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Abstract: Spirotryprostatin alkaloids, a class of alkaloids with a unique spirocyclic indoledionepiper-
azine structure, were first extracted from the fermentation broth of Aspergillus fumigatus and have
garnered significant attention in the fields of biology and pharmacology. The investigation into the
pharmacological potential of this class of alkaloids has unveiled promising applications in drug dis-
covery and development. Notably, certain spirotryprostatin alkaloids have demonstrated remarkable
anti-cancer activity, positioning them as potential candidates for anti-tumor drug development. In
recent years, organic synthetic chemists have dedicated efforts to devise efficient and viable strate-
gies for the total synthesis of spirotryprostatin alkaloids, aiming to meet the demands within the
pharmaceutical domain. The construction of the spiro-C atom within the spirotryprostatin scaffold
and the chirality control at the spiro atomic center emerge as pivotal aspects in the synthesis of these
compounds. This review categorically delineates the synthesis of spirotryprostatin alkaloids based
on the formation mechanism of the spiro-C atom.

Keywords: spirotryprostatin; total synthesis; spiro-C atom; chirality control

1. Introduction

The spirotryprostatin class of alkaloids represents a significant category of spiroindoli-
none-piperazine alkaloids, characterized by a fundamental pentacyclic structure composed
of a spiroindolinone moiety and a dioxopiperazine moiety, featuring multiple chiral cen-
ters. Initially isolated by Osada et al. [1,2] from the fermentation broth of Aspergillus
fumigatus, two distinct spirotryprostatin alkaloids were first identified and designated
spirotryprostatin A (1) and spirotryprostatin B (2). In the course of activity assays, it was
observed that spirotryprostatins A and B exhibit inhibitory effects on murine breast can-
cer cells. Furthermore, their cytotoxic activity against human chronic myeloid leukemia
cells and human acute promyelocytic leukemia cells was confirmed, suggesting the po-
tential of spirotryprostatin-class alkaloids as lead compounds for novel drug screening
endeavors [3–6]. This underscores the prospect of spirotryprostatins being promising
candidates in the identification of novel therapeutic agents. The spiroindolinone and diox-
opiperazine motifs within the structural framework of spirotryprostatin-class alkaloids
represent pivotal elements found in numerous synthetic and natural compounds [7–10].
Compounds featuring the spiroindolinone moiety have demonstrated diverse biological
activities [11–13], including anti-tumor, antimicrobial, anti-HIV, and anti-malarial proper-
ties. Similarly, those containing the dioxopiperazine moiety exhibit bioactivities [14–16]
such as cytotoxicity, antimicrobial effects, antifungal properties, and thrombosis prevention.
Notably, spirotryprostatin-class alkaloids uniquely combine both of these critical motifs,
thereby manifesting significant and versatile biological activities. As of the present mo-
ment, ten principal structures of spirotryprostatin alkaloids [17–21] have been isolated
(Scheme 1), and their pharmacological activities [22–24], including anti-tumor, anti-HIV,
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insecticidal [24], and analgesic effects have been substantiated. Consequently, these com-
pounds have garnered extensive attention from the chemical community. However, it is
noteworthy that spiroindolinone compounds, despite their promising pharmacological
profiles, remain at the cellular experimentation stage in clinical research [25,26], with no
current reports documenting their progression into marketable products.
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Scheme 1. Main structures and diastereomers of spirotryprostatin alkaloids.

Since the discovery of spirotryprostatin-class alkaloids, numerous research groups
have undertaken diverse synthetic approaches to their total synthesis (Table 1). The scope of
these synthetic endeavors extends beyond the original spirotryprostatin alkaloids isolated
and encompasses the total synthesis of modified derivatives [15,27–35]. Through structural
modifications, the objective is not only to recreate the originally isolated spirotryprostatin
alkaloids but also to generate a novel cohort of spirotryprostatin-class alkaloids with en-
hanced pharmacological efficacy. This synthetic modification approach aims to yield new
pharmaceutical agents within the spirotryprostatin class with augmented therapeutic po-
tential. The construction of the spiro-C atom within the spirotryprostatin scaffold and the
chiral control at the spiro atomic center are pivotal in the synthesis of such compounds.
The spiro-C atom located at the indole nucleus’s C3 position serves as the chiral center
for the entire molecular framework, formed by the shared carbon atom between the ox-
idized indole and the pyrrolidine. Owing to the stereochemical selectivity inherent in
chemical reactions, the total synthesis of certain analogous compounds often yields di-
astereoisomers of the target product (Scheme 1). In summary, the synthesis of compounds
of this nature encounters challenges primarily in the construction of quaternary carbon
atoms and the chiral control at the spiro-C center. Current synthetic methodologies for
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such compounds predominantly involve the rational design of substrates functionalized
at the C3 position of the indole moiety, followed by ring-closure processes to form the
spiro-indole-pyrrolidine framework. This review categorically reports the synthesis of
spirotryprostatin-class alkaloids based on the manner in which the spiro-C atom is formed.

