surface (Heyrovsky step). To determine whether the first or second
phase is the rate-determining phase in hydrogen evolution reactions, Tafel polarization
curves using linear sweep voltammetry can be employed. The Tafel diagram of different
electrodes, GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO, is presented in Figure 11b.
Consequently, Tafel slopes were calculated as 127, 119, and 104 mV dec−1 for GC/NiO,
GC/NiFe2O4 and GC/NiFe2O4@GO electrodes, respectively.

At the modified GC/NiFe2O4@GO electrode, the development of hydrogen and oxy-
gen evolution reactions were examined using electrochemical impedance (EIS). Figure 12a
shows the Nyquist curve for the modified electrode GC/NiFe2O4@GO in the presence of
KOH at an AC potential of 1.8 V (vs. RHE). The GC/NiFe2O4@GO sample demonstrated
a semicircle for the oxygen evolution reaction. Thus, the Nyquist plot’s semicircle corre-
sponded to the charge transfer procedure. Using NOVA 2.15 software, oxygen evolution
and EIS data were fitted. Solution resistance (Rs) and charge transfer resistance (Rc) are the
two resistance elements that express the fitting circuit for the charged electrode. Addition-
ally, charge transfer resistance (Rc) is connected to capacitance (C) and diffusion element
(Warburg element), as represented in circuit no. 3 (Figure 12a). However, the provided
solution and charge transfer resistances were 3.1 and 133.4 Ohm cm2, respectively. The HER
was utilized by EIS at a constant AC potential of −0.4 V vs. RHE, as shown in Figure 12b.
The modified electrode GC/NiFe2O4@GO exhibited identical semicircle Nyquist plots with
varying resistance magnitudes. According to the EIS data, electrochemical production
can be approximated as a pure charge transfer process. The electrode showed one charge
transfer circuit (see circuit no. 4), which consisted of solution resistance, with one resistance
parallel to the capacitor (C) element. However, the resistance of the fitted data showed
that solution resistance and charge transfer resistance equaled 7.4 and 347 Ohm cm2, re-
spectively. Therefore, the lower estimated resistance reflected the higher activity of the
electrode toward oxygen and hydrogen evolution reactions. The fitting circuit parameters
for several modified electrodes, GC/NiFe2O4@GO for hydrogen and oxygen evolution, are
shown in Table 4.
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Table 4. EIS fitting parameters for Nyquist plots of oxygen and hydrogen evolution reactions.

Electrode Rs (Ω cm2) Rct (Ω cm2) C1 (F) W

Oxygen 3.1 133.4 0.0006864 0.00059069

Hydrogen 7.4 347 0.0004173 -

3. Experimental
3.1. Preparation of Graphene Oxide (GO)

Hummer’s technique was used to create the graphene oxide [57]. In a nutshell, 5% HCl
was applied to powdered graphite flakes during the initial stages of preparation. After that,
the solution was placed in an ice bath, to which H2SO4 (98%) and KMnO4 were slowly
added while being stirred for two hours. Distilled water was mixed into 30% H2O2 solution
to stop the graphite oxidation reaction. Finally, excess metal and salts were removed from
the graphene oxide by filtration and several washes with 10%(HCl) solution.

3.2. Preparation of Nickel Ferrite (NiFe2O4)

The sol-gel approach was used to create NiFe2O4 ferrite [58]. First, suitable quantities
of metal nitrates and citric acid were dissolved in a small amount of deionized water.
Nitrates had a molar ratio of 1:2 and were in a 1:1 ratio with citric acid. A small amount
of polyvinylpyrrolidone (PVP) was then added to the formed solution. The final solution
was stirred magnetically for 4 h at room temperature, and any remaining water was then
evaporated in a vacuum rotary evaporator at 60 to 80 ◦C to form a gel. The obtained gel
was dried for approximately 10 h in an oven at 80 ◦C. Finally, brown nickel ferrite powder
was produced by a calcinating sample in a furnace at 700 ◦C for 6 h.

3.3. Electrochemical Measurements

The electrode was prepared by casting 20 mM of catalyst ink on a glassy carbon
electrode (GC) with a 3 mm diameter. The catalyst ink was prepared by suspending 20 mg
of catalyst (i.e., NiO, NiFe2O4, or NiFe2O4@GO) in 1 mL of dimethyl formamide (DMF).
Cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy
were used in the electrochemical studies. Autolab PGSTAT128N was employed in all
electrochemical studies. NOVA 2.15 electrochemistry software was used to analyze the
impedance spectrum (Version 2.16). The potentiostat was coupled to a three-electrode cell.
The reference electrode was Ag/AgCl/KCl (sat.), and the auxiliary electrode was Pt wire.
GC/NiO, GC/NiFe2O4, and GC/NiFe2O4@GO electrocatalysts were used as the working
electrode. During the electrochemical impedance spectroscopy measurements, a constant
AC potential value was adjusted by applying an AC voltage amplitude of 10 mV and a
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frequency range of 1 × 104 Hz to 0.01 Hz. The obtained data were fitted with NOVA 2.15
software using equivalent circuits. All electrochemical experimental studies were carried
out at room temperature in deaerated solutions.

The reversible hydrogen electrode (RHE) was used as the reference for the potential:

ERHE = EAg/AgCl + E◦
Ag/AgCl + 0.059 pH (11)

The electrochemical experiments were conducted in a solution of KOH containing
1.0 M supporting electrolyte solution. The potential was standardized to a hydrogen
electrode that was reversible, as follows:

E◦
Ag/AgCl = 0.197 V (12)

At pH ~ 14 ERHE = EAg/AgCl + 1.023 (13)

4. Conclusions

The sol-gel technique was used as a practical method for preparing nickel ferrite elec-
trocatalysts. Characterization of the synthesized materials confirmed the synthesis of the
nickel ferrite structure. The pristine and graphene oxide-modified nickel ferrite activity was
successful used in urea electrooxidation and water splitting applications. Several kinetic
parameters were calculated to determine the urea conversion efficiency. The modified
GC/NiFe2O4@GO recorded the highest diffusion coefficient (5.08 × 10−5 cm2 s−1), highest
surface coverage (5.49 × 10−8 mol cm−2), lowest charge transfer resistance (72 Ω cm2), and
lowest charge transfer coefficient (0.74) among other modified electrode counterparts. The
Tafel slopes calculated for GC/NiFe2O4@GO electrode were 39, 160, and 104 mV dec−1

for urea oxidation, the oxygen evolution reaction, and the hydrogen evolution reaction,
respectively.
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