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Abstract: This study reports on a metal-free Covalent Triazine Framework (CTF) incorporating
bithiophene structural units (TP-CTF) with a semicrystalline structure as an efficient heterogeneous
photocatalyst under visible light irradiation. The physico-chemical properties and composition of this
material was confirmed via different characterization solid-state techniques, such as XRD, TGA, CO2

adsorption and FT-IR, NMR and UV-Vis spectroscopies. The compound was synthesized through a
solvothermal process and was explored as a heterogeneous photocatalyst for the oxidative coupling
of amines to imines under visible light irradiation. TP-CTF demonstrated outstanding photocatalytic
activity, with high conversion rates and selectivity. Importantly, the material exhibited exceptional
stability and recyclability, making it a strong candidate for sustainable and efficient imine synthesis.
The low bandgap of TP-CTF enabled the efficient absorption of visible light, which is a notable
advantage for visible-light-driven photocatalysis.

Keywords: covalent triazine frameworks; organic photocatalysis; benzylamine coupling

1. Introduction

Photocatalysis [1] refers to light-driven catalytic reactions using solar power as a clean,
sustainable and overall green energy source for resolving the serious energy crisis and
environmental pollution. Several researchers have reported UV light usage to activate
molecules in chemical transformations, although visible light is the ideal alternative green
source to activate photocatalytic reactions. In recent years, Covalent Organic Polymers
(COPs) incorporating structural photoactive building units [2] have been explored as novel
heterogeneous photocatalysts to improve conventional methods in chemical industry. This
is due to their good photostability, recyclability, light-harvesting properties and charge sep-
aration abilities through internal donor–acceptor pairs. Thus, COPs have shown excellent
photocatalytic properties as promising platforms in the fields of chemistry and materials
science, due to their electron donor–acceptor characteristics and π-conjugated systems
arising from structural chromofores (e.g., triazines, pyrenes, benzothiazoles, porphyrines)
typical of COPs.

Within the vast group of COPs, porous organic polymers [3–7] in particular have
attracted much interest in recent decades due to their wide range of physicochemical
properties, featuring high surface areas with accessible cavities for the encapsulation or
insertion of chemical compounds. These materials have inspired the research community
to improve and design new highly porous materials with tunable chemical and structural
properties. Covalent Organic Frameworks (COFs) [8–10] are a new class of crystalline
organic porous materials composed via the self-assembly of periodically arranged organic
building units of light-weight elements, such as B, N, O, Si, P or S, connected by covalent
bonds to form ordered 2D or 3D polymer networks containing polygonal uniform channels
with different skeletons (imines, boronates, esters, ketoenamines, etc.) and specific pore
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sizes. Among the large family of COFs, Covalent Triazine Frameworks (CTFs) have recently
been reported as good heterogeneous photocatalysts [11,12].

CTFs [13–16] are a subclass of COFs formed by structural triazine rings connected
through covalent bonds into an extended porous framework with promising characteristics,
including semi-crystallinity, high surface areas, physicochemical and thermal stability and
a high nitrogen content. Thanks to these specific properties, CTFs have great potential in a
wide range of applications, such as gas separation, energy and gas storage [17,18], as well
as photo/electro/thermo-catalysis [19–21]. CTFs are a new type of nitrogen-rich porous
material with a tunable molecular structure due to the variety of heteroatoms (N, P, S or
F) that can be introduced in the linkages connecting the triazine rings. In this way, the
introduction of structural heteroatoms provides modulated structures and multiple active
sites that can be further used in post-modification methods to improve their characteristics.
In particular, CTFs based on thiophene and bithiophene building blocks [22–25] are inter-
esting materials with exciting properties. Thiophene derivatives can be found in several
natural and synthetic compounds with numerous applications in biological and molecular
science areas. Thiophene is a stable π-aromatic heterocyclic compound consisting of four
carbon atoms and one sulfur atom in a five member-ring, with a well-known chemistry due
to its aromaticity and easy and chemically controlled substitution in alpha or beta positions
under mild reaction conditions. Thiophene derivatives [26] containing π-systems have
rigid, electron-rich, flat delocalized structures and high charge transport properties, making
them promising π-bridges and donors to construct conjugated and low-band-gap organic
semiconductors for organic field-effect transistors (OFETs), organic light-emitting diodes
(OLEDs) and organic photovoltaics (OPVs). In fact, the extended π-conjugation favors
charge migration and separation capabilities, offering an improved route for the charge
transport. Furthermore, thiophenochemistry remains of great research interest due to the
easy improvements in derivatization substitution methods, as well as in the development
of new sustainable synthesis methods.

