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Abstract: In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium
dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and char-
acterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal
reaction of NaOH with TiO2 (P-25) nanospheres in the presence of Sn(IV)porphyrin (SnP), resulting in
a transformation into Sn(IV)porphyrin-imbedded nanotubes. In contrast, under similar reaction condi-
tions but in the absence of SnP, TiO2 (P-25) nanospheres evolved into nanofibers (TNFs). Comparative
analysis revealed that SnP-TNTs exhibited a remarkable enhancement in the visible light photodegra-
dation of model pollutants compared to SnP, TiO2 (P-25), or TNFs. The superior photodegradation
activity of SnP-TNTs was primarily attributed to synergistic effects between TiO2 (P-25) and SnP,
leading to altered conformational frameworks, increased surface area, enhanced thermo-chemical
stability, unique morphology, and outstanding visible light photodegradation of cationic methylene
blue dye (MB dye). With a rapid removal rate of 95% within 100 min (rate constant = 0.0277 min−1),
SnP-TNTs demonstrated excellent dye degradation capacity, high reusability, and low catalyst load-
ing, positioning them as more efficient than conventional catalysts. This report introduces a novel
direction for porphyrin-incorporated catalytic systems, holding significance for future applications in
environmental remediation.
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1. Introduction

Semiconductor-based photocatalysis has been widely applied in hydrogen produc-
tion [1], O2 evolution reaction [2], CO2 reduction [3], N2 fixation [4], wastewater treat-
ment [5], and other fields to tackle the global environmental pollution and energy crisis [6].
Nano-sized frameworks show unique electronic and optical properties that are depen-
dent on the dimensions of photoactive compounds. Given the proven high efficacy of
photocatalytic methods, several inorganic- and organic-based micro- or nanomaterials
featuring TiO2 [7], ZnO [8], zeolites [9], g-C3N4 [10], bismuth-based photocatalysts [11],
fullerenes [12], graphene oxide (GO) or rGO [13], carbon quantum dots [14], and porphyrin-
based compounds [15] have been used in semiconductor-based photocatalysis processes.
Among them, titanium dioxide (TiO2), or titania, has been utilized as a benchmark catalyst
due to its low cost, enormous thermo-chemical robustness, nontoxicity, high photodegra-
dation efficiency, and recyclability. However, its high band gap energy (~3.2 eV) prevents
the absorption of solar light below the visible light spectrum (λ > 380 nm), hindering the
low photocatalytic activity of TiO2. The short recombination lifetime of photogenerated
reactive pairs in TiO2 also limits its photoelectric properties. Furthermore, a substantial
quantity of catalysts is required for loading in the photocatalytic reaction to achieve optimal
performance [16–18]. Therefore, various methods such as photosensitization, metal ion
doping, and electro-deposition have been used to extend the solar-harvesting properties of
TiO2 by enhancing the dissociation of photogenerated active pairs [19–21]. Among these
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methods, photosensitization stands out as a particularly coherent and beneficial technique
that has gained widespread use [22–24].

Porphyrinoids, including free porphyrin or metalloporphyrins, are proving to be promis-
ing photosensitizers due to their high light-harvesting ability in regions of the Soret band
(400–470 nm) and Q bands (500–700 nm). Additionally, their inherent aromatic electronic fea-
tures, substantial flexibility in molecular framework, and rigid structural framework render
them notably compelling as photosensitizers, distinguishing them from other optoelectronic
materials [25–28]. In particular, porphyrin-sensitized TiO2 hybrid materials have been proven
to amplify the interfacial charge transfer, decrease electron–hole recombination rates, and
improve photocatalytic performance via heterojunction interfaces [29–34].