Table 1. Summary of total syntheses of spirotryprostatin alkaloids.

Groups Year Key Mechanism Steps and Yields

Danishefsky 1998

oxidative rearrangement

8 steps with yield of 6.5%

Granesan 2000 5 steps with yield of 2–6%

Zhang 2019 11 steps with yield of 20%

Danishefsky 2000

Mannich reaction

8 steps with yield of 4.6%

Horne
2004 7 steps with yield of 4.9%

2004 6 steps with yield of 6.2%

William 2002

1,3-dipolar cycloaddition

9 steps with yield of 11%

Williams 2004 4 steps with yield of 2%

Waldmann 2011 1 step with yield of 97%

Gong 2011 10 steps with yield of 4.9%
and 5.3%

Wang 2023 6 steps with yield of 36%

Overman 2000
heck coupling

10 steps with yield of 9%

Fukuyama 2014 25 steps with yield of 3.4%

Fuji 2002 nitroalkene cyclization 16 steps with yield of 0.6%

Trost 2007
palladium-catalyzed
asymmetric isoprene

functionalization
8 steps with yield of 13.7%

Procter 2011 cascade reaction triggered by
iodine-induced ring formation

10 steps with yield
of 13.7%

Shen 2022 copper-catalyzed cascade
reactions 15 steps with yield of 7.4%

2. The Synthetic Approach Employing Tryptophan Derivatives as the Starting Material
2.1. The Oxidative Rearrangement Methodology
2.1.1. Danishefsky’s Total Synthesis

In 1998, Danishefsky’s group [36] first reported the total synthesis pathway of spirotry-
prostatin A. Subsequently, they modified the reaction pathway, successfully achieving
the total synthesis of spirotryprostatin A (1) and its derivative dihydrotryprostatin B
(10) (Scheme 2). A pivotal step in the reaction involved the oxidative rearrangement of
a β-carboline derivative facilitated by NBS, leading to the formation of the spirocyclic
moiety. The reaction commenced with 6-methoxytryptophan methyl ester 14 and tert-
butylthioacetaldehyde 15 as starting materials. Initially, subjected to a Pictet–Spengler
cyclization reaction, the process yielded the indole and hexacyclic intermediate 16 with
a diastereomeric ratio of 2:1. The subsequent protection of the amino group with a Boc
moiety led to the formation of intermediate 17. Furthermore, under the influence of NBS
and acetic acid, an oxidative rearrangement ensued, culminating in the formation of the
crucial pyrrolidine-indole ketone spirocyclic intermediate 19. Subsequently, intermediate
19 underwent deprotection facilitated by trifluoroacetic acid, followed by a two-step con-
densation with proline derivative 21 to form the dioxopiperazine structural intermediate
22. Finally, intermediate 22 underwent oxidation with sodium periodate, followed by the
elimination of the phenylthioether to generate terminal alkene 23. Under the catalysis of
rhodium trichloride hydrate, the double bond underwent isomerization, resulting in the
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target product spirotryprostatin A (1). The overall synthesis spanned eight steps with a
total yield of 6.5%.
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2.1.2. Granesan’s Total Synthesis

Around the year 2000, Granesan’s group [37–39] applied the PhSeBr reagent elimina-
tion reaction to the dioxopiperazine system for the construction of double bonds. Simulta-
neously, oxidative rearrangement was employed as a crucial step in spirocyclic formation.
This strategic approach led to the successful total synthesis of dihydrospirotryprostatin
B (10) and spirotryprostatin B (2). In the initial stages of Granesan’s synthesis, the tradi-
tional starting point still involved L-tryptophan methyl ester. However, in the optimized
approach, the starting material was modified to utilize L-tryptophan 24 protected with
N-Fmoc and anchored to polystyrene resin [38] (Scheme 3). In the presence of piperidine,
the Fmoc protecting group was removed from the starting material, liberating the amino
group. This amino group then reacted with isovaleraldehyde 25 and methyl formate to form
an imine intermediate 26. Subsequently, imine 26 underwent a Pictet-Spengler reaction
with N-Fmoc-L-proline acyl chloride, leading to the formation of dipeptide intermediate
27 with a cis/trans ratio of 1:1 at the C18 position. Intermediate 27, under the influence
of NBS and acetic acid, underwent an oxidative rearrangement to yield the spirocyclic
intermediate 28. The subsequent removal of the Fmoc protecting group from the proline
moiety, followed by a ring-closure process, led to the formation of dihydrospirotryprostatin
B (10). The latter underwent a PhSeBr-mediated elimination reaction to yield the final
product spirotryprostatin B (2). The entire reaction sequence encompassed five steps with
an overall yield ranging from 2–6%, accompanied by the generation of several byproducts.

