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Abstract: Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smart-
phones, televisions, and the automotive sector. However, this technology is still not perfect, and its
application for lighting purposes has been slow. For further development of the OLEDs, we designed
twisted donor-acceptor-type electroactive bipolar derivatives using benzophenone and bicarbazole
as building blocks. Derivatives were synthesized through the reaction of 4-fluorobenzophenone
with various mono-alkylated 3,3′-bicarbazoles. We have provided a comprehensive structural char-
acterization of these compounds. The new materials are amorphous and exhibit suitable glass
transition temperatures ranging from 57 to 102 ◦C. They also demonstrate high thermal stability,
with decomposition temperatures reaching 400 ◦C. The developed compounds exhibit elevated
photoluminescence quantum yields (PLQY) of up to 75.5% and favourable HOMO-LUMO levels,
along with suitable triplet-singlet state energy values. Due to their good solubility and suitable
film-forming properties, all the compounds were evaluated as blue TADF emitters dispersed in
commercial 4,4′-bis(N-carbazolyl)-1,10-biphenyl (CBP) host material and used for the formation of
emissive layer of organic light-emitting diodes (OLEDs) in concentration-dependent experiments.
Out of these experiments, the OLED with 15 wt% of the emitting derivative 4-(9′-{2-ethylhexyl}-[3,3′]-
bicarbazol-9-yl)benzophenone exhibited superior performance. It attained a maximum brightness of
3581 cd/m2, a current efficacy of 5.7 cd/A, a power efficacy of 4.1 lm/W, and an external quantum
efficacy of 2.7%.

Keywords: organic light-emitting diode (OLED); blue TADF emitters; Donor-Acceptor (D-A) materials;
benzophenone-based derivatives

1. Introduction

In recent decades, there has been significant and swift advancement in organic light-
emitting diode (OLED) technology, transforming it into a multi-billion-dollar market [1]. Its
applications have expanded across various domains, encompassing high-contrast flat-panel
displays, smartwatches, smartphones, and big-screen television sets. In addition, solid-state
lighting is attracting growing interest in both industrial and scientific domains [2–7]. OLED
devices offer superior features such as high colour purity, reduced weight, lower power
consumption, faster response, and flexibility, surpassing capabilities offered by existing
technologies [8–11].

Until now, the prevailing commercial OLED devices were based on phosphorescent
materials containing noble metals like platinum and iridium [12]. The incorporation of
atoms of noble metals into the structures of phosphorescent materials presents a notable
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obstacle not only to the future manufacturing expenses of devices but also prompts en-
vironmental concerns [13,14]. Moreover, there is a tendency to increase the nonradiative
transition rate of phosphorescent metal complex d-orbitals when the emission peaks are
shifting to the blue region of emission, posing challenges in achieving both high efficiency
and stability in blue phosphorescent OLEDs [15–20]. To address these challenges, there is
a renewed focus on the development of small-molecule fluorescent materials, primarily
due to their high colour purity and cost-effectiveness [21]. In recent years, there has also
been considerable attention focused on thermally activated delayed fluorescence (TADF)
materials. This is due to absence of metal atoms in their structures and their capability
to employ reverse intersystem crossing (RISC), resulting in the up-conversion of triplet
excitons to emissive singlet excitons, leading to significantly enhanced external quantum
efficiencies (EQEs) [22–28]. However, numerous TADF OLEDs face challenges including
triplet-triplet and singlet-triplet annihilation, as well as concentration quenching. These
issues can be attributed to prolonged exciton lifetimes, leading to a notable decrease in
efficiency as luminance increases [29–31].

A crucial requirement for TADF OLED emitters to function efficiently is achieving the
smallest possible singlet-triplet energy splitting (∆EST). This can be accomplished through
molecular design strategies aimed at maximizing the separation between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
One effective approach is the incorporation of highly twisted donor and acceptor structure
in the derivatives [30,32,33]. Benzophenone and its derivatives having strong electron-
withdrawing capabilities, effective intersystem crossing due to robust spin-orbit coupling
and twisted configuration offer the potential for developing efficient TADF emitters with
shorter exciton lifetimes through smart molecular design [34–42]. Carbazole derivatives,
widely recognized for their electron-rich nature, were extensively employed as electron
donors in a wide range of optoelectronic devices, serving as both host materials and
emitters in various configurations. This is due to the capacity of 9H-carbazole for facile
functionalization across multiple sites, tuneable electronic and optical properties, robust
electrochemical and thermal stability, and high photoluminescence quantum yield [43–49].
Materials exhibiting both favourable film-forming properties and solubility in common
organic solvents are extensively explored in the scientific and technological sectors. This
interest stems from the fact that low molar-mass organic derivatives, also called molecular
glasses, demonstrate capability to form transparent, stable, and homogenous amorphous
layers from their solutions [50,51]. Both benzophenone-based as well as carbazole-based
derivatives are valued for their ability to create stable amorphous layers characterized by
high glass transition temperatures as reported in the literature [52,53]. Solubility in common
organic solvents of new materials enables solution-based manufacturing processes, such as
blade or spin coating, and inkjet printing, which are simpler, more cost-effective, and more
scalable than the usual vacuum evaporation method [54–57].

In this study, we present the synthesis, investigation, and application of new bipolar
electroactive compounds with benzophenone and 3,3′-bicarbazole fragments acting as
electron acceptors and electron donors, respectively. The donor-acceptor type twisted
molecules demonstrated their efficacy as blue TADF emitters in organic LEDs. The selection
of alkyl sidechains, including ethyl, butyl, pentyl, hexyl, 2-ethylhexyl, and octyl was aimed
at optimizing their film-forming properties, solubility, and solution processability [58].