Previously, our group reported the photodegradation of methyl orange dye by Sn(IV)
porphyrin-sensitized TiO2 nanofibers under the irradiation of visible light. Under basic
conditions, a novel heterostructure is produced through a one-step hydrothermal reac-
tion involving trans-dihydroxo [5,10,15,20-tetrakis(p-tolyl)porphyrinato]Sn(IV) and pure
anatase TiO2 powder [35]. Sn(IV) porphyrins are ideal building blocks for photo-functional
materials used for visible light catalysis. The oxophilic character of the Sn(IV) por-
phyrin center can easily construct stable six-coordinate diamagnetic complexes with ei-
ther alkoxides or carboxylates. In particular, the trans-dihydroxo complex of the Sn(IV)
porphyrin has a strong affinity toward transition metal oxides. These complexes are
also known for their unique photo-physical properties. Therefore, structural studies of
these compounds via various spectroscopic techniques are of significant value [36–42].
Within this context, the present study employs a one-step hydrothermal reaction be-
tween trans-dihydroxo(5,10,15,20-tetraphenylporphyrinato)Sn(IV) (SnP) and TiO2 (P-25,
85% anatase and 15% rutile) in basic conditions to fabricate Sn(IV) porphyrin-imbedded
TiO2 nanotubes (SnP-TNTs) (Scheme 1). To know the impact of Sn(IV) porphyrin on the
fabrication of SnP-TNTs, we repeat the above experiments without SnP. Interestingly, we
observed TiO2 nanofibers (TNFs).
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Scheme 1. Fabrication of SnP-TNTs and TNFs.

The catalytic property of SnP-TNTs was examined for the solar light-active photodegra-
dation of methylene blue (MB), a highly water-soluble industrial dye. MB is generally
utilized as a colorant in the leather, printing, cosmetics, and textile industries, and it is listed
as an essential medicine by the World Health Organization. It finds extensive application
as a biological stain for managing methemoglobinemia and facilitating endoscopic polypec-
tomy in certain developing nations. Classified as one of the 30 perilous dyes commonly
present in wastewater, this substance can induce hypertension, abdominal discomfort,
nausea, anemia, and harm in the nervous system. At very low concentrations, MB is
carcinogenic, non-biodegradable, and cannot be removed via usual methods like filtration,
absorption, precipitation, or coagulation due to its high water solubility [43,44]. Previously,
several research groups employed MB dye as a model contaminant to examine the effec-
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tiveness of the as-synthesized catalysts [45–48]. This report outlines various experiments
carried out to investigate the optimal conditions associated with the degradation of MB,
including analyses of kinetics and the underlying mechanism.

2. Results and Discussion
2.1. Synthesis and Characterization

The fabrication process of SnP-TNTs is discussed in the experimental section. In a
typical procedure, TiO2 (P-25), SnP, and NaOH were mixed in water and heated for 24 h in
a Teflon-lined stainless-steel autoclave. The adsorbed quantity of SnP was determined to
be 0.096 mmol/g by calculating the Sn contents of SnP-TNTs through ICP analysis.

UV-Vis spectroscopy was utilized to assess the solar-harvesting capabilities of TiO2 (P-25),
SnP, TNFs, and SnP-TNTs (Figure 1). SnP displayed a broad and strong Soret-band absorp-
tion peak at 429 nm, accompanied by two Q-band absorption peaks at 568 and 607 nm. TiO2
(P-25) nanoparticles and TNFs showed an intense absorbance peak within the UV spectrum
(300–330 nm). Compared to SnP, SnP-TNTs demonstrated a broad and strong Soret-band
absorption peak centered at 426 nm, along with three weak Q-band peaks at 517, 560, and
597 nm. Additionally, it exhibited a strong absorbance band within the UV region. These ob-
servations suggested a strong binding between tin porphyrin and SnP-TNTs, indicating the
formation of a heterostructure rather than a mere physical mixture of SnP and TiO2 (P-25).
Consequently, SnP-TNTs exhibited broader light absorption across the solar spectrum,
enhancing their light-harvesting properties beyond those of either SnP or TiO2 (P-25). The
band gaps (Eg), determined via Tauc’s Plot [49] from the absorption data, were approxi-
mately 2.37 eV and 3.02 eV for SnP-TNTs, which were smaller than those of TiO2 (P-25)
(approximately 3.17 eV) or SnP (around 2.79 eV) or TNFs (3.04 eV) (Table S1 and Figure S1).
The improved light harvesting and narrower band gap of SnP-TNTs can significantly boost
solar energy utilization, generating a larger quantity of photogenerated reactive species
vital for catalytic reactions.
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The efficiency of separating photogenerated reactive species holds paramount impor-
tance in the photodegradation reaction. This aspect was investigated using fluorescence
spectroscopy (Figure S2). SnP displayed a fluorescence peak at 654 nm, while SnP-TNTs
exhibited two fluorescence peaks at 627 and 648 nm, indicating effective interaction with
TiO2 (P-25) nanoparticles.