Owing to the intrinsic properties mentioned above, several COFs [27–29] containing
various photoactive structural moieties (triazines, pyrroles, pyridines, naphtalenes) have
been reported as efficient heterogeneous photocatalysts [30,31] in a number of organic
transformations [32,33], such as selective photo-oxidation and photo-reductions [34–37],
selective coupling reactions [38], photo-mediated controlled radical polymerizations or the
synthesis of linear and cyclic carbonates from CO2 and epoxides [39]. Furthermore, the in-
corporation of thiophene units into COF structures enhances their photocatalytic reactivity
by broadening light absorption, improving charge separation and migration, facilitating
redox reactions and enabling the precise tuning of electronic properties. These advantages
make thiophene-based COFs promising materials for visible-light-driven heterogeneous
photocatalysis, such as in the oxidative coupling reactions of amines.

Imines and their derivatives are valuable building block intermediates for the synthesis
of fine chemicals, pharmaceuticals and biochemical inhibitors. They are often found in nat-
ural and biologically active products, which are usually prepared through the condensation
of aldehydes and ketones or the hydroamination of alkynes with amines. However, most
of the current available methods rely on the catalytic activity of rare metal catalysts, such
as Co, Ru, Mn, etc. [40]. For this reason, new sustainable strategies for imine production,
such as the oxidative coupling of amines [41,42], provide an attractive alternative to the
traditional synthetic methods that require an acid catalyst and produce large amounts
of chemical wastes. Moreover, the research of new metal-free heterogeneous catalysts
for oxidative coupling reactions become an important way to obtain an efficient imine
synthesis method.

In this work, we have prepared and characterized a metal-free CTF containing bithio-
phene structural moieties (hereafter TP-CTF) as a heterogenous photocatalyst for the
oxidative coupling of various amines to imines, with a wide scope of substrates, showing
stability, high conversions and good recyclability (Scheme 1). The TP-CTF-obtained ma-
terial was profusely studied [43], with its physico-chemical properties and composition
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being confirmed using different characterization solid-state techniques, such as XRD, TGA,
CO2 adsorption and FT-IR, NMR and UV-Vis spectroscopies.

Scheme 1. Schematic illustration of the synthetic procedure and the idealized structure of the
obtained CTF.