2. Results and Discussion
2.1. Synthesis

Novel electroactive bicarbazole-based derivatives were synthesized via a three-step
procedure illustrated in Scheme 1. Initially, 9H-carbazole underwent oxidation with iron
(III) chloride to yield 9H,9′H-3,3′-bicarbazole (2). Subsequently, various alkyl bromides
were utilized for mono-alkylation of the 9H,9′H-3,3′-bicarbazole (2) in THF solution, result-
ing in the production of 9-alkyl-9′H-3,3′-bicarbazoles (3–8) in the presence of potassium
hydroxide and potassium carbonate. Finally, the obtained bicarbazole derivatives (3–8)
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underwent nucleophilic substitution reactions with 4-fluorobenzophenone in DMSO in the
presence of potassium carbonate, leading to the formation of the target derivatives DB37,
DB38, DB39, DB40, DB41, and DB44. The chemical structures of these new electroactive
compounds were confirmed using mass spectrometry and NMR spectroscopy, demon-
strating excellent alignment with the theoretical structures. The aliphatic chains present in
the synthesized target compounds contributed to increased solubility in commonly used
organic solvents, consistent with the findings of Inoue et al. regarding the relationship
between alkyl chain length and the solubility of organic materials [56]. The solubility of the
presented materials in appropriate solvents was enhanced by extending the length of the
alkyl chain. While the thermal evaporation method could be suitable for the formation of
thin layers for devices using these electroactive compounds, the good solubility of the new
materials allows a cost-effective alternative method for forming thin films through spin
coating from their solutions.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 19 
 

 

2. Results and Discussion 
2.1. Synthesis 

Novel electroactive bicarbazole-based derivatives were synthesized via a three-step 
procedure illustrated in Scheme 1. Initially, 9H-carbazole underwent oxidation with iron 
(III) chloride to yield 9H,9′H-3,3′-bicarbazole (2). Subsequently, various alkyl bromides 
were utilized for mono-alkylation of the 9H,9′H-3,3′-bicarbazole (2) in THF solution, re-
sulting in the production of 9-alkyl-9′H-3,3′-bicarbazoles (3–8) in the presence of potas-
sium hydroxide and potassium carbonate. Finally, the obtained bicarbazole derivatives 
(3–8) underwent nucleophilic substitution reactions with 4-fluorobenzophenone in DMSO 
in the presence of potassium carbonate, leading to the formation of the target derivatives 
DB37, DB38, DB39, DB40, DB41, and DB44. The chemical structures of these new elec-
troactive compounds were confirmed using mass spectrometry and NMR spectroscopy, 
demonstrating excellent alignment with the theoretical structures. The aliphatic chains 
present in the synthesized target compounds contributed to increased solubility in com-
monly used organic solvents, consistent with the findings of Inoue et al. regarding the 
relationship between alkyl chain length and the solubility of organic materials [56]. The 
solubility of the presented materials in appropriate solvents was enhanced by extending 
the length of the alkyl chain. While the thermal evaporation method could be suitable for 
the formation of thin layers for devices using these electroactive compounds, the good 
solubility of the new materials allows a cost-effective alternative method for forming thin 
films through spin coating from their solutions. 

NH

N

H
N

NH

HN

20oC, 15min

FeCl3, CHCl3 RN

N
DMSO, K2CO3, 4h, 150oC

R

R-Br, KOH, K2CO3

THF, Reflux, 12h.

1 2 3 – 8

(4, DB44)
(7, DB39)

R = ∗ ∗∗

(6, DB38)

∗

(8, DB40)

∗

(5, DB37)

∗

(3, DB41)

O

F

O

DB37
DB38
DB39
DB40
DB41
DB44

* = Linkage location

 
Scheme 1. Synthesis of target compounds DB37, DB38, DB39, DB40, DB41 and DB44. 
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2.2. Thermal and Morphological Properties

The response of the synthesized materials DB37–DB41 and DB44 to heating was
investigated using DSC and TGA methods, heating the samples under an inert nitrogen
atmosphere. Following TGA experiments conducted at a heating rate of 10 ◦C/min. It
was observed that the target compounds exhibit remarkable stability under heating. As
depicted in Figure 1, the TGA curve of compound DB37 illustrates a temperature of 5%
weight loss (Td) at 406 ◦C. Similarly, derivatives DB41 and DB44 demonstrated stability
under heating with respective Td values of 374 ◦C and 389 ◦C. Materials DB38, DB39,
and DB40, which feature longer aliphatic groups, exhibited comparable thermal stability,
reaching Td values of 398 ◦C, 383 ◦C, and 397 ◦C, respectively. The TGA curves of all
the investigated derivatives are provided in Figure S1 of the Supplementary Material for
the publication.
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Figure 2 displays the thermograms of DSC experiments conducted forn all the com-
pounds DB37–DB41 and DB44, with sample sizes varying from 2.6 to 4.8 mg. Upon
examining the second heating curve, it becomes evident that the glass transition temper-
atures (Tg) are influenced by the length of the alkyl sidechains of the compounds. For
instance, material DB41, containing an ethyl group, exhibited a notably high Tg of 102 ◦C,
determined by a slow endothermic dip in the curve of the second heating. Conversely,
compounds DB44 and DB37, which were substituted with butyl and pentyl groups, re-
spectively, displayed slightly lower Tg values of 80 ◦C and 77 ◦C. This trend persists for
materials featuring even longer alkyl groups: derivatives DB38, DB39, and DB40, substi-
tuted with hexyl, 2-ethylhexyl, and octyl groups respectively, exhibited glass transition
temperatures of 68 ◦C, 64 ◦C, and 57 ◦C. This phenomenon could be explained by reduced
intermolecular hydrogen bonding as length of the alkyl chain increases [59]. In summary,
the findings from the TGA and DSC experiments affirm the suitability of these materials
for amorphous electroactive layers of OLED devices. All the thermal characteristics are
also presented in Table 1.
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Table 1. Characteristics of the derivatives DB37, DB38, DB39, DB40, DB41 and DB44.

Emitter λex
(nm)

λem
(nm) Φ (%) Homo

(eV)
Lumo
(eV)

Eg
(eV)

Decay
(ns)

S1
(eV)

T1
(eV) ∆EST

Td
(◦C)

Tg
(◦C)

DB37 384.5,
395.6 509 65.5 −5.67 −2.58 3.09 5.53 3.04 2.76 0.28 406 102

DB38 383.5,
400 510 45.3 −5.70 −2.61 3.09 1.88 2.94 2.89 0.05 398 80

DB39 382.7,
400 528 75.5 −5.68 −2.60 3.08 4.27 3.10 2.81 0.29 383 77

DB40 384.5,
408.2 513 52.5 −5.69 −2.59 3.10 2.41 3.06 2.80 0.26 397 68

DB41 381.0,
399.7 528 62.5 −5.73 −2.64 3.09 2.24 3.22 2.80 0.42 374 64

DB44 383.9,
398.6 529 68.5 −5.69 −2.62 3.07 6.28 3.18 2.82 0.15 389 57

λex: Excitation Wavelength; λem: Emission Wavelength; Φ: Photoluminescence Yield; Eg: Bandgap S1: Singlet
Energy; T1: Triplet Energy; ∆EST: Singlet-Triplet Energy Gap; Td: Destruction temperature; Tg: Glass Transi-
tion Temperature.