2.1.3. Zhang’s Total Synthesis

In 2019, Zhang et al. [40] reported the total synthesis of spirotryprostatin A (1),
achieved through intramolecular cyclization and osmium tetroxide-mediated oxidative
rearrangement processes (Scheme 4). The authors initiated the synthesis using 6-substituted
indole 29 as the starting material, which underwent iodination followed by Boc protection,
resulting in N-Boc-iodinated indole compound 30. Compound 30 was then subjected
to Sonogashira coupling with trimethylsilylacetylene 31, yielding the alkyne-silane in-
termediate 32. Alkyne-silane 32 underwent carboxylation with CO2, forming unstable
intermediate 33. Subsequently, direct condensation with (S)-prolyl amide 34 led to the
formation of alkyne amide 35. Alkyne amide 35 underwent intramolecular cyclization
to generate dioxopiperazine intermediate 36 with E/Z = 7:1. Subsequent nucleophilic
addition with 3-buten-2-one 37, followed by further addition with a Grignard reagent,
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resulted in tertiary alcohol intermediate 38. The dehydration of intermediate 38, catalyzed
by TsOH, formed a double bond, which, upon selective oxidation with osmium tetrox-
ide, led to the formation of diol compound 40. Subsequently, compound 40 underwent
rearrangement under high-temperature microwave conditions. When the R-group was
hydrogen, spirotryprostatin B (2) was directly obtained, whereas the use of methoxy-
substituted indole as the starting material yielded 6-methoxyspirotryprostatin B 41. The
latter, upon the Pd/C-catalyzed reduction of the double bond, afforded the natural product
spirotryprostatin A (1). The entire reaction sequence comprised 11 steps, resulting in a 20%
overall yield.
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2.2. Mannich Reaction
Danishefsky’s Total Synthesis

In the year 2000, Danishefsky’s group [41] accomplished the inaugural total synthesis
of spirotryprostatin B (2), employing the Mannich reaction as a pivotal step in the formation
of the spirocyclic moiety (Scheme 5). The reaction commenced with L-tryptophan methyl
ester hydrochloride 42 and, under the influence of phenol and concentrated hydrochloric
acid, underwent transformation into the oxidized indole structure compound 43. Subse-
quently, through a Mannich reaction with 3-buten-2-one 25, four distinct spirocyclic indole
ketone intermediate-like compounds 44, each possessing an isobutene side chain, were
obtained. Without the isolation of the four isomers, they were directly condensed with
Boc-protected proline 45, yielding a mixture of compound 46. In the final step, a method
involving the elimination of PhSeCl reagent under the influence of LHMDS was employed,
leading to the introduction of a double bond at positions C8 and C9. The reaction yielded a
mixture of isomers, from which a singular isomer 48 was isolated. Following the removal of
protective groups using TFA and a subsequent cyclization step catalyzed by triethylamine,
the target compound spirotryprostatin B (2) was obtained. The entire reaction sequence
encompassed eight steps, resulting in an overall yield of 4.6%.
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The comprehensive synthesis strategy involved the Mannich reaction between an
L-tryptophan derivative and an aldehyde to construct the envisaged spirocyclic indole
scaffold. While the desired product was successfully obtained, the approach introduced
significant stereochemical challenges, inevitably resulting in a mixture of diastereomers.
Despite subsequent attempts to assist the separation of diastereomeric mixtures using
L-Boc-protected proline in later reactions, the overall yield of spirotryprostatin B was
notably diminished.