2. Results and Discussion
2.1. Synthesis and Characterization

In this study, the TP-CTF photocatalyst was synthesized by reacting 4,4′,4′′-(1,3,5-triazine-
2,4,6-triyl)trianiline and 2,2′-bithiophene-5,5′-dicarboxaldehyde in mesitylene/dioxane (1:2)
at 120 ◦C, following the procedure detailed in the Section 3 via solvothermal synthesis.
Acetic acid was used as a Brønsted acid catalyst to accelerate the imine coupling reaction by
condensing polyfunctional aldehydes and amines at an elevated temperature in a mixture
of organic solvents (Scheme 1). The coupling reaction was complete within 72 h, and the
resulting solid was isolated via filtration and washed with THF, MeOH and acetone in
a Soxhlet extractor to afford an orange powder with a 90% yield for TP-CTF. Elemental
analysis was used to determine the experimental C:S and C:N molar ratio of the TP-CTF.
As shown in Table S1, the data show an excellent coincidence with the values expected for
the stoichiometric compound, which confirms the quantitative assembly between starting
building units.
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According to the X-ray powder diffractogram shown in Figure 1, TP-CTF was obtained
as a semicrystalline CTF, with a peak distribution similar to that found in many lamellar
COFs [44–50]. One of the key characteristics of 2D CTFs with bithiophene units is the
presence of peaks in the XRD pattern that correspond to the interlayer spacing or d-spacing.
The interlayer spacing is the distance between adjacent layers in the laminar structure of
the CTF. These individual layers are formed through the covalent bonding of triazine rings
and bithiophene units [51,52], creating a repeating two-dimensional framework. The XRD
peaks related to interlayer spacing are a direct reflection of the stacking of these layers.
The diffraction pattern often exhibits sharp, well-defined peaks at specific 2θ low-angles,
evidencing the periodic nature of this characteristic interlayer stacking.

Figure 1. XRD diffractogram of TP-CTF material.

The specific 2θ angles at which these peaks appear are indicative of the distance
between adjacent layers in the CTF structure, which is of paramount importance, as it affects
various properties and applications, particularly in gas adsorption and separation processes.
A prominent feature in CTF XRD patterns is the (100) facet of a primitive hexagonal lattice,
which corresponds to the spacing between consecutive layers, featuring an eclipsed (AA)
stacking mode with a P6/m space group, instead of staggered (AB) stacking mode [53]. The
exact position of the (100) peak varies depending on the thickness of individual layers and
the presence of solvent molecules in the interlayer space and typically falls in the range of
3.5◦ to 6◦ 2θ. The (200) diffraction peak, clearly observed in the X-ray patterns, represents
the second-order reflection of the interlayer spacing, confirming that the lamellar spatial
distribution and interlayer space is regularly maintained along the 2D COF-type structure.
It usually appears at a higher 2θ angle than the (100) peak, often in the range of 6◦ to 12◦ 2θ.

Figure 2 provides a comparative analysis of the FT-IR spectra of TP-CTF and its con-
stituent monomers, shedding light on the structural transformations that occur during the
polymerization process. A prominent feature observed in the FT-IR spectra is the trans-
formation of functional groups, which is discernible through the decrease in intensity or
even the complete disappearance of the band around 3200 cm−1, corresponding to the NH2
group of the triazine precursor, and the disappearance of the C=O absorption band of the
aldehyde precursor, typically found at around 1650 cm−1. These changes evidence the con-
densation reaction between the amine and aldehyde groups of the precursor monomers into
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imine linkages, a crucial aspect of the polymerization process (Scheme 2). The emergence
of characteristic imine bonds (-C=N) in TP-CTF is expected in the spectral region spanning
from 1600 to 1640 cm−1. However, it is essential to exercise caution when assigning the
imine band, as the triazine bands of CTFs are in close proximity to this spectral region and
can potentially overlap. This spectral overlap adds a layer of complexity to the assignment
process, underscoring the need for meticulous analysis to accurately identify and attribute
the imine-related bands within the FT-IR spectra.

Figure 2. FT-IR spectra of starting materials 4,4′,4′′-(1,3,5-triazine-2,4,6-triyl)trianiline (a), 2,2′-
bithiophene-5,5′-dicarboxaldehyde (b) and the TP-CTF photocatalyst (c).

Scheme 2. Imine coupling reaction via condensation between an aldehyde and a primary amine to
form the TP-CTF material.