Molecules 2024, 29, 1672 5 of 17

2.3. Electrochemical and Photo-Physical Properties

The compounds DB37, DB38, DB39, DB40, DB41, and DB44 demonstrate elevated
photoluminescence quantum yields (PLQY) of 65.5%, 45.3%, 75.5%, 52.5%, 62.5%, and
68.5%, respectively. Summarized values of PLQY can be found in Table 1. Figure 3 illustrates
the UV-absorption bands of compound DB37 as an example. All the UV-absorption bands
and Tauc plots for all the compounds are illustrated in Figure S2 of the Supplementary
Material of the article. The derivatives were examined in THF solvent under standard
conditions using a quartz cuvette.
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Notably, each of the derivatives consistently displayed two absorption peaks around
380 and 410 nm, attributed to the presence of identical chromophores within their structures.
Tauc plots for objective compounds were generated by employing the UV absorption
wavelength and intensity using equations (α × hν)1/2 and hν for the x-axis and y-axis,
respectively, where α denotes intensity and hν stands for energy (hν = 1240/wavelength),
as it is described in literature [60]. The Tauc plots unveiled bandgaps for the studied
derivatives: DB37, DB38, and DB41 had a bandgap of 3.09 eV, DB40 had a bandgap
of 3.10 eV, DB39 had a bandgap of 3.08 eV, and DB44 had a bandgap of 3.07 eV (see
Table 1). The bandgap energy exhibited by the materials was nearly identical, with a
maximum difference of 0.03 eV, which aligns closely with the possible measurement
discrepancies. Similar bandgap values are acceptable since all the derivatives utilize the
same chromophores.

Figure 4 illustrates the evaluation of the electrochemical characteristics of DB37, DB38,
DB39, DB40, DB41, and DB44 through CV measurements. Obtained oxidation onset values
were used for calculations of HOMO levels, employing equation EHOMO = −[4.4 + Eox

onset],
while the determination of LUMO levels was accomplished using equation ELUMO = EHOMO
+ Eg following the methodology described in the literature [18,61,62]. The determined
HOMO levels for DB37, DB38, DB39, DB40, DB41, and DB44 were −5.67, −5.70, −5.68,
−5.69, −5.73, and −5.69, respectively. Meanwhile, LUMO levels were, in the same order,
−2.58, −2.61, −2.60, −2.59, −2.64, and −2.62. These values, along with Eg levels, are
outlined in Table 1. HOMO and LUMO levels of the compounds are appropriate for forming
blue-emitting layers in tandem with the commercial host material CBP.

In Figure 5 (left), the PL spectrum of the DB37 compound is presented, displaying
emission wavelength maximum at about 510 nm with cyan blue emission. Singlet state
energies of the potential emitters were calculated by utilizing the crossing points of PL and
absorbance charts, resulting in values of 3.04 eV for DB37, 2.94 eV for DB38, 3.10 eV for
DB39, 3.06 eV for DB40, 3.22 eV for DB41, and 3.18 eV for DB44 (see Table 1).

Additionally, low-temperature photoluminescence (LTPL) spectra were registered to
ascertain the triplet energy levels. The spectrum for DB37 is depicted in Figure 5 (right)
as an example. The compounds DB37, DB38, DB39, DB40, DB41, and DB44 demonstrate
elevated levels of triplet energy at 2.76, 2.89, 2.81, 2.80, 2.80, and 2.82 eV, respectively,
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suggesting their potential suitability as blue emitters. The LTPL spectra of all the objective
derivatives are presented in Figure S3 of Supplementary Material, and the triplet state
energy values are listed in Table 1.
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material DB37.

Figure 6 displays the results of the time-resolved photoluminescence (TRPL) exper-
iments illustrating the decay times of photoluminescence for the new emitters. The de-
termined values of the time for DB37, DB38, DB39, DB40, DB41, and DB44 were 5.53,
1.88, 4.27, 2.41, 2.24, and 6.28 ns, respectively. Typically, the decay lifetime of fluorescent
emitters falls within the picosecond range. However, the presented materials exhibit decay
on the nanosecond scale, suggesting the potential utilization of triplet excited states as
TADF-based emitters [63,64]. The photoluminescence decay times are detailed in Table 1.
In the graphs, IRF denotes the instrument response function, which was measured both
prior to and following each measurement as a control parameter.
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2.4. Electroluminescent Properties

The OLED device architecture utilized in this study is represented by the energy level
diagram depicted in Figure 7. These devices incorporate emitters DB37, DB38, DB39, DB40,
DB41, and DB44 doped in a CBP host material. The straightforward device structures
consisted of a 125 nm ITO anode layer, followed by a 35 nm PEDOT:PSS hole injection layer
(HIL), and subsequently a 30 nm emissive layer (EML) comprising a CBP host with dopants
DB37, DB38, DB39, DB40, DB41, or DB44 (at concentrations of 5%, 10%, 15%, and 100% by
weight). As for the electron transporting layer (ETL), 1,3,5-tris(N-phenyl-benzimidazol-2-
yl)benzene (TPBi, 32 nm) was employed, while lithium fluoride (LiF, 0.8 nm) served as the
electron injecting layer (EIL), and aluminium (Al, 150 nm) was used as the cathode layer.
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DB41, and DB44 doped in the CBP host.

All the new objective compounds, owing to their solubility, were suitable for layer
preparation through spin-coating and were examined as emitters dispersed in a CBP
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host for the OLEDs. All new emissive materials underwent concentration-dependent
experiments with proportions of 5, 10, 15, or 100 wt% of each guest in the emissive layer.
The electroluminescence (EL) properties, like power efficacy (PE), current efficacy (CE),
EQE, maximum luminance (LMAX), and the International Commission on Illumination
(CIE) colour space coordinates of the devices utilizing the newly introduced emitting
materials distributed within the CBP host, along with the respective non-doped devices,
are outlined in Table 2. Furthermore, Figure 8 visually represents the EL characteristics of
devices employing the most efficient emitter, DB39. The Figure illustrates the EL spectra
of the devices, current density-voltage-luminance, and power efficacy-luminance-current
efficacy characteristics. The same characteristics of OLEDs using other emitters DB37,
DB38, DB40, DB41, and DB44 are depicted in Figures S4–S8 in the Supplementary Material
of this article.

Table 2. EL characteristics of the OLEDs containing emitting materials DB37, DB38, DB39, DB40,
DB41, and DB44.