2.3. Intramolecular N-Acyliminium Ion Spirocyclic Cyclization
Horne’s Total Synthesis

In 2004, Horne’s group [42] successfully achieved the total synthesis of spirotrypro-
statin B (2) through an innovative strategy based on intramolecular N-acyliminium ion
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spirocyclic cyclization, utilizing 2-halotryptophan esters as key intermediates (Scheme 6A).
The reaction initiated with L-tryptophan methyl ester 49, which underwent a reaction
with N-chlorosuccinimide (NCS) to yield 2-chlorotryptophan methyl ester 50. Subsequent
condensation with isovaleraldehyde 25 resulted in the formation of imine intermediate
51. Under the influence of N-Troc-protected proline acyl chloride and trifluoroacetic acid,
intermediate 51 underwent acylation, inducing spirocyclic cyclization and yielding indole-
oxidized spirocyclic intermediate 52. In contrast to the conventional oxidative rearrange-
ment reactions, a distinctive feature of this reaction lies in the hindrance of the indole’s
2-position by halogen, leading to electrophilic attack at the 3-position and subsequent
spirocyclic formation. Subsequently, under the influence of zinc, the Troc-group underwent
departure, yielding dihydrospirotryprostatin B and three distinct isomers. Finally, the
authors employed a non-oxidative method to convert dihydrospirotryprostatin B (10) into
spirotryprostatin B (2), involving a seven-step reaction sequence with an overall yield
of 4.9%. This route innovatively utilized the strategy of N-acyliminium ion spirocyclic
cyclization for constructing the oxidized indole spirocyclic moiety. However, the lack of
control over enantioselectivity in this approach, coupled with the generation of relevant
byproducts, limits the applicability of this route.
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In the same year, Horne et al. [43] successfully achieved the total synthesis of spirotry-
prostatin A (1) using a similar methodology (Scheme 6B). The route commenced with L-
tryptophan methyl ester 53, wherein excess NBS was employed for bromination. However,
this step exhibited limited regioselectivity, leading to bromination at both the C5 and C6 po-
sitions. Subsequently, employing a strategy analogous to the synthesis of spirotryprostatin
B, intermediate compound 56 was obtained. Through a copper-catalyzed methoxylation
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strategy, the bromine moieties were converted into methoxy groups, culminating in the total
synthesis of spirotryprostatin A (1). The overall reaction pathway requires only four steps,
yielding a final overall efficiency of 6.2%. However, it is noted that the overall yield is
relatively low, and configuration changes occur under alkaline conditions, resulting in the
generation of byproducts.

3. 1,3-Dipolar Cycloaddition
3.1. Williams’s Total Synthesis

The 1,3-dipolar cycloaddition method has proven to be an exceedingly efficacious
strategy for constructing helical stereocenters [44–47]. This approach has been widely
applied in the total synthesis of numerous natural products and their analogs [48–51]. In
the year 2000, Williams et al. [52] initially reported the application of the methylimine
ylide-mediated 1,3-dipolar cycloaddition method for the total synthesis of spirotryprostatin
B (2) and 12-epi-spirotryprostatin B (13). Subsequently, in 2002 [53], further refinements
were introduced to enhance the efficacy of this methodology (Scheme 7). The reaction com-
menced with quinone 57, aldehyde 58, and oxindole-based ethyl oxindole-2-carboxylate 59
as substrates. Initially, under the influence of molecular sieves in toluene, quinone 57 and
aldehyde 58 underwent condensation, forming imine ylide intermediate 60. Subsequent to
this step, a 1,3-dipolar cycloaddition reaction ensued with ethyl oxindole-2-carboxylate 59,
resulting in the formation of spirocyclic intermediate 61. The stereochemical assignment of
compound 61 was elucidated through single-crystal X-ray crystallography, revealing the au-
thors’ proposition that steric hindrance effected by the isoprene aldehyde precursor favors
the adoption of the E-stereoisomer geometry. Consequently, achieving high stereochemical
selectivity in spirotryprostatins bearing the isoprene moiety at carbon position C18 was
feasible. The ensuing steps involved hydrogenation for benzyl group removal to yield 62,
followed by ring opening of the lactone, amidation, elimination, and Hunsdiecker reaction,
ultimately affording 12-epi-spirotryprostatin B (13). Upon treatment with methoxide in
methanol, 12-epi-spirotryprostatin B (13) underwent isomerization, culminating in the
target compound (-)-spirotryprostatin B (2). The overall synthetic route encompassed nine
steps with a yield of 11%.
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In 2004, Williams [54,55] extended the application of this methodology to the total
synthesis route of spirotryprostatin A (1) (Scheme 8). Given the structural disparities
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between spirotryprostatins A and B, primarily attributed to the methoxy-substituted indole
moiety on the benzene ring in spirotryprostatin A and the double bond in the pyrrolidine
of spirotryprostatin B, the authors initiated synthesis with indole-2-ketone, possessing
the methoxy substituent. A 1,3-dipolar cycloaddition reaction was employed to furnish
spiro indoline ketopyrrolidine intermediate 66, featuring four adjacent chiral centers with
methoxy substituents. Subsequent analogous treatment procedures led to the final product,
spirotryprostatin A (1), with a yield of 2%. The primary challenge in achieving a higher
yield was attributed to suboptimal chiral control during the 1,3-dipolar cycloaddition step,
resulting in the formation of multiple stereoisomers.
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3.2. Waldmann’s Total Synthesis