In the FT-IR spectra of SnP, the peak at 1024 cm−1 corresponds to the bending vibration
of the aromatic C-H group, while the peak at 793 cm−1 is linked to the out-of-plane bending
vibration of the aromatic C-H (Figure 2). Additionally, stretching vibrations of C-N and
C=C in the pyrrole ring were evident at 1406 cm−1 and 1588 cm−1, respectively. The
stretching vibrations of the axial O-H group were observed at 3594 cm−1. Conversely,
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in TiO2 (P-25), prominent absorbance peaks corresponding to Ti–O–Ti stretching were
detected between 512 cm−1 and 853 cm−1. In the case of TNFs, the stretching band
of Ti-O-Ti was broadened compared to TiO2 (P-25). On the other hand, in the case of
SnP-TNTs, the expected stretching band of Ti-O-Ti emerged at 596 cm−1. In SnP-TNTs,
the characteristic peaks of SnP have been shifted to higher wavenumbers compared to
SnP. These observations suggest that the distinctive characteristics of SnP and TiO2 (P-25)
changed slightly in SnP-TNTs.
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Figure 2. FT-IR spectra of spectra of TiO2 (P-25), SnP, TNFs, and SnP-TNTs in KBr.

The structural patterns of TiO2 (P-25), SnP, TNFs, and SnP-TNTs were investigated
using an X-ray diffractometer, as shown in Figure 3. SnP displays strong peaks at low
angles, ranging from 22 to 34◦. TiO2 (P-25) exhibited major crystallized peaks centered
at 25.2, 37.8, 48.0, 54.0, 55.1, and 62.6◦. The commercial TiO2 (P-25) nanoparticles used in
this study are composed of anatase (85%) and rutile phase (15%). A similar pattern was
observed in the case of TNFs, but the peaks are broadened compared to TiO2 (P-25). On the
other hand, in the case of SnP-TNTs, significant characteristic peaks appeared at 28.2, 47.9,
and 61.4◦. These observations indicate that all the distinctive features of TiO2 (P-25) and
SnP were absent in SnP-TNTs. This could be attributed to the low concentration of SnP in
SnP-TNTs and drastic changes in the morphologies of TiO2 (P-25) nanoparticles.
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In the XPS analysis of TiO2 (P-25), SnP, TNFs, and SnP-TNTs, the survey spectra
revealed distinct chemical states. According to the survey spectra, SnP consists of Sn, C,
N, and O elements; TiO2 and TNFs contain Ti and O elements; and SnP-TNTs contain
Sn, Ti, C, N, and O elements (Figure 4). In the O 1s spectrum of TiO2 (P-25), a singular
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peak was evident at 529.0 eV (Figure 4). In the case of SnP-TNTs, the O 1s spectrum
exhibited a single peak at 529.7 eV. On the other hand, the O 1s spectrum of TNFs showed
a single peak at 529.5 eV. Regarding the Ti 2p spectrum, TiO2 (P-25) displayed two peaks
at 463.3 eV (Ti 2p1/2) and 457.5 eV (Ti 2p3/2). However, in SnP-TNTs, these peaks shifted
to 464.2 eV and 458.4 eV, indicating a higher binding energy. This suggests a reduced
Ti 2p electron density, likely due to strong interactions between the hydroxyl group in SnP
and the Ti atoms on the TiO2 (P-25) surface. This higher binding energy potentially signifies
interfacial electron transfer between them. On the other hand, the Ti 2p spectrum of TNFs
exhibited peaks at 463.9 eV (Ti 2p1/2) and 458.1 eV (Ti 2p3/2). Deconvoluted profiles for
O 1s, Sn 3d, C 1s, and Ti 2p are displayed in Figure S3, although the relative intensities
of N 1s, C 1s, and Sn 3d were too low for proper analysis. SnP showed two peaks at
493.0 (Sn 3d3/2) and 484.5 (Sn 3d5/2) eV for the Sn 3d core. On the other hand, the peak
positions of these two peaks were slightly changed in the case of SnP-TNTs (492.8 eV for
Sn 3d3/2 and 484.3 eV for Sn 3d5/2) compared to SnP. In the case of the C 1s core spectrum,
SnP exhibited three peaks at 284.1 eV, 282.5 eV, and 281.8 eV. On the other hand, these peaks
were changed in the case of SnP-TNTs (285.5 eV, 284.2 eV, and 283.7 eV). This observation
implies that the pi-electron density of porphyrin transferred to the hybrid core systems.
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The TGA curves of all samples are depicted in Figure S4. SnP shows a moderate weight
loss (~5%) between 50 ◦C and 320 ◦C due to absorbed water, followed by the disintegration
of the aromatic ring from 350 to 700 ◦C. TiO2 (P-25) only manifests a 3% weight loss
between 50 and 900 ◦C. In the case of SnP-TNTs, TGA analysis confirmed a 14.9% weight
loss between 200 and 450 ◦C. This weight loss evidently supports the incorporation of SnP
into SnP-TNTs. On the other hand, 8.8% weight loss was observed for TNFs.