Emitter
Concentration

(wt%)
Turn-On

Voltage (Von) a

Power Efficacy
(lm/W)

Current
Efficacy (cd/A) EQE (%) CIExy LMax (cd/m2)

@100 cd/m2/@1000 cd/m2/max @100 cd/m2/@1000 cd/m2

DB37

5.0 4.0 2.1/1.1/3.4 3.4/2.4/3.9 2.1/1.6/2.1 (0.17, 0.22)/(0.17, 0.30) 3449
10 3.5 2.5/1.3/3.4 3.5/2.5/3.8 1.8/1.5/1.9 (0.18, 0.26)/(0.18, 0.23) 3658
15 3.4 2.8/1.5/3.6 3.7/2.7/4.0 1.7/1.5/1.8 (0.19, 0.28)/(0.18, 0.25) 3464
100 3.1 0.3/-/- 0.3/-/- 0.1/-/- (0.24, 0.40)/- 616

DB38

5.0 3.9 1.9/1.0/3.4 3.1/2.2/3.8 1.9/1.5/1.9 (0.18, 0.22)/(0.17, 0.20) 2801
10 3.5 2.7/1.4/2.9 3.7/2.7/3.8 2.0/1.6/1.9 (0.18, 0.25)/(0.18, 0.22) 3430
15 3.4 2.8/1.5/3.5 3.6/2.8/4.2 1.7/1.6/1.8 (0.19, 0.27)/(0.18, 0.24) 3555
100 3.2 0.2/-/- 0.3/-/- 0.1/-/- (0.22, 0.38)/- 618

DB39

5.0 4.0 1.8/0.9/3.3 3.1/2.2/3.7 2.0/1.6/2.1 (0.18, 0.20)/(0.17, 0.18) 2818
10 3.5 2.5/1.3/4.4 3.5/2.7/4.9 2.0/1.8/2.2 (0.18, 0.23)/(0.18, 0.21) 3430
15 3.9 3.0/1.4/4.1 4.4/2.8/5.7 2.2/1.6/2.7 (0.19, 0.27)/(0.19, 0.24) 3581
100 3.4 0.3/-/- 0.4/-/- 0.4/-/- (0.24, 0.39)/- 615

DB40

5.0 4.2 2.0/1.1/2.1 3.4/2.4/3.4 2.2/1.6/2.3 (0.17, 0.22)/(0.17, 0.20) 3166
10 3.5 2.8/1.5/2.9 3.8/2.8/3.7 2.0/1.7/2.0 (0.18, 0.25)/(0.18, 0.22) 3840
15 3.3 2.8/1.6/2/8 3.6/2.8/3.6 1.8/1.6/1.8 (0.18, 0.27)/(0.18, 0.24) 3950
100 3.2 0.2/-/- 0.3/-/- 0.1/-/- (0.22, 0.38)/- 685

DB41

5.0 4.4 1.6/0.8/1.9 2.9/1.9/3.1 1.9/1.3/2.0 (0.18, 0.21)/(0.18, 0.19) 2687
10 3.8 2.4/1.1/2.4 3.6/2.5/3.6 2.0/1.5/2.0 (0.19, 0.26)/(0.19, 0.23) 3347
15 3.5 2.6/1.3/2.7 3.6/2.5/3.6 1.7/1.1/1.8 (0.20, 0.28)/(0.19, 0.24) 3128
100 3.1 0.2/-/- 0.3/-/- 0.1/-/- (0.30, 0.45)/- 486

DB44

5.0 4.8 1.6/0.7/1.6 3.3/2.2/3.3 2.3/-/2.3 (0.17, 0.20)/- 1718
10 4.0 2.1/0.8/2.7 3.9/2.3/4.1 2.1/1.4/2.3 (0.18, 0.24)/(0.18, 0.22) 1283
15 3.8 2.1/0.5/2.3 3.6/1.5/3.7 1.9/-/2.0 (0.19, 0.26)/- 1275
100 5.1 -/-/- -/-/- -/-/- -/- 55

a Turn-on voltage at luminance > 1 cd/m2. Characteristics of best-performing device are highlighted in grey.

In Figure 8a, the EL spectra of devices incorporating the DB39 dopant demonstrate
peaks within the 460–490 nm range, indicating emission in the blue region. The absence
of additional peaks implies effective energy transfer from the host to the guest. Evidently,
both undoped and doped OLEDs demonstrate comparable EL emission peaks. Figure 8b–e
illustrate the characteristics of current density, luminance, voltage and power efficiency-
luminance-current efficiency. The undoped device exhibits a higher current density than
the doped devices and correspondingly demonstrates lower efficiency than the doped
devices, highlighting the significant influence of the host material. As depicted in Table 2,
the OLED based on DB39 displays the best efficiencies out of all these devices. This
enhanced performance can be attributed to the inclusion of the elongated and branched
2-ethylhexyl sidechain in the molecule, potentially improving solubility for the production
of wet-processed OLEDs and contributing to the favourable film-forming characteristics
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of the derivative [65]. Moreover, appropriate HOMO and LUMO levels facilitate effective
energy transfer from host to dopant, while the combination of the electron-accepting
benzophenone fragment with the bicarbazole donor moiety promotes balanced charge
transfer and efficient utilization of excitons [66,67]. Specifically, the device containing
10 wt% of emitter DB39 demonstrates the highest PE of 4.4 lm/W with a LMAX reaching
3430 cd/m2. However, the overall best efficiency is achieved by the device incorporating
15wt% of emitter DB39 in its emissive layer, attaining PE and CE values of 4.1 lm/W and
5.7 cd/A, respectively, while EQE reached 2.7% with LMAX of 3581 cd/m2. The findings
of this study indicate the potential utility of benzophenone and bicarbazole fragments
in the synthesis of organic semiconductors and also demonstrates how thermal and film-
forming properties could be controlled by introducing and modifying alkyl chains within
the molecular structure of the new materials.
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3. Materials and Methods
3.1. Instrumentation