Light absorption properties of the TP-CTF photocatalyst were investigated by means
of UV-Vis spectroscopy, and the corresponding spectrum is presented in Figure 3. The
TP-CTF photocatalyst featured strong absorption bands at about 280, 380 and 550 nm,
indicating that the solid can efficiently absorb solar energy in the UV and visible regions.
According to the corresponding Tauc plot [53] shown in Figure 3, the optical bandgap (Eg)
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of TP-CTF is 2.1 eV. Clearly, the absorption in the visible region of TP-CTF is not related
to the triazine but to the bithiophene moieties in the structure. Other CTF-type materials
lacking these thiophene units (such as CTF and Me-CTF shown in Figure 3 for comparison)
presented much higher bandgaps (2.8 and 2.5 eV, respectively) and do not significantly
absorb in the visible region. This is an important feature with respect to the potential
activity of TP-CTF as a visible light drive photocatalyst.

Figure 3. UV spectra of photocatalysts (top-left) and corresponding Tauc plots (top-right). The struc-
tures of the two compounds (CTF and Me-CTF) used for the comparison are also shown (bottom).

CTFs in general are not soluble in common organic solvents due to their high chemical
stability arising from the assembly by covalent bonds. Therefore, solid-state CP-MAS
13C NMR spectroscopy was used to characterize the photocatalyst. The corresponding
spectrum of TP-CTF shown in Figure 4 presents chemical shifts at 123, 125, 139 and 150 ppm
collectively assigned to all sp2 carbon atoms associated with structural aromatic moieties. In
addition, chemical shifts corresponding to N=C-N triazine groups (169 ppm) and thiophene
carbons (129, 133 and 144 ppm) were also observed in the NMR spectrum. Also, of note, a
chemical shift corresponding to the C=N imine linkages between triazine and bitiophene
units was observed at 154 ppm. Finally, an additional peak was observed at 115 ppm in the
spectrum, where the chemical shift corresponding to the C-NH2 groups of the triazine is
expected. This indicates that a small amount of free -NH2 groups still remains in TP-CTF,
which is associated with structural defects.
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Figure 4. 13CP/MAS NMR spectrum and peak assignment of TP-CTF material.

The thermal stability of CTFs was evaluated via thermogravimetric analysis (TGA)
under air flux, as shown in Figure S3. The degradation of organic building units started
in the 450 to 650 ◦C range, evidencing the high thermal stability of TP-CTF thanks to the
intrinsic stability of aromatic coordinated units present in the organic framework. The
textural properties of TP-CTF were analyzed via CO2 adsorption at 0 ◦C up to 1 bar, as
shown in Figure S5. The corresponding surface areas were estimated from the isotherms
by using the Dubinin–Astakov equation [54]. The measured CO2 capacities (at 1 bar)
corresponded to a calculated surface area of 235 m2 g−1 for TP-CTF. Thus, the porosity of
this material is relatively low, in comparison with traditional imine-based COFs, like TpPa1-
COF [55], which are typically in the range 500–1600 m2 g−1 depending on the activation
temperature. It is interesting to note that TP-CTF does not adsorb any sensible amount of
N2 at a low temperature (77 K). Therefore, CTFs containing bithiophene units could have a
high potential for the selective separation of gas mixtures, e.g., N2/CO2, which is currently
being explored by our research group.

The morphology and microstructure of the as-prepared photocatalyst was character-
ized via scanning (SEM) and transmission (TEM) electron microscopy, and the images of
TP-CTF are shown in Figure 5. The material showed a layered stacking morphology with a
micron level size. In order to reveal the eventual ordering of TP-CTF, TEM images were
obtained. A close examination of TP-CTF evidenced the layered stacking morphology of
this compound. The individual layers of the CTF were observed to be superimposed on top
of each other. This laminar arrangement is a direct result of the covalent bonds connecting
the building units within each layer, corroborating the results obtained from XRD patterns.
It creates a unique layered structure, similar to the pages of a book stacked on one another.
This layered morphology plays a vital role in the material’s properties, particularly its
porosity, surface area and accessibility. Additionally, TEM images revealed a degree of
disorder within the TP-CTF structure, especially when different layers or sections overlap.
This disorder is a consequence of the intricate process of layer-by-layer deposition during
CTF formation. As successive layers are deposited on top of each other, they may not align
perfectly, leading to variations in the positioning of atoms and functional groups. This
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structural disorder can have important implications for the material’s properties, including
gas adsorption, catalytic activity and more.
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2.2. Photocatalytic Coupling of Amines