To determine the permanent porosities of SnP-TNTs and TNFs, the BET surface area
was measured using N2 adsorption–desorption isotherms. SnP-TNTs possessed a mod-
erate specific surface area of 152 m2 g−1 (Figure S5), with an estimated pore volume of
0.47 cm3 g−1. SnP-TNTs exhibited a type-IV adsorption–desorption isotherm, suggesting
a mesoporous nature. On the other hand, TNFs possessed a low specific surface area
of 112 m2 g−1, with an estimated pore volume of 0.31 cm3 g−1. TNFs showed a type-II
adsorption–desorption isotherm. In contrast, TiO2 (P-25) exhibited a much lower surface
area of only 51.6 m2 g−1 [50]. Therefore, the presence of a base facilitated the strong cou-
pling of TiO2 (P-25) nanoparticles with SnP under hydrothermal conditions, resulting in the
fabrication of thermally stable mesoporous materials, SnP-TNTs. The higher BET surface
area of SnP-TNTs is probably due to its amorphous nature compared to TiO2 (P-25).

FE-SEM techniques were employed to assess the morphologies of SnP-TNTs in com-
parison to TiO2 (P-25). In the FE-SEM image of TiO2 (P-25), spherical nanospheres were
evident, exhibiting an average diameter ranging from 50 to 70 nm (Figure 5). SnP-TNTs
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revealed consistent nanotubes characterized by an average length spanning 300 to 500 nm
and a width varying from 10 to 20 nm. Interestingly, when pure anatase TiO2 was used pre-
viously, the observation was SnP-intercalated trititanate nanofibers. These nanofibers have
lengths in the range of 0.5–1 µm with an average diameter of approximately 50 mm [35].
However, when TiO2 (P-25, 85% anatase, and 25% rutile) was used in place of pure anatase
TiO2, nanotubes formed. On the other hand, in the absence of SnP, TiO2 (P-25) nanospheres
transformed into nanofibers (TNFs) under identical conditions. The lengths of these
nanofibers vary from a few micrometers to millimeters. Notably, SnP did not exhibit any
nano-scale morphology [34].
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The TEM technique was employed to further investigate the morphologies of SnP-TNTs in
comparison to TiO2 (P-25). Similar to the FE-SEM results, TiO2 (P-25) displayed nanospheres,
while SnP-TNTs showcased nanotubes with hollow spaces. In the case of TNFs, the obser-
vation included nanofibers along with a small percentage of nanotubes (Figure 6). Enlarged
FE-SEM and TEM of nanotubes for SnP-TNTs are shown in Figure S6. Energy dispersive
X-ray spectroscopy (EDS) mapping images (Figure S7) show that SnP-TNTs preserve the
nanotube skeleton, in which O, N, C, Ti, and Sn elements are homogeneously distributed.
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2.2. Photocatalytic Degradation of MB Dye