In 2011, Waldmann et al. [56] reported, for the first time, a Cu/N,P-bis(2-methylphenyl)
ferrocenyl Lewis acid-catalyzed 1,3-dipolar cycloaddition reaction (Scheme 9). Employing
a concise one-pot, three-step methodology, the researchers achieved high enantiomeric
selectivity in the synthesis of spirocyclic pyrrolidine–indolone compounds. Subsequently,
leveraging this structural motif, a series of derivatives based on the spirotryprostatin
A scaffold were successfully synthesized. Notably, this synthetic route demonstrated
remarkable enantiomeric selectivity, reaching up to 97%.
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3.3. Gong’s Total Synthesis

In the same year, Gong [57] introduced a chiral phosphoric acid-catalyzed [3 + 2]
cyclization strategy, culminating in the construction of chiral quaternary carbon centers
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(Scheme 10). This innovative approach facilitated the total synthesis of two distinct enan-
tiomers of spirotryprostatin A. The reaction sequence involved the generation of an imine
through the reaction of aldehyde 25 with ethyl aminopropionate 73, followed by a 1,3-
dipolar cycloaddition with methyl acrylate derivative 74 under the catalysis of chiral phos-
phoric acid 75. This process not only facilitated the construction of two chiral carbon centers
but also resulted in the formation of intermediate 76. Subsequent zinc powder-mediated
cyclization of 76 yielded indole derivative 77. Compound 77 underwent sequential transfor-
mations, including deprotection via samarium diiodide, decarboxylation, and hydrolysis,
yielding indole spirocyclic pyrrolidine intermediate 79. The further condensation of 79
with proline acyl chloride, Boc removal, and closure of the diketopiperazine ring ultimately
afforded the target compounds 9,18-epi-spirotryprostatin A (12) and 18-epi-spirotryprostatin
A (11). Upon conducting activity tests on both non-enantiomeric isomers, it was observed
that their activities were comparable to that of spirotryprostatin A (1). Consequently, it
can be inferred that the configuration at positions C-9 and C-18 in such compounds is
not a decisive factor influencing the structure–activity relationship of spirotryprostatin A
(1). The synthesis involved a total of 10 steps, culminating in the production of two non-
enantiomeric isomers, namely 9,18-epi-spirotryprostatin A (12) and 18-epi-spirotryprostatin
A (11), with overall yields of 4.9% and 5.3%, respectively.
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3.4. Wang’s Total Synthesis

In 2023, Wang’s group [58] disclosed an instance of a silver-catalyzed asymmet-
ric [3 + 2] cycloaddition strategy, achieving the total synthesis of spirotryprostatin A
(Scheme 11). The authors initiated the synthesis utilizing α-substituted acrylic ester 81 and
imine ester 82 as starting materials. Employing AgHMDS and chiral ligand 83 as catalysts
facilitated a cyclization process, affording methyl ester derivative 84 with a 96% ee value.
Through a coupling reaction with acyl chloride 85, using the methodology established by
the Danishefsky group, the formation of fused-ring compound 86 was achieved. Subse-
quently, intermediate 86 underwent demethoxylation and methylation under the influence
of trifluoroacetic acid, yielding intermediate 87. The reduction of the nitro group followed
by intramolecular cyclization and benzyl protection afforded pivotal spirocyclic oxindole
intermediate 89. Further transformations involving hydroxyl elimination and deprotection
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culminated in the final product, spirotryprostatin A (1). The synthetic route encompassed a
total of six steps with a yield of 36%.
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4. Metal Catalysis
4.1. Heck Coupling
4.1.1. Overman’s Total Synthesis