In order to evaluate the potential photocatalytic activity of thiophene-based CTF
as a heterogeneous photocatalyst, we have considered the aerobic (homo- and cross-)
coupling reaction of amines [56] at room temperature and under visible light irradia-
tion (λirr > 400 nm) over TP-CTF (Scheme 3). First, we evaluated the homocoupling of
benzylamine as a test reaction. The results showed that 100% conversion of imine was
achieved after 7 h irradiation at room temperature when TP-CTF was used as the photo-
catalyst (entry 2 in Table 1). The product of the homocoupling reaction of benzylamine,
N-benzylidenebenzylamine, was detected as the sole product, as confirmed via GC and GC-
MS. The time-conversion plot obtained for the oxidative coupling reaction of benzylamine
using TP-CTF as photocatalyst is shown in Figure 6.

Scheme 3. Oxidative aerobic amine homo- and cross-coupling photoreaction.



Molecules 2024, 29, 1637 9 of 16

Table 1. Homo- and cross-coupling of different amines with TP-CTF as the photocatalyst a.

Entry Catalyst Substrate Product Conv (%) Select (%)

1 Blank 0 0
2 TP-CTF 100 100
3 TP-CTF b 0 0
4 CTF 52 100
5 Me-CTF 30 100

6 TP-CTF 100 100

7 TP-CTF 100 100

8 TP-CTF 100 59

a Reaction conditions: benzylamine (1.0 mmol), acetonitrile (2 mL) and solid photocatalyst (15 mg), air atmo-
sphere, room temperature, visible light irradiation (λirr > 700 nm), 7 h of reaction. b Same as in entry 2 but
without irradiation.

Figure 6. Time-conversion of benzylamine to N-benzylidenebenzylamine using TP-CTF as the
photocatalyst. The dashed line indicates the conversion at which the catalyst was withdrawn from
the reaction in the hot filtration experiment (see below).

We have recently studied in detail [57] the mechanism of the visible-light-driven
photocatalytic coupling of benzylamine over MIL-125-NH2 by combining catalytic tests, IR
spectroscopy and density functional calculations. According to this mechanism, the reaction
proceeds through the oxidation of benzylamine to benzaldehyde, followed by a nucleophilic
attack by a second benzylamine molecule and dehydration to yield the corresponding imine.
The role of the photocatalyst consists of the transfer of a photogenerated electron to O2,
forming a O2

•− radical anion. All the data obtained in the present work suggest that the
same mechanism also applies to the TP-CTF photocatalyst.
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Other covalent triazine frameworks lacking the bithiophene moieties, namely CTF and
Me-CTF [36,57,58], were used for a comparison, and the data obtained are also summarized
in Table 1. Although these thiophene-free compounds also exhibited some potential in the
considered photocatalytic reaction, they do not perform as well as the TP-CTF material due
to their higher bandgap, which significantly decreases the light absorption in the visible
region (compare entry 2 with entries 4 and 5 in Table 1). The catalytic performance of
CTF and Me-CTF is particularly noteworthy as it predominantly arises from the inherent
properties of the triazine rings within their structures. Both CTF and Me-CTF primarily
rely on these triazine units to facilitate the amine-to-imine oxidative coupling reactions
under visible light irradiation. CTF and Me-CTF efficiently promote the conversion of
amines to imines with a 52% conversion rate. This suggests that the triazine moieties, with
their intrinsic catalytic activity, serve as the driving force for this reaction, highlighting the
pivotal role of the triazine units in CTF’s catalytic performance [59–65]. The presence of
thiophene units may further enhance the catalytic activity, as demonstrated by TP-CTF, but
it is not the sole factor.