The catalytic efficiencies of SnP, TiO2 (P-25), SnP-TNTs, and TNFs were evaluated
through the visible light-induced degradation of MB dye. Figure S8 highlights the require-
ment of approximately 40 min to achieve the adsorption–desorption equilibrium. SnP,
TiO2 (P-25), TNFs, and SnP-TNTs displayed physical adsorption levels of about 4.3%, 15%,
20%, and 25% of MB dye, respectively. This confirmed the mesoporous frameworks of TiO2
nanostructures, enhancing the absorptivity of SnP-TNTs and TNFs while facilitating mass
diffusion. The visible light-induced time-bound absorption spectra of MB in the presence
of SnP-TNTs are illustrated in Figure S9. Figure S9 reveals a reduction in MB absorbance
at 660 nm with an increasing visible light irradiation time. Additionally, Figure 7 depicts
significant progress in MB decay across all catalysts.
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visible light irradiation (pH 7, 298 K).

The degradation coefficient, expressed as (C0 − C)/C0, was utilized to assess the
photodegradation of MB, where C0 and C represent the MB concentrations at time zero
and time t, respectively. The calculated photodegradation rates for MB were 13% for SnP,
30% for TiO2 (P-25), 54% for TNFs, and 95% for SnP-TNTs over 110 min of visible-light
exposure (Figure 7). Notably, SnP-TNTs demonstrated the highest efficiency in removing
MB during photodegradation compared to SnP, TiO2 (P-25), and TNFs.

To delve deeper into the reaction kinetics of MB photodegradation, the pseudo-first-
order theory was applied, using the equation ln(C0/C) = kt. This model is commonly
employed for catalytic photodegradation reactions involving low initial dye concentrations,
where k represents the photodegradation rate constant. Figure S10 illustrates the reaction ki-
netics of MB photodegradation based on the data from Figure 7. The photodegradation rate
constants for MB were determined to be 0.0011 min−1 for SnP, 0.0034 min−1 for TiO2 (P-25),
0.0067 min−1 for TNFs, and, notably, 0.0277 min−1 for SnP-TNTs (Figure S10). These degra-
dation rate constants were noteworthy when compared to previously published values for
MB photodegradation (Table S2). Specifically, the photodegradation rate constant of MB by
SnP-TNTs (0.0277 min−1) significantly surpassed those of anatase TiO2 (0.0090 min−1) [45]
and TiO2 NPs (0.0180 min−1) [46]. Moreover, it remained comparable to the photodegrada-
tion rates exhibited by porphyrin-based nanostructures (0.0280 min−1) [47] or porphyrin-
based metal–organic frameworks (0.0200 min−1) [48].

Among all the catalysts, SnP-TNTs exhibited the highest degradation rate constant
within 110 min, capable of degrading 95% of the MB dye. To investigate the role of SnP in
SnP-TNTs’ catalytic efficiency, various SnP-TNTs were prepared with differing wt% of SnP
for TiO2 (P-25), and their MB dye removal efficiencies were measured (Figure S11). The
photodegradation efficiencies of SnP-TNTs (X = 0.1 mmol) surpassed those of TiO2 (P-25) or
SnP individually. As the molar mass of SnP increased in the hybrid compared to TiO2 (P-25),
the degradation rate rose, reaching its peak at 0.1 mmol. Following this peak, the rates
exhibited a slight decrease to around 85 or 80%. These observations suggest the existence of
synergistic effects between TiO2 (P-25) and SnP, contributing significantly to the exceptional
photodegradation activity observed in SnP-TNTs.

The recovery process for SnP-TNTs from the reaction vessel proved notably sim-
pler compared to both SnP and TiO2 (P-25). Initially, solid materials were filtered post-
experiment, followed by rinsing with H2O and subsequent drying at 70 ◦C for 4 h in
an oven. Assessing a catalyst’s reusability is crucial for industrial applications. Conse-
quently, recycling tests were conducted for SnP-TNTs for the photodegradation of MB dye
(Figure S12). After 10 cycles, SnP-TNTs maintained high degradation efficiency toward
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MB dye photodegradation, with an only 5% decrease. This outcome indicates the remark-
able stability of SnP-TNTs as a photocatalyst. Furthermore, to corroborate the stability of
this compound, the morphology of SnP-TNTs post-photodegradation experiments were
conducted. TEM images (Figure S13) of SnP-TNTs used for degradation studies before and
after exhibited striking similarity, indicating an unchanged mesoporous network during
the photodegradation process.