The recording of 1H and 13C nuclear magnetic resonance (NMR) spectra was con-
ducted with the Bruker Avance III (400 MHz) instrument (Bruker, Berlin, Germany). Chem-
ical shifts (δ, ppm) are presented relative to the trimethylsilane standard. Mass spectra
were acquired using the Waters ZQ 2000 mass spectrometer (Waters, Milford, CT, USA).
Thermogravimetric analysis (TGA) was carried out utilizing the TGAQ50 analyser (Verder
Scientific Haan, Haan, Germany), while thermograms of differential scanning calorimetry
(DSC) were recorded using the Bruker Reflex II DSC apparatus (Bruker, Berlin, Germany).
For both types of thermal analysis, a heating rate of 10 ◦C/min in a nitrogen atmosphere
was selected. Ultraviolet-visible (UV–vis) spectroscopy was performed using the HP-8453
diode array spectrometer (Agilent Technology Inc., Hachioji, Tokyo, Japan), and the resul-
tant absorbance wavelengths were used to generate the Tauc plot. An Aminco-Bowman
Series 2 spectrofluorometer (Agilent Technology Inc., Hachioji, Tokyo, Japan) were used to
record photoluminescence (PL) spectra. Low-temperature PL (LTPL) spectra at 77 K to de-
termine triplet energy was recorded with a Hitachi F-7000 fluorescence spectrophotometer
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(Edinburgh Instruments Ltd., Livingston, UK). The CH instrument CH1604A potentiostat
(Annatech Co., Ltd., Taipei, Taiwan) was used to perform cyclic voltammetry (CV), and
based on these results, HOMO levels were calculated. Time-resolved photoluminescence
(TRPL) experiments, aiming to determine compound decay time, were conducted with an
Edinburgh instrument FLS980 spectrometer (Edinburgh Instruments Ltd., Livingston, UK).

3.2. Synthesis and Structural Analysis

Carbazole (1), 1-bromooctane, 2-ethylhexylbromide, 1-bromohexane, 1-bromopentane,
1-bromobutane, bromoethane, FeCl3, KOH, K2CO3, Na2SO4, 4-fluorobenzophenone, chlo-
roform, dimethyl sulfoxide (DMSO), and tetrahydrofuran (THF) were bought from Aldrich
and used without further purification.

9H,9′H-3,3′-Bicarbazole (2), was synthesized using 9H-carbazole as a starting material
and FeCl3 as an oxidising agent, as described earlier [68].

9-Ethyl-9′H-3,3′-bicarbazole (3) was synthesized by partially alkylating 9H,9′H-3,3′-
bicarbazole (2), as it was described previously [69].

9-Butyl-9′H-3,3′-bicarbazole (4) was also synthesized by partially alkylating 9H,9′H-
3,3′-bicarbazole (2) as it was described previously [69].

9-Pentyl-9′H-3,3′-bicarbazole (5). 9H,9′H-3,3′-bicarbazole (2) (2.00 g, 6.02 mmol) was
dissolved in 50 mL of tetrahydrofuran, and 1-bromopentane (0.91 g, 6.02 mmol) was
subsequently added. Potassium carbonate (1.66 g, 12.04 mmol) and powdered potassium
hydroxide (2.02 g, 36.12 mmol) were gradually introduced while the solution was stirred
continuously and heated to boiling temperature. After 4 h, TLC analysis was conducted,
and the solution was filtered using a paper filter. The pure product was then isolated
through column chromatography using tetrahydrofuran/hexane (volume ratio 1:5) as the
mobile phase and silica gel as the stationary phase. The yield obtained was 1.06 g (44%)
of pale-yellow material. 1H NMR (400 MHz, CDCl3, δ, m.d.): 8.47 (d, 2H, J = 10 Hz),
8.26 (d, 1H, 7.6 Hz), 8.23 (d, 1H, 8.0 Hz), 7.96 (s, 1H), 7.88 (d, 1H, J = 8.4 Hz), 7.84 (dd,
1H, J1 = 8.4 Hz, J2 = 1.6 Hz), 7.58–7.53 (m, 2H), 7.50–7.47 (m, 3H), 7.43 (d, 1H, J = 8 Hz), 7.33
(t, 2H, J = 7.2 Hz), 4.37 (t, 2H, J = 7.0 Hz), 1.96 (qu, 2H, J = 7.2 Hz), 1.49–1.41 (m, 4H), 0.96 (t,
3H, J = 7.2 Hz). 13C NMR (101 MHz, CDCl3, δ, m.d.): 140.98, 140.04, 139.65, 138.56, 133.33,
125.95, 125.87, 125.75, 125.60, 124.00, 123.61, 123.44, 123.10, 120.53, 120.47, 119.52, 119.02,
118.91, 118.83, 110.86, 110.79, 108.97, 108.87, 43.23, 29.50, 28.81, 22.58, 14.05.

9-Hexyl-9′H-3,3′-bicarbazole (6). 9H,9′H-3,3′-bicarbazole (2) (2.00 g, 6.02 mmol) was
dissolved in 50 mL of tetrahydrofuran, and 1-bromohexane (0.99 g, 6.02 mmol) was sub-
sequently added. Potassium carbonate (1.66 g, 12.04 mmol) and powdered potassium
hydroxide (2.02 g, 36.12 mmol) were gradually introduced while the solution was stirred
continuously and heated to boiling temperature. After 4 h, TLC analysis was conducted,
and the solution was filtered using a paper filter. The pure product was then isolated
through column chromatography using tetrahydrofuran/hexane (volume ratio 1:7) as the
mobile phase and silica gel as the stationary phase. The yield obtained was 1.00 g (40%) of
pale-yellow material. 1H NMR (400 MHz, CDCl3, δ, m.d.): 8.46 (d, 2H, J = 9.8 Hz), 8.25 (d,
1H, J = 8.0 Hz), 8.22 (d, 1H, J = 7.6 Hz), 7.99 (s, 1H), 7.88 (dd, 1H, J1 = 8.4 Hz, J2 = 1.6 Hz),
7.83 (dd, 1H, J1 = 8.4 Hz, J2 = 2.0 Hz), 7.57–7.43 (m, 6H), 7.32 (t, 2H, J = 7.4 Hz), 4.37 (t, 2H,
J = 7.2 Hz), 1.95 (qu, 2H, J = 7.4 Hz), 1.50–1.33 (m, 6H), 0.94 (t, 3H, J = 7.2 Hz). 13C NMR
(101 MHz, CDCl3, δ, m.d.): 140.97, 140.03, 139.64, 138.55, 134.13, 133.32, 125.95, 125.87,
125.73, 125.58, 124.00, 123.61, 123.44, 123.10, 120.51, 120.46, 119.51, 119.01, 118.91, 118.81,
110.83, 110.76, 108.95, 108.85, 43.26, 31.67, 29.05, 27.06, 22.62, 14.10.

9-(2-Ethylhexyl)-9′H-3,3′-bicarbazole (7) was synthesized by partially alkylating 9H,9′H-
3,3′-bicarbazole (2), as it was described previously [67].

9-Octyl-9′H-3,3′-bicarbazole (8) was synthesized by partially alkylating 9H,9′H-3,3′-
bicarbazole (2), as it was described previously [70].