In the year 2000, Overman et al. [59] achieved the total synthesis of spirotryprostatin B
(2) through the strategic implementation of a Heck reaction-mediated cyclization to con-
struct the oxygenated spirocyclic framework (Scheme 12). Diverging from the conventional
synthetic approaches to spirotryprostatin-type compounds, which typically involve the
initial construction of the spirocyclic oxindole moiety, Overman introduced a pioneering
strategy wherein the diketopiperazine scaffold is first assembled, followed by the sub-
sequent synthesis of the spiroatom. A pivotal aspect of this synthetic pathway involves
the utilization of an intramolecular asymmetric Heck reaction and the dual capture of a
π-allyl palladium intermediate by the adjacent amide nitrogen atom within the diketopiper-
azine ring. This intermediate is subsequently captured by a trans-selective nucleophilic
reagent, concurrently establishing chiral centers at the C3 and C18 positions. The reac-
tion commenced with the commercially available substrate allylic alcohol 90. Initially, an
oxygen-induced Claisen rearrangement yielded dienoic ester 91. The subsequent hydroly-
sis of the two ester groups on 91, followed by TBDPS protection and condensation with
ortho-iodoaniline, furnished compound 93. Nitrogen protection of the amide on 93 was
accomplished using 2-(trimethylsilyl)ethoxymethyl (SEM), followed by the removal of
the TBDPS-protecting group from the hydroxyl moiety. Oxidation with DMP yielded the
intermediate aldehyde, which underwent a Horner–Wadsworth–Emmons reaction with
phosphonate 94, culminating in the formation of compound 95. The final steps involved a
Heck reaction for cyclization, leading to the construction of the oxindole and spirocyclic
oxindole compound 96, concurrently generating an equivalent non-enantiomeric isomer.
The demethylation of the target configurational intermediate 96 and subsequent steps
resulted in the total synthesis of the natural product spirotryprostatin B (2) in 10 steps,
achieving a yield of 9%.
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4.1.2. Fukuyama’s Total Synthesis

In 2014, Fukuyama’s group [60] presented a comprehensive synthesis strategy for
spirotryprostatin A (1), with a pivotal molecular intramolecular Heck reaction (Scheme 13).
Commencing with straightforward L-proline methyl ester salt 97 and 4-hydroxy-L-proline
98, the synthesis initiated with a condensation reaction, followed by oxidation using 2,2,6,6-
tetramethylpiperidin-1-oxyl (TEMPO) to yield the highly unstable amide intermediate 99.
Recognizing the instability of 99 and its potential impact on yield, a protective measure
involved the initial carbonyl protection of the keto group in 99 to form a dimethyl ketal. The
subsequent hydrogenation of the formate benzyl ester (Cbz) group triggered an intramolec-
ular cyclization, resulting in the formation of the diketopiperazine intermediate, which,
upon acidic hydrolysis, yielded the diketopiperazine intermediate 100. The treatment
of ketone 100 with a combination of trifluoromethanesulfonic anhydride (TBSOTf) and
triethylamine provided the desired intermediate 101, featuring an unsaturated pyrroli-
dine structure. The resulting product exhibited high specificity, achieving a remarkable
yield of 99%. To introduce an alkyl side chain at the C-18 position of the final product,
the Mukaiyama hydroformylation reaction was employed between 101 and trimethylsily-
loxyacetaldehyde 102. Subsequent dehydration with trifluoromethanesulfonyl anhydride
resulted in the formation of the unsaturated ketone 103 in a mixture of E-Z isomers (6.6:1).
Utilizing palladium catalysis, the hydrogenation of 103 was accomplished, followed by
a consecutive three-step reduction–rearrangement process, and deprotection, selectively
converting it into intermediate 104. Subsequently, the oxidation of the secondary alcohol to
an aldehyde was achieved using a Dess–Martin reagent, and further nucleophilic addition
with a Grignard reagent produced an intermediate, which, upon subsequent oxidation
with the Dess–Martin reagent, led to the formation of ketone intermediate 107. Under
palladium catalysis, intermediate 107 underwent an intramolecular Heck coupling cycliza-
tion reaction, resulting in the formation of tetrahydronaphthone 108. The introduction of
the nitrogen moiety was achieved through hydroxylamine hydrochloride, generating the
E-oxime 109 because of the hinderance of the Ph-ring. Subsequent Beckmann rearrange-
ment, Boc protection, and ring opening with methyl lithium yielded the tertiary alcohol
intermediate 111. Ozone decomposition followed by an oxidation step resulted in the
formation of the spirocyclic oxindole ketone intermediate 112. Finally, through dehydration
and deprotection steps, the ultimate product, spirotryprostatin A (1), was obtained. The
synthetic pathway involved a total of 25 steps with an overall yield of 3.4%. Despite the
relatively high yields at each step, the extended length of the synthetic route contributed to
a lower final yield.
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4.2. Metal Olefination
4.2.1. Fuji’s Total Synthesis