The optimization of reaction conditions for MB dye degradation included investigat-
ing the dye-to-catalyst ratio, pH of the MB solution, and reaction temperature. Multiple
photodegradation experiments were conducted at varying temperatures to observe the
temperature-dependent photodegradation of MB by SnP-TNTs. Remarkably, the pho-
todegradation performance demonstrated an increase with rising temperatures (Figure S14).
Initially, MB solutions were prepared in distilled water with a pH of 7.0. However, it was
observed that the pH of the MB solution significantly influenced the degradation effi-
ciency of MB dye (Figure S15). The photodegradation rate exhibited an increase with
increasing pH from 2 up to 8, followed by a decrease beyond pH 8 up to 12. The effect
of a basic medium (high pH) on photodegradation was less pronounced compared to an
acidic medium (low pH). Exploring the dependence of the dye-to-catalyst ratio on the
photodegradation rate of MB, different MB solutions with concentrations ranging from
5 to 50 mg/L were prepared, using a consistent quantity of SnP-TNTs (50 mg each time).
Interestingly, it was observed that the photodegradation rate decreased with an increasing
MB concentration (Figure S16).

The potential mechanism behind the catalytic photodegradation reaction by SnP-TNTs
differs from that of TNFs. In the case of TNFs, the degradation mechanism consists of
five steps, as summarized in Equations (1)–(5). It begins with the catalyst TiO2 absorbing
light upon irradiation. Valence band (VB) electrons are promoted to the CB band upon
crossing the band gap, resulting in the generation of photogenerated pairs (h+/e−) on
the catalyst’s surface. Subsequently, photogenerated holes (h+) react with water to form
•OH. The excited electrons, in turn, may react with O2 to produce O2

−•. These highly
reactive species (O2

−• and •OH) are instrumental in decomposing the MB dye into smaller
fragments, ultimately resulting in low-toxic CO2 and H2O. In summary, the proposed
mechanism for a catalyst (cat) is

cat + hν → cat * (e− + h+) (1)

h+ + H2O → •OH + H+ (2)

O2 + e− → O2
−• (3)

O2
−• + MB → degraded products (4)

•OH + MB → degraded products (5)

On the other hand, in the case of SnP-TNTs, both the TiO2 nanostructure and SnP
can be concurrently excited upon light absorption, generating hole–electron pairs (h+/e−).
Consequently, a charge transfer mechanism is also possible in this case. The electrons from
SnP smoothly transfer to the conduction band (CB) of TiO2 through the interface between
Ti atoms in TiO2 and the hydroxyl group in SnP. These excited electrons may further react
with O2 to produce superoxide radical anions (O2

−•), contributing to the degradation of
MB dye. Additionally, the photogenerated holes in TiO2 may react with H2O to create
hydroxyl radicals (•OH), which also aid MB degradation [51–53].

SnP + hν → SnP* (6)

SnP* + MB → SnP−• + MB+ (oxidized product) (7)

SnP−• +TiO2 → SnP + TiO2 (e−) (8)

TiO2 (e−) + MB → TiO2 + MB− (reduced product) (9)
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SnP-TNTs exhibit higher light absorption capacity compared to TNFs. The presence of
SnP increased the recombination time by stabilizing the photogenerated active pairs over
the surface of conjugated porphyrin networks. Moreover, the incorporation of SnP-forming
TNTs creates a large surface area and higher active sites for cationic dye degradation
compared to TNFs. The integration of porphyrin likely not only enhanced the surface
properties of TiO2 but also facilitated electron transport from the CB of SnP to the CB of
TiO2 [54] compared to TNFs or TiO2 (P-25).