4-(9′-Ethyl-[3,3′]-bicarbazol-9-yl)benzophenone (DB41) was synthesized by stirring
9-ethyl-9′H-3,3′-bicarbazole (3) (0.50 g, 1.39 mmol) with 4-fluorobenzophenone (0.28 g,
1.39 mmol) in 10 mL of DMSO at 150 ◦C under an inert nitrogen atmosphere with potas-
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sium carbonate (1.92 g, 13.90 mmol) present. After 4 h, TLC was used to confirm the
completion of the reaction, following which the reaction mixture was slowly added to ice
water. Chloroform was employed to extract the organic phase, and any remaining water
traces in the organic phase were removed by adding anhydrous Na2SO4, which was filtered
off later. The desired product was purified via column chromatography using tetrahydro-
furan/hexane (volume ratio 1:3) as the mobile phase and silica gel as the stationary phase,
resulting in a yellow amorphous material with a yield of 0.62 g (82%). Tg = 102 ◦C (DSC).
1H NMR (400 MHz, CDCl3, δ, m.d.): 8.48 (dd, 2H, J1 = 11.2 Hz, J2 = 1.6 Hz), 8.28 (d, 1H,
J = 7.6 Hz), 8.24 (d, 1H, J = 7.6 Hz), 8.14 (d, 2H, J = 8.4 Hz), 7.97–7.95 (m, 1H), 7.89–7.81 (m,
4H), 7.69–7.65 (m, 2H), 7.61 (dd, 2H, J1 = 8.0 Hz, J2 = 1.6 Hz), 7.58–7.45 (m, 6H), 7.40 (t, 1H,
J = 7.4 Hz), 7.33–7.30 (m, 1H), 4.46 (q, 2H, J = 7.2 Hz), 1.52 (t, 3H, J = 7.2 Hz). 13C NMR
(101 MHz, CDCl3, δ, m.d.): 195.66, 141.81, 140.73, 140.46, 139.31, 139.21, 137.51, 135.97,
135.32, 132.95, 132.65, 131.95, 130.07, 128.49, 126.33, 126.21, 126.11, 125.81, 125.52, 124.51,
124.13, 123.59, 123.15, 120.69, 120.61, 120.56, 119.09, 119.00, 118.89, 110.07, 109.94, 108.73,
108.62, 37.69, 13.89. MS (APCI+, 20 V): 540.26 ([M + H], 100%).

4-(9′-Butyl-[3,3′]-bicarbazol-9-yl)benzophenone (DB44) was synthesized by stirring
9-butyl-9′H-3,3′-bicarbazole (3) (0.50 g, 1.29 mmol) with 4-fluorobenzophenone (0.26 g,
1.29 mmol) in 10 mL of DMSO at 150 ◦C under an inert nitrogen atmosphere with potas-
sium carbonate (1.78 g, 12.90 mmol) present. After 4 h, TLC was used to confirm the
completion of the reaction, following which the reaction mixture was slowly added to ice
water. Chloroform was employed to extract the organic phase, and any remaining water
traces in the organic phase were removed by adding anhydrous Na2SO4, which was filtered
off later. The desired product was purified via column chromatography using tetrahydro-
furan/hexane (volume ratio 1:5) as the mobile phase and silica gel as the stationary phase,
resulting in a yellow amorphous material with a yield of 0.66 g (90%). Tg = 82 ◦C (DSC).
1H NMR (400 MHz, CDCl3, δ, m.d.): 8.49 (dd, 2H, J1 = 8.4 Hz, J2 = 1.6 Hz), 8.29 (d, 1H,
J = 7.6 Hz), 8.25 (d, 1H, J = 7.6 Hz), 8.14 (d, 2H, J = 7.2 Hz), 7.97 (d, 2H, J = 7.2 Hz), 7.89–7.84
(m, 2H), 7.82 (d, 2H, 8.4 Hz), 7.69–7.65 (m, 2H), 7.63–7.58 (m, 3H), 7.56–7.47 (m, 4H), 7.40 (t,
1H, J = 7.4 Hz), 7.31 (t, 1H, J = 7.6 Hz), 4.39 (t, 2H, J = 7.2 Hz), 1.95 (qu, 2H, J = 7.4 Hz), 1.48
(sext, 2H, J = 7.6 Hz), 1.02 (t, 3H, J = 7.4 Hz). 13C NMR (101 MHz, CDCl3, δ, m.d.): 196.66,
141.81, 140.98, 140.73, 139.74, 139.31, 137.53, 135.96, 135.33, 132.89, 132.66, 131.96, 130.08,
128.50, 126.34, 126.21, 126.11, 125.78, 125.49, 124.52, 124.15, 123.48, 123.04, 120.71, 120.62,
120.50, 119.01, 118.86, 110.08, 109.96, 108.99, 108.87, 43.00, 31.23, 20.64, 13.96. MS (APCI+,
20 V): 568.39 ([M + H], 100%).