In the year 2002, Fuji et al. [61] utilized nitroalkene cyclization as a pivotal step in
the synthesis of spirotryprostatin B (2) (Scheme 14). Their strategy for constructing the
spirocyclic quaternary carbon was guided by the formation of a chiral auxiliary, whereby the
resulting intermediate underwent functional group transformations, introducing distinct
fragments and ultimately yielding the cyclization precursor 113. Under the influence
of titanium trichloride and ammonium acetate, precursor 113 underwent nitroalkene
transformation to yield aldehyde 114. Subsequent steps, including Strecker reaction, Cbz
protection, and cyanide hydrolysis, led to the formation of a benzylamine intermediate 117
containing an ester moiety. Compound 117 was further condensed with protected L-proline
to generate amide intermediate 118. Successive transformations involving epoxidation,
phenylselenol addition, and oxidative cleavage resulted in the conversion to tertiary alcohol
intermediate 119. The treatment of intermediate 119 with p-toluenesulfonic acid produced
the anticipated spirocyclic oxindole pyrrolidine intermediate 120 with a yield of 24% and the
concomitant formation of an isomer. Employing the methodology reported by Danishefsky
et al., the treatment of 120 yielded the target product spirotryprostatin B (2), following a
16-step synthetic route with an overall yield of 0.6%, accompanied by a notable presence
of byproducts.
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4.2.2. Trost’s Total Synthesis

In 2007, Trost et al. [62] disclosed a comprehensive synthesis route for spirotrypro-
statin B (2) utilizing an efficient palladium-catalyzed asymmetric isoprene functionalization
(Scheme 15). A pivotal aspect of this synthetic pathway involves the non-enantioselective
isoprenylation reaction under palladium catalysis to construct the spirocyclic carbon stere-
ocenter. Commencing with Cbz-protected L-proline 122 and hydrochloride salt of 2-amino-
propane-dicarboxylic acid 121, the reaction involved an initial sequence of condensation,
hydrogenation, deprotection, and subsequent condensation to yield intermediate 123. Un-
der the catalysis of the Otera catalyst, intermediate 123 underwent alkylation to generate
the diketopiperazine compound 125 bearing an isoprenyl side chain. The coupling of
intermediate 125 with oxindole 126, facilitated by a one-pot strategy, produced the nucle-
ophilic precursor compound 127. Subsequent decarboxylative isoprenyl rearrangement
occurred under the joint action of a palladium catalyst and ligand 128, yielding the crucial
intermediate 129. The treatment of intermediate 129 with PhSeOAc, followed by oxidative
elimination using hydrogen peroxide, led to the formation of vinyl acetate 130. Ultimately,
the target product was obtained through cyclization under the influence of trimethylalu-
minum. The entire synthetic route comprised eight steps, achieving the total synthesis of
spirotryprostatin B (2) with a yield of 13.7%.

4.3. Cascade Reactions
4.3.1. Procter’s Total Synthesis

In 2011, Procter et al. [34] documented a cascade reaction triggered by iodine-induced
ring formation in the synthesis of spirocyclic indolinone compounds (Scheme 16). Through
extensive exploration, they delineated a concise synthetic route for the total synthesis of 18-
phenyl-substituted spirotryprostatin A derivatives, spanning a comprehensive sequence of
10 steps with an overall yield ranging between 13.7% and 16.3%. The reaction commenced
with amide compound 131 as the starting material, undergoing a two-step transforma-
tion to yield the indolone intermediate 132. Subsequently, a tandem reaction employing
samarium iodide catalysis and imine 133 led to the formation of the spirocyclic pyrrolidine
intermediate 134. The subsequent oxidative cleavage of the terminal alkene in 134 furnished
aldehyde intermediate 135. Sequential oxidation, esterification, and debenzylation reac-
tions yielded methyl ester intermediate 136, which, upon condensation with proline acyl
chloride, generated the mixture of compounds 137 and 138. The subsequent deprotection
of the Troc-protecting group initiated a cyclization reaction, affording two derivatives of
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spirotryprostatin A, 139 and 140, both featuring an 18-phenyl substitution. In the initial
stages of biological activity assessment, the authors observed that compound 140 exhibited
a level of bioactivity comparable to that of spirotryprostatin A (1). This finding may provide
valuable insights into the structure–activity relationships governing the biological activities
of spirotryprostatin-like compounds, thereby serving as a guiding reference for further
investigations in this domain.
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4.3.2. Shen’s Total Synthesis