To identify the photogenerated active species during the degradation process by
SnP-TNTs, radical trapping tests were conducted [55–58]. tert-Butanol (tBuOH) was used
to detect •OH, para-benzoquinone (p-BQ) for O2

−•, ethylenediaminetetraacetic acid dis-
odium (Na2-EDTA) for h+, and sodium azide (NaN3) for 1O2 (Figure S17). The analysis
confirmed that the presence of Na2-EDTA, p-BQ, and tBuOH significantly impacted degra-
dation efficiency. Photogenerated holes (h+) emerged as the primary reactive components
responsible for photodegradation, overshadowing the contributions of O2

−• or •OH. No-
tably, the presence of NaN3 had no effect on the decomposition of MB. In the absence of
either light or catalyst (Figure S17), minor decay of MB was observed, emphasizing the
necessity of both light and catalyst for MB photodegradation.

Exploring the degradation of MB under various monochromatic light wavelengths
(Figure S18) revealed the impact of light intensity on SnP-TNTs’ performance. Optical
absorption was identified as a significant contributor to solar energy conversion and photo-
catalytic efficiency. Additionally, SnP-TNTs displayed heightened degradation efficiency at
the junction of UV and visible light regions (400 to 500 nm).

Electrospray ionization mass spectrometry (ESI-MS) was utilized to examine the fea-
tures of the degradation products of MB dye. An analysis of samples taken after 60 min
during the photodegradation reaction (Figure S19) revealed new peaks, indicating the pho-
todegradation of MB into low-molecular-weight fragments [59,60]. Potential intermediates
for the photodegradation of MB were depicted based on the ESI-MS results (Figure S20).
Initially, the base peak (m/z = 284.1; [MB–Cl]+) corresponded to the MB dye. Subsequent
N-de-ethylation led to the formation of chromophoric species (m/z 228.0), followed by ring
cleavage, resulting in fragments with molecular weights of m/z 119.0 and 111.0. An ox-
idative ring opening product (m/z 304.1) formed from MB, which further fragmented into
molecular weights of m/z 175.0 and m/z 95.0. These lower-molecular-weight intermediates
underwent aromatic ring breaks and hydrolysis, ultimately yielding a compound with
m/z 119.0. Ultimately, these low-molecular-weight intermediates were mineralized into
nontoxic CO2 and H2O. Additionally, the total organic carbon (TOC) removal percentage
was calculated to evaluate MB photodegradation [61], indicating that SnP-TNTs achieved a
TOC removal value of 84% for MB photodegradation.

3. Materials and Methods

TiO2 (Degussa, P-25, crystalline composition: anatase (85%) and rutile (15%)) was
procured from Sigma-Aldrich (St. Louis, MO, USA). Other chemicals were obtained from
TCI. trans-Dihydroxo-(5,10,15,20-tetraphenylporphyrinato) Sn(IV) (SnP) was synthesized
based on a previously published method [62]. Steady-state UV-vis spectra were recorded
using a Shimadzu UV-3600 spectrophotometer (Shimadzu, Tokyo, Japan) in Nujol. Fluores-
cence spectra were recorded with a Shimadzu RF-5301PC fluorescence spectrophotometer
(Shimadzu, Tokyo, Japan) in Nujol. Fourier transform infrared spectroscopy (FT-IR) spectra
(KBr method) were obtained using a Shimadzu FTIR-8400S spectrophotometer (Shimadzu,
Tokyo, Japan). Thermogravimetric analysis (TGA) was performed using an Auto-TGA
Q500 instrument (TA Instruments, New Castle, PA, USA) at a scan rate of 10 ◦C/min, from
30 to 900 ◦C, and under an N2 atmosphere. The Brunauer-Emmett-Teller (BET) surface
area was determined using an analyzer (BELSORP-mini volumetric adsorption equipment)
using N2 adsorption isotherms at 77 K. The data on surface and porous size were ob-
tained by using Autosorb-iQ and Quadrasorb SI. Powder X-ray diffraction (PXRD) patterns
were obtained using a Bruker AXS D8 Advance powder X-ray diffractometer (Bruker,
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Billerica, MA, USA). The morphology and elemental distribution of the synthesized sam-
ples were investigated using a field emission scanning electron microscope (FE-SEM)
(MAIA III, TESCAN, Brno, Czech Republic). Transmission electron microscope (TEM)
images were obtained by using JEOL/JEM 2100 with energy dispersive X-ray spectroscopy
(EDS). An X-ray photoelectron spectroscopy (XPS) instrument (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a micro-focused Al Kα source was used to analyze the
elemental composition of the sample. All the samples were deposited on the surface of
copper tape via the drop-casting method after stirring in water. The inductively coupled
plasma (ICP) analyses were performed on an ICP-Spectrociros CCD instrument. For vis-
ible light sources, we used a 150 W xenon arc lamp (ABET technologies, Old Gate Lane
Milford, CT, USA).