4-(9′-Pentyl-[3,3′]-bicarbazol-9-yl)benzophenone (DB37) was synthesized by stirring
9-pentyl-9′H-3,3′-bicarbazole (3) (0.50 g, 1.24 mmol) with 4-fluorobenzophenone (0.25 g,
1.24 mmol) in 10 mL of DMSO at 150 ◦C under an inert nitrogen atmosphere with potas-
sium carbonate (1.72 g, 12.40 mmol) present. After 4 h, TLC was used to confirm the
completion of the reaction, following which the reaction mixture was slowly added to ice
water. Chloroform was employed to extract the organic phase, and any remaining water
traces in the organic phase were removed by adding anhydrous Na2SO4, which was filtered
off later. The desired product was purified via column chromatography using tetrahydro-
furan/hexane (volume ratio 1:5) as the mobile phase and silica gel as the stationary phase,
resulting in a yellow amorphous material with a yield of 0.66 g (91%). Tg = 77 ◦C (DSC).
1H NMR (400 MHz, CDCl3, δ, ppm): 8.47 (dd, 2H, J1 = 13.4 Hz, J2 = 1.4 Hz), 8.28 (d, 1H,
J = 7.6 Hz), 8.23 (d, 1H, J = 7.6 Hz), 8.14 (d, 2H, J = 8.4 Hz), 7.97–7.94 (m, 2H), 7.88–7.81 (m,
4H), 7.69–7.65 (m, 2H), 7.62–7.57 (m, 3H), 7.55–7.46 (m, 4H), 7.39 (t, 1H, J = 7.4 Hz), 7.30 (t,
1H, J = 7.4 Hz), 4.38 (t, 2H, J = 7.2 Hz), 1.96 (qu, 2H, J = 7.2 Hz), 1.47–1.39 (m, 4H), 0.94 (t,
3H, J = 7.0 Hz). 13C NMR (101 MHz, CDCl3, δ, m.d.): 195.65, 141.80, 140.95, 140.71, 139.72,
139.29, 137.51, 135.95, 135.31, 132.86, 132.66, 131.96, 130.07, 128.49, 126.33, 126.20, 126.10,
125.78, 125.48, 124.50, 124.13, 123.46, 123.02, 120.69, 120.61, 120.48, 118.99, 118.84, 110.07,
109.94, 108.97, 108.85, 43.23, 29.49, 28.78, 22.54, 14.01. MS (APCI+, 20 V): 582.34 ([M + H],
100%).
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4-(9′-Hexyl-[3,3′]-bicarbazol-9-yl)benzophenone (DB38) was synthesized by stirring
9-hexyl-9′H-3,3′-bicarbazole (3) (0.50 g, 1.20 mmol) with 4-fluorobenzophenone (0.24 g,
1.20 mmol) in 10 mL of DMSO at 150 ◦C under an inert nitrogen atmosphere with potas-
sium carbonate (1.66 g, 12.00 mmol) present. After 4 h, TLC was used to confirm the
completion of the reaction, following which the reaction mixture was slowly added to ice
water. Chloroform was employed to extract the organic phase, and any remaining water
traces in the organic phase were removed by adding anhydrous Na2SO4, which was filtered
off later. The desired product was purified via column chromatography using tetrahydro-
furan/hexane (volume ratio 1:7) as the mobile phase and silica gel as the stationary phase,
resulting in a yellow amorphous material with a yield of 0.67 g (94%). Tg = 68 ◦C (DSC).
1H NMR (400 MHz, CDCl3, δ, ppm): 8.48 (dd, 2H, J1 = 12.4 Hz, J2 = 1.6 Hz), 8.28 (d, 1H,
7.6 Hz), 8.23 (d, 1H, J = 8.0 Hz), 8.14 (d, 2H, J = 8.8 Hz), 7.97–7.95 (m, 2H), 7.88–7.81 (m,
4H), 7.69–7.65 (m, 2H), 7.62–7.58 (m, 3H), 7.56–7.45 (m, 4H), 7.39 (t, 1H, J = 7.2 Hz), 7.30
(t, 1H, J = 7.2 Hz), 4.38 (t, 2H, J = 7.2 Hz), 1.95 (qu, 2H, J = 7.4 Hz), 1.49–1.33 (m, 6H), 0.92
(t, 3H, J = 7.0 Hz). 13C NMR (101 MHz, CDCl3-d6, δ, m.d.): 196.04, 141.80, 140.95, 140.70,
140.22, 139.01, 137.50, 135.95, 135.32, 132.86, 132.66, 131.97, 130.07, 128.55, 128.48, 127.24,
126.33, 126.21, 126.10, 125.77, 125.48, 124.49, 123.45, 123.01, 120.69, 120.62, 120.48, 119.00,
118.83, 110.07, 109.94, 108.97, 108.84, 43.26, 31.63, 29.03, 27.02, 22.60, 14.06. MS (APCI+,
20 V): 596.36 ([M + H], 100%).

4-(9′-{2-Ethylhexyl}-[3,3′]-bicarbazol-9-yl)benzophenone (DB39) was synthesized by stir-
ring 9-{2-ethylhexyl}-9′H-3,3′-bicarbazole (3) (0.50 g, 1.13 mmol) with 4-fluorobenzophenone
(0.23 g, 1.13 mmol) in 10 mL of DMSO at 150 ◦C under an inert nitrogen atmosphere with
potassium carbonate (1.56 g, 11.30 mmol) present. After 4 h, TLC was used to confirm the
completion of the reaction, following which the reaction mixture was slowly added to ice water.
Chloroform was employed to extract the organic phase, and any remaining water traces in
the organic phase were removed by adding anhydrous Na2SO4, which was filtered off later.
The desired product was purified via column chromatography using tetrahydrofuran/hexane
(volume ratio 1:7) as the mobile phase and silica gel as the stationary phase, resulting in a
pale-yellow amorphous material with a yield of 0.56 g (79%). Tg = 64 ◦C (DSC). 1H NMR
(400 MHz, CDCl3, δ, ppm): 8.48 (dd, 2H, J1 = 15.2 Hz, J2 = 1.6 Hz), 8.28 (d, 1H, J = 7.6 Hz), 8.24
(d, 1H, J = 7.6 Hz), 8.14 (d, 2H, J = 8.8 Hz), 7.97–7.95 (m, 2H), 7.86–7.81 (m, 4H), 7.69–7.65 (m,
2H), 7.62–7.58 (m, 3H), 7.55–7.45 (m, 4H), 7.40 (t, 1H, J = 7.2 Hz), 7.30 (t, 1H, J = 8.0 Hz), 4.26–4.23
(m, 2H), 2.21–2.13 (m, 1H), 1.50–1.31 (m, 8H), 0.98 (t, 3H, J = 7.4 Hz), 0.93 (t, 3H, J = 7.2 Hz). 13C
NMR (101 MHz, CDCl3, δ, m.d.): 195.66, 141.81, 141.43, 140.71, 140.21, 139.29, 137.51, 135.94,
135.30, 132.82, 132.66, 131.97, 130.08, 128.50, 126.33, 126.20, 126.09, 125.75, 125.46, 124.51, 124.15,
123.42, 122.99, 120.70, 120.61, 120.43, 118.99, 118.92, 118.82, 110.08, 109.95, 109.27, 109.14, 47.57,
39.50, 31.07, 28.90, 24.46, 23.12, 14.11, 10.97. MS (APCI+, 20 V): 624.44 ([M + H], 100%).