In the year 2022, Shen’s group [63] documented a strategy involving chiral auxiliary-
mediated, copper-catalyzed cascade reactions for the introduction of quaternary carbon
stereocenters and nitrogen-containing Michael cascade reactions (Scheme 17). This ap-
proach facilitated the asymmetric total synthesis of (-)-spirotryprostatin A 151, thereby
constructing the spirocyclic pyrrolidine-indole framework. The reaction commenced with
2-iodo-5-methoxyaniline 141 as the initial substrate and underwent a concise six-step trans-
formation to yield the ortho-iodoaniline derivative 142. Subsequently, a copper-catalyzed
tandem reaction with an alkyne ketone was employed, introducing a quaternary carbon
stereocenter and yielding the pivotal spirocyclic oxidized indole intermediate 143. Fol-
lowing this, under acidic conditions, intermediate 143 underwent removal of the chiral
auxiliary and intramolecular cascade aza-Michael reaction, yielding intermediate 144. The
treatment of 144 with triflic anhydride removed the protective group, and the subsequent
oxidation of the olefin under the influence of osmium tetroxide/sodium periodate produced
aldehyde 146. Aldehyde 146 underwent Pinnick oxidation in a buffered solution, followed
by esterification with (trimethylsilyl) diazomethane to afford methyl ester intermediate 147.
Intermediate 147, under palladium–carbon catalysis, underwent deprotection of the silyl
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group, followed by a ring-closing reaction using the improved strategy by the Danishefsky
research group, leading to intermediate 149. Finally, a formaldehyde reagent addition
and subsequent dehydration reactions were employed to achieve the total synthesis of the
target compound (-)-spirotryprostatin A 151. The entire synthetic pathway encompassed
15 steps, yielding the final product at an overall yield of 7.4%.
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4.4. MgI2-Catalyzed Ring Expansion
Carreira’s Total Synthesis

In 2003, the Carreira group reported [64] the application of magnesium iodide-catalyzed
cyclization in the total synthesis of spirotryprostatin B (2) (Scheme 18). The reaction com-
menced with diazoindolone 152 as the starting material, which, under rhodium catalysis,
underwent a cyclopropanation reaction with pentadiene 153, affording the indolone cy-
clopropane intermediate 154. Intermediate 154 and imine 155, through a magnesium
iodide-catalyzed [1 + 3] ring addition and ring expansion reaction, yielded the spirocyclic
intermediate 156. The subsequent palladium-catalyzed removal of the allyl group pro-
duced intermediate 157. A Schotten–Baumann reaction with N-Boc-L-proline acyl chloride
introduced the proline five-membered ring, followed by a series of oxidation reactions to
obtain aldehyde 159. Aldehyde 159, subjected to Pinnick oxidation, TIPS deprotection,
and hydrogenation, yielded compound 162. Further oxidation and olefination led to the
spirocyclic pyrrolidine intermediate 165, which, employing Danishefsky’s methodology,
underwent a PhSeCl-mediated elimination reaction followed by Boc-deprotection and clo-
sure of the diketopiperazine ring to ultimately obtain the target product spirotryprostatin B
(2). The synthetic route comprised 19 steps, with intricacies arising from isomer separations
and demanding reaction conditions, contributing to a relatively low overall yield of 5.5%.
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5. Conclusions

To date, various synthetic methodologies have been developed for the total synthesis
of spirotryprostatin alkaloids, resulting in a diverse array of spirotryprostatin compounds.
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However, certain approaches, such as oxidative rearrangement, have encountered chal-
lenges related to selectivity. Although some methods, such as copper- and silver-catalyzed
1,3-dipolar cycloaddition reactions, show promising potential for asymmetric synthesis,
the necessity for the preparation of highly effective chiral ligands to control stereochemical
issues poses a significant hurdle to achieving an efficient and concise process, requiring
prolonged development efforts. Other approaches utilizing palladium, rhodium, and
other metal-catalyzed methods, while capable of stereoselectively synthesizing spirocyclic
oxindole diketopiperazines, often involve complex routes, low yields, and the use of expen-
sive noble metals as catalysts, hindering their broader applicability. With the increasing
discovery and isolation of spirocyclic oxindole diketopiperazine alkaloids, a continual
emergence of highly selective, efficient, and concise synthetic methods is anticipated. Given
the notable biological activity of spirotryprostatin compounds, an expanding repertoire
of such compounds is being synthesized and applied in clinical practice. It is anticipated
that, in the near future, a cohort of new drugs based on the spirotryprostatin scaffold will
emerge in the field of medicine, serving as representative products in the development of
novel anti-tumor drugs.

Author Contributions: The initiation of this project was spearheaded by J.-F.W., Z.-X.N. and J.H.
The comprehensive gathering and systematic classification of pertinent references were diligently
conducted by all authors. It is noteworthy to highlight that each author has made significant
contributions to the advancement of this scholarly review. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Joint Construction Project of Henan Provincial Medical
Science and Technology Key Program (Nos. LHGJ20210688 and LHGJ20220768).
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