Meanwhile, no conversion was observed when the experiment was carried out in the
absence of any catalyst or under dark conditions (entries 1 and 3). This outcome highlights
the fundamental role played by the photocatalyst in driving the chemical transformation.
In the absence of light, the activation process is hindered, emphasizing the essential nature
of the visible light source in initiating the catalytic cycle. Furthermore, the minimal con-
version in the blank reaction underscores the inefficacy of the reaction in the absence of
the catalyst, reinforcing the catalytic material’s indispensable role in facilitating the aerobic
coupling of amines to imines under visible light irradiation. This discussion reaffirms the
photoreactivity of the CTF catalyst and its pivotal function in promoting the selective and
efficient transformation of amines to imines in an environmentally friendly manner [66].

Encouraged by the good results obtained with TP-CTF, the scope of the reaction
was further investigated for the aerobic homo- and cross-coupling of other benzylamine
substrates using TP-CTF as the photocatalyst under visible light irradiation.

Quantitative and fully selective imine yields were attained within 7 h of irradiation
for the homocoupling of 4-fluorobenzylamine and phenetylbenzylamine (Table 1 entries 6
and 7). The cross-coupling reaction between benzylamine and 4-fluorobenzylamine also
achieved full conversion, with the considerable selectivity of 59% for the cross-coupling
product. This probably indicates that the reaction rate of the two homo-coupling reactions
and that of the cross-coupling are similar, so it is unavoidable that all three reactions take
place simultaneously. Nevertheless, the aerobic photocoupling of amines provides an
interesting route for obtaining non-symmetrical imines with reasonably good yields.

One of the remarkable features of TP-CTF is its outstanding stability and recyclability,
which significantly contribute to its sustainable and eco-friendly catalytic potential. The
stability and recyclability of TP-CTF photocatalyst were examined in the aerobic oxidation
of benzylamine homocoupling. After each catalytic run, TP-CTF was filtered and washed
with acetonitrile and then dried at 100 ◦C before the next run. In a series of consecutive
catalytic cycles, TP-CTF consistently maintained a high level of conversion of 95% and full
selectivity to the homocoupling product for at least 8 consecutive catalytic cycles, as shown
in Figure 7, with minimal performance degradation. These observations underscore the
robustness and longevity of TP-CTF as a heterogeneous photocatalyst, rendering it suitable
for long-term and repetitive use in the aerobic oxidative coupling of amines.

The remarkable catalytic stability of TP-CTF constitutes a highly advantageous feature
for industrial applications, where the longevity and consistent performance of a catalyst
play pivotal roles. In order to provide a comprehensive assessment of its stability and cat-
alytic activity, a detailed X-ray diffraction and elemental analysis was conducted following
its first use in the catalytic reaction. In the X-ray diffraction patterns (see Figure S2), a subtle
decrease in the intensity of characteristic peaks was observed. However, this decrease did
not compromise the overall semicrystalline structural chemistry of TP-CTF, indicating that
its fundamental structural integrity remained intact.
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Figure 7. Recyclability of TP-CTF catalyst for the benzylamine coupling reaction at 3 h and the end
time (7 h).

In tandem with X-ray diffraction, elemental analysis was conducted, focusing on
carbon and sulfur (C:S) and carbon and nitrogen molar ratios (C:N), as summarized in
Table S1. The results confirmed that TP-CTF maintained its initial C:S and C:N ratios,
underlining its robust chemical composition. These findings provide valuable insights into
the structural and chemical resilience of TP-CTF. Moreover, the use of TP-CTF aligns with
the principles of green chemistry, emphasizing the importance of catalyst recyclability and
longevity in reducing waste and promoting a more sustainable chemical industry.