4-(9′-Octyl-[3,3′]-bicarbazol-9-yl)benzophenone (DB40) was synthesized by stirring
9-octyl-9′H-3,3′-bicarbazole (3) (0.50 g, 1.13 mmol) with 4-fluorobenzophenone (0.23 g,
1.13 mmol) in 10 mL of DMSO at 150 ◦C under an inert nitrogen atmosphere with potas-
sium carbonate (1.56 g, 11.30 mmol) present. After 4 h, TLC was used to confirm the
completion of the reaction, following which the reaction mixture was slowly added to ice
water. Chloroform was employed to extract the organic phase, and any remaining water
traces in the organic phase were removed by adding anhydrous Na2SO4, which was filtered
off later. The desired product was purified via column chromatography using tetrahydro-
furan/hexane (volume ratio 1:7) as the mobile phase and silica gel as the stationary phase,
resulting in a pale-yellow amorphous material with a yield of 0.67 g (95%). Tg = 57 ◦C
(DSC). 1H NMR (400 MHz, CDCl3, δ, ppm): 8.48 (dd, 2H, J1 = 13.8 Hz, J2 = 1.4 Hz), 8.28 (d,
1H, J = 7.6 Hz), 8.24 (d, 1H, J = 7.6 Hz), 8.14 (d, 2H, J = 8.4 Hz), 7.97–7.95 (m, 2H), 7.86–7.81
(m, 4H), 7.70–7.65 (m, 2H), 7.62–7.58 (m, 3H), 7.56–7.46 (m, 4H), 7.39 (t, 1H, J = 7.4 Hz), 7.30
(t, 1H, J = 7.6 Hz), 4.38 (t, 2H, J = 7.6 Hz), 1.95 (pent, 2H, J = 7.6 Hz), 1.48–1.29 (m, 10H),
0.91 (t, 3H, J = 7.4 Hz). 13C NMR (101 MHz, CDCl3, δ, m.d.): 195.66, 141.81, 140.96, 140.72,
139.72, 139.30, 137.51, 135.96, 135.33, 132.87, 132.65, 131.95, 130.07, 128.49, 126.32, 126.21,
126.10, 125.77, 125.48, 124.50, 124.14, 123.46, 123.02, 120.69, 120.60, 120.48, 119.00, 118.83,
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110.06, 109.94, 108.97, 108.85, 43.26, 31.83, 29.43, 29.21, 29.06, 27.37, 22.63, 14.09. MS (APCI+,
20 V): 624.44 ([M + H], 100%).

3.3. Fabrication and Characterization of Devices

A glass substrate with a pre-patterned indium tin oxide (ITO) layer, bought from
Lumtec (Taiwan), was utilized in the production process of OLEDs. The mentioned sub-
strate underwent a cleaning procedure with acetone for 30 min at 50 ◦C, followed by a
cleaning with isopropyl alcohol for 30 min at 60 ◦C. Subsequently, the cleaned substrates
were exposed to UV radiation for 10 min in a preheated UV chamber. The layer depo-
sition process took place within a glove box under an inert atmosphere. For the next
layer, the hole-injecting material poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) was employed. It was spin-coated onto the substrate at 4000 rpm for 20 s,
followed by heating the substrates for 10 min at 130 ◦C. After cooling the substrates, the
emissive layers, composed of host material and emitter, were formed on top of the hole in-
jection layer. For deposition, spin-coating was also employed by spinning substrates for 20 s
at 2500 rpm. Subsequently, the electron transporting layer, consisting of 1,3,5-tris(N-phenyl-
benzimidazol-2-yl)benzene (TPBi), a LiF electron injecting layer, and aluminum cathode,
were formed in a thermal evaporation chamber under a vacuum of 10−6 torr. Following this,
the resulting devices, with an area of 0.09 cm², were placed in a mini chamber within the
glove box under vacuum until further tests were conducted. These tests were performed
under normal atmospheric conditions in complete darkness. The CS-100A luminance and
color meter (Konica Minolta, Tokyo, Japan) was utilized to record voltage-current density
and voltage-luminance characteristics. Additionally, the SpectraScan® spectroradiometer
PR-655 (Jadak, North Syracuse, NY, USA) was used to create luminance-power efficacy
and luminance-current graphs. The measurements of current-voltage characteristics were
conducted using a Keithley voltmeter (Keithley Instruments, Cleveland, OH, USA). EQE
was calculated using the method outlined in the literature [71].

4. Conclusions

We introduced novel emissive derivatives synthesized through a three-step process,
utilizing bicarbazole and benzophenone as building blocks to achieve twisted donor-
acceptor structures. The incorporation of alkyl sidechains of varying length was chosen to
enhance the solubility and film-forming characteristics of the materials. Newly synthesized
derivatives exhibited commendable thermal and morphological stability, as evidenced
by temperatures of 5% mass loss ranging from 374 ◦C to 406 ◦C. The manipulation of
alkyl sidechain length allowed control over glass-transition temperatures that spanned
from 57 ◦C to a desirable 102 ◦C. Additionally, newly developed materials demonstrated
short photoluminescence decay times, confirmed by time-resolved photoluminescence,
and high photoluminescence quantum yields of up to 75.5%. The benzophenone-based
derivatives exhibited favourable HOMO-LUMO levels as well as suitable triplet-singlet
state energy values for application as potential blue TADF emitters. Upon investigation
of the electroluminescent properties of the new devices, an OLED with an emissive layer
comprised of 15 wt% DB39 doped in a CBP host surpassed other devices in terms of
efficiencies. The maximum current efficacy (CEmax) reaching 5.7 cd/A and 2.7% external
quantum efficacy (EQEmax) were detected, followed by a maximum luminance (Lmax) of
3581 cd/m2 with a turn-on voltage of 3.9 V. This study emphasized the notable influence of
energy transfer from host to guest, suitable doping concentrations, and the effect of chemical
structure on solubility, thereby affecting the efficiency of wet-processed devices. It is
crucial to highlight that these characteristics were observed in non-optimized OLEDs using
standard laboratory conditions, suggesting potential enhancements through optimization
processes. Furthermore, enhanced device efficiency could be achieved by reducing ∆EST
and effectively utilizing triplet-state excitons of similar materials, making them suitable for
highly efficient lighting applications. We believe that our findings suggest the potential of
some materials for further exploration as promising emitters.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29071672/s1. Figure S1: TGA curves of ma-
terials DB37, DB38, DB39, DB40, DB41, and DB44, Figure S2: UV-Vis absorption bands and Tauc
plots of materials DB37, DB38, DB39, DB40, DB41, and DB44, Figure S3: LTPL spectra at 77 K and
triplet energy calculation of the derivatives DB37, DB38, DB39, DB40, DB41, and DB44, Figures
S4–S8: The electroluminescent (EL) characteristics of OLEDs with dopants DB37, DB38, DB40, DB41,
and DB44, respectively, doped within a CBP host matrix at different concentrations, displaying
EL spectra, current density–voltage, luminance–voltage, power efficacy–luminance, and current
efficacy–luminance dependencies.
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