3.1. Synthesis of Sn(IV)porphyrin-Imbedded TiO2 Nanotubes (SnP-TNTs)

SnP-TNTs were fabricated via a straightforward one-step hydrothermal method.
About 77 mg of SnP (0.1 mmol) was added to ethanol (20 mL), followed by continu-
ous stirring. After that, an 80 mL aqueous solution of sodium hydroxide (5 M) was added
through continuous stirring. Then, 1 g of TiO2 (P-25) powder (0.013 mol) was mixed into the
solution. After that, the heterogeneous mixture was transferred into a 150 mL Teflon-lined
stainless-steel autoclave. The hydrothermal process was maintained at 200 ◦C in an atmo-
spheric environment for 24 h. After, deionized water (500 mL) was added, and the mixture
was then centrifuged. The precipitate was filtered through a 0.1 µm VCTP-membrane
Millipore filter and rinsed consecutively with water (200 mL) and ethanol (200 mL) to
extract physically absorbed SnP from the surface of precipitates. Solid SnP-TNTs were
acquired after drying at 70 ◦C for 6 h (yield: 0.940 g).

3.2. Synthesis of TiO2 Nanofibers (SnP-TNFs)

For the fabrication of SnP-TNFs, we followed a similar procedure of SnP-TNTs except
for the addition of SnP. Solid SnP-TNFs were prepared after drying at 70 ◦C for 6 h
(yield: 0.910 g).

3.3. Photocatalytic Degradation Reaction

The catalytic performance of SnP-TNTs was examined through the decay of MB dye
under the irradiation of a visible light source (a 150 W xenon arc lamp; ABET Technologies,
Old Gate Lane Milford, CT, USA) with a UV cut-off filter at room temperature (298 K).
Then, 50 mg of SnP-TNTs was mixed with 200 mL of MB solution (20 mg L−1 in deionized
H2O, pH 7.0) while stirring. The adsorption–desorption equilibrium was reached after
keeping the heterogeneous mixture in the dark for 40 min. After exposure to visible light,
4 mL of the reaction mixture was transferred for 10 min into a test tube. SnP-TNTs were
removed from the reaction solution via centrifugation, followed by filtration. After that,
a UV-Vis spectrophotometer was used to measure the residual concentration of MB by
observing the absorbance at 660 nm.

4. Conclusions

Two photocatalysts SnP-TNTs and TNFs were fabricated through the hydrothermal
reaction of NaOH with TiO2 (P-25) in the presence or absence of SnP, respectively. Generally,
TiO2 (P-25) appeared as a spherical nanospheres with an average diameter ranging from
50 to 70 nm. The morphologies of SnP-TNTs appeared as regular nanotubes with an average
length varying from 300 to 500 nm and a width ranging from 10 to 20 nm. On the other
hand, TNFs appeared as nanofibers. Compared to SnP, TiO2 (P-25), or TNFs, SnP-TNTs
dramatically improved visible light photodegradation of contaminants via the synergistic
effects between TiO2 and SnP. Incorporating SnP onto the surface of TiO2 (P-25) not only
controlled the conformational frameworks but also created high structural modifications
that induced high thermo-chemical stability, high surface area, unique morphology, and
remarkable visible light photodegradation performance against cationic MB dye. SnP-TNTs
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removed almost 95% MB dye within 100 min (rate constant = 0.0277 min−1). The excellent
dye photodegradation capacity, high reusability, and low catalyst loading proved the
superior efficiency of SnP-TNTs compared to conventional catalysts. This study showcases
a new direction for the development of porphyrin-incorporated catalytic systems and holds
great significance for extending their future applications in water remediation.
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(λex = 550 nm). Figure S3. XPS spectra of SnP-TNTs and TiO2 (P-25). Deconvoluted profiles of
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