During the course of the hot filtration experiment, which involved filtering the reaction
slurry at the reaction temperature, a significant observation emerged regarding the catalytic
behavior. As the reaction continued and the catalyst remained in contact with the reaction
mixture, a notable increase in conversion was observed. However, the turning point
occurred when the hot filtration process was initiated, which marked a pivotal moment in
the reaction’s progress. What became apparent was that once the catalyst was separated
from the reaction mixture via filtration at an intermediate stage of the reaction (as depicted
in Figure 6), the conversion abruptly ceased to increase any further. This observation hinted
at a strong correlation between the catalyst and the reaction progress, signifying the critical
role played by the catalyst in facilitating the reaction.

The subsequent analysis of the filtrate from the hot filtration experiment revealed an
absence of sulfur, as confirmed through elemental analysis. This outcome is particularly
significant, as it indicates that no active sites from the catalyst were leached into the reaction
solution during the course of the reaction. The absence of sulfur detection underscores
the robust integrity of the catalyst and its ability to maintain its structural and chemical
integrity throughout the catalytic process. Moreover, this finding provides substantial
evidence supporting the heterogeneous nature of the catalytic system. The lack of leaching
and the stable catalyst structure further reinforce the argument that TP-CTF is an efficient
and durable photocatalyst, capable of driving the reaction without being consumed or
compromised in the process.

3. Experimental Section
3.1. Reagents and Chemicals

4,4′,4′′-(1,3,5-triazine-2,4,6-triyl)trianiline and 2,2′-bithiophene-5,5′-dicarboxaldehyde
were purchased from TCI Europe and ABCR, respectively. Benzylamine, 4-fluorobenzyylamine,
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phenetylamine, 1,4-dioxane and mesitylene were purchased from Sigma Aldrich. Acetoni-
trile and PTFE syringe filters were purchased from Scharlab.

3.2. Synthesis of TP-CTF

A Schlenk flask tube with vacuum valve was charged with 4,4′,4′′-(1,3,5-triazine-2,4,6-
triyl)trianiline (106 mg, 0.3 mmol), 2,2′-bithiophene-5,5′-dicarbaldehyde (99 mg, 0.45 mmol),
1.0 mL of mesitylene, 2.0 mL of dioxane and 0.5 mL of 6 M aqueous acetic acid. The whole
content was sonicated for 10–12 min at room temperature in order to obtain a homogenous
dispersion. The tube was then flash frozen at 77 K (liquid N2 bath) and degassed through
three freeze-pump-thaw cycles, after which the flask was charged with N2 through the
vacuum valve. The tube was sealed off under a vacuum and then heated at 120 ◦C for 3 days
without stirring. A red colored precipitate was collected via centrifugation and washed
with anhydrous methanol and finally with anhydrous acetone. The powder collected was
then washed in a Soxhlet extractor with THF (12 h) at 90 ◦C and then dried at 100 ◦C for
2 h to give a dark-red-colored pure TP-CTF powder.

3.3. Catalyst Characterization

The C, H and N content of the sample TP-CTF was determined with a Carlo Erba 1106
elemental analyzer. Thermogravimetric and differential thermal analysis (TGA-DTA) were
performed in an air stream with a Mettler Toledo TGA/SDTA 851E analyzer. Solid-state
MAS-NMR spectra were obtained at room temperature under magic angle spinning (MAS)
in a Brucker AV-400 spectrometer. IR spectra were determined with a Bruker Tensor 27
FT-IR spectrometer. Adsorption isotherms were measured in a Micromeritics ASAP 2010
instrument using approximately 200 mg of the adsorbent placed in a sample holder that
was immersed in a liquid circulation thermo-static bath for precise temperature control.
Before each measurement, the sample was treated overnight at 673 K under a vacuum. CO2
adsorption isotherms were then acquired at 273 K. UV–Vis Diffuse Reflectance Spectroscopy
(DRS) was performed using a Cary 5 spectrometer equipped with a Diffuse Reflectance
accessory in the range between 190 and 800 nm. This technique was used to determine
the band gap value of the samples, Eg, related to the absorption coefficient using the Tauc
equation. Catalytic results were obtained in a GC with a HP-5 column.

3.4. Photocatalytic Experiments
3.4.1. General Procedure for the Homo-Coupling of Benzylamine

In a typical run for photocatalytic activity test of TP-CTF, benzylamine (1.0 mmol), ace-
tonitrile (2 mL) and TP-CTF (15 mg) were added to a 50 mL quartz cell. The reaction mixture
was stirred at room temperature and ambient air pressure and irradiated with visible light
(1000 W Xe lamp with a UV filter, λexc > 420 nm). The reaction products were analyzed via
GC (Shimadzu 2010, equipped with a FID detector and a HP5 30 m × 0.25 mm × 0.25 µm
column) based on sample aliquots taken at fixed time intervals and using dodecane as
an internal standard. After each catalytic cycle, the solid was filtered and washed with
acetonitrile (3 × 10 mL), then dried at 100 ◦C in a vacuum pump and used directly in a
consecutive cycle.

3.4.2. General Procedure for the Cross-Coupling of Amines

Analogous to the homocoupling experiment, benzylamine (1.0 mmol) and
4-fluorobenzylamine (1.8 mmol), acetonitrile (5.6 mL) and TP-CTF (15 mg) were added to
a 50 mL quartz cell. The reaction mixture was irradiated at room temperature under the
same conditions as above, and the products were analyzed via GC using the same setup.
After each cycle, the catalyst was filtered and washed with acetonitrile (3 × 10 mL), then
dried at 100 ◦C in a vacuum pump and used directly in a consecutive cycle.
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4. Conclusions

In summary, a bithiophene-based CTF compound named TP-CTF has been prepared
via solvothermal synthesis and evaluated as a potential photocatalyst for the selective
transformation of amines to imines at room temperature under visible light irradiation.
Characterization data confirm the effective assembly of the starting building units used
in the synthesis. An XRD diffractogram showed a semicrystalline structure, similar to
that found in many lamellar COFs. The TP-CTF photocatalyst exhibited excellent ac-
tivity, selectivity and recyclability for the homo- and cross-coupling reaction of amines,
where quantitative yields of the target imine were obtained through an aerobic oxidative
mechanism in an air atmosphere.

The incorporation of bithiophene units into the TP-CTF structure offers several ad-
vantages that contribute to its superior performance as a photocatalyst for the oxidative
coupling of amines. Bithiophene moieties possess favorable electronic properties, such
as π-conjugation and delocalization of electron density, which can facilitate charge sepa-
ration and transfer processes during photocatalytic reactions. Additionally, the presence
of sulfur atoms in the bithiophene units may enhance the adsorption and activation of
reactant molecules, thus promoting efficient catalytic turnover. Furthermore, the extended
conjugated system provided by the bithiophene skeleton together with the presence of
triazine builder units can lead to improved light absorption properties, thereby enhancing
the utilization of solar energy for photocatalysis. This enhanced light-harvesting ability
may contribute to the observed higher catalytic activity of TP-CTF compared to other CTFs
lacking thiophene units.

Definitively, these new heterogeneous bithiophene-based photocatalysts can offer
breakthroughs in the field of photocatalysis as promoted materials with high potential in
a multitude of industrial reactions. This study not only presents TP-CTF as a promising
photocatalyst but also underscores the potential of thiophene-based CTFs in catalytic
applications, particularly in industrial processes, opening new avenues for sustainable and
green chemistry. The findings pave the way for further research on utilizing such materials
to address complex challenges in the chemical industry and environmental remediation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29071637/s1, Synthesis of CTF-type materials; Table S1:
Elemental analysis of TP-CTF; Figures S1 and S2: XRD patterns; Figures S3 and S4: TG analysis;
Figure S5: CO2 adsorption isotherm.
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