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Abstract: Aryl and heteroaryl iodides have been efficiently converted into the corresponding thioac-
etates in cyclopentyl methyl ether (CPME), a green solvent, under Cu catalysis. The chemoselectivity
of the reaction is mainly controlled by electronic factors, enabling the conversion of both electron-rich
and electron-deficient substrates into the corresponding thioacetates in good to excellent yields. The
products can be easily deprotected to the corresponding thiolates to carry out additional synthetic
transformations in situ. Surprisingly, despite CPME’s relatively low dielectric constant, the reaction
rate significantly increased when conducted under microwave irradiation conditions. This synthetic
methodology exhibits a remarkable tolerance to functional groups, mild reaction conditions, and a
wide substrate scope, utilizing a safe and inexpensive CuI pre-catalyst in the green solvent CPME.
A non-aqueous workup allowing for the complete recovery of both catalyst and solvent makes this
approach an environmentally sustainable protocol for C(sp2) sulfur functionalization. Additionally,
the reaction shows selective cross-coupling with iodides in competition with chlorides and bromides,
allowing its use in multistep syntheses. To demonstrate the potential of this methodology, it was
applied to the high-yield synthesis of a photochromic dithienylethene, where a selective synthesis
had not been reported before.

Keywords: Ar-S coupling; CPME; Cu catalysis; electronic effects; green chemistry

1. Introduction

The C(sp2)−SR motif is an important substructure of a variety of biologically active
compounds [1–5] (Figure 1). It is also significant in material chemistry, especially in
the field of innovative polymeric materials like polyphenylene sulfide (PPS), a special
engineering plastic whose applications range from chemical catalysis [6] to optics [7], to
nanotechnologies [8], and to the most innovative separation techniques [9]. Moreover,
thiols are used in the production of engineering nanomaterials as anchoring groups on
noble metals due to the strong affinity of sulfur for these metals surfaces [10,11]. In this
context, to prevent the aerobic oxidation of thiols, protected thiols are often used, frequently
thioacetates, which are easily cleaved in situ [12].

Accordingly, the construction of Aryl−S bonds is an attractive target in organic chem-
istry, as it provides useful access to several classes of molecules with a wide range of
application fields. Among the numerous methods developed for the introduction of sulfur
functions on aromatic and heteroaromatic rings, transition metal-promoted cross-coupling
reactions play a central role, with a wide variety of reagents that can be used as sulfur
sources [13] and alternative catalytic systems [14]. Pd/, Ni/, and Cu/L complexes are
the most employed catalysts [15,16]; however, sustainability concerns have made the use
of Cu-based catalysts preferable due to their low costs, low toxicity, the stability of the
complexes, and the availability of readily accessible ligands required for the generation
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of catalytically active systems [17]. In fact, bidentate amines are commonly chosen as
ligands for Cu-based catalysts, preferable to the phosphines often used with Pd-based
catalysts. Despite the large number of available procedures, synthetic methodologies with
optimized green chemistry are extremely rare, and the development of more practical,
atomic-economical, and environmentally friendly methods for constructing Ar−S bonds is
still a crucial challenge. Potassium thioacetate (AcSK) is a sulfur reagent that offers several
advantages. It is classified as non-hazardous, which is beneficial from a safety standpoint.
Additionally, AcSK is odorless, stable, and inexpensive, further enhancing its appeal as
a sulfur source in chemical reactions. One key advantage of using AcSK is its ability to
generate a protected thiol functionality, thus allowing its employment within multistep
synthetic projects devoted to the generation of multifunctional structures and requiring
further chemoselective transformations [18].
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In this regard, in 2013, Peñéñory et al. reported the efficient coupling between aryl
iodides and potassium thioacetate, catalyzed by the Cu(I)-1,10-phenanthroline (phen)
complex in toluene at 100 ◦C during 24 h [19]. The mechanism of this reaction has been
studied with a multidisciplinary approach, highlighting the preliminary formation of a
[Cu(I)/(phen)2]+ complex which, by reaction with one mole of AcSK, leads to the for-
mation of the catalytically active complex Cu(I)/phen/thioacetate [20]. Finally, an ox-
idative addition–reductive elimination mechanism via an unstable Cu(III) intermediate
was demonstrated. Reactions carried out in other solvents (N,N-dimethylformamide,
acetonitrile, dimethyl sulfoxide, tetrahydrofuran, and dioxane) led to low or no conver-
sion of the starting material. This confirms the important role played by the solvent in
this synthetic transformation, already highlighted from theoretical studies [19,20]. Under
similar reaction conditions, the same authors achieved overlapping conversion yields
within 2 h by conducting the reactions under microwave irradiation [19]. With the aim
of reducing the environmental impact and the cost efficiency of this strategic transforma-
tion, we explored the possibility of using CPME as a green solvent and the inexpensive
CuI/1,4-diazabicyclo[2.2.2]octane (CuI/DABCO) catalytic system, successfully used in C-S
cross-coupling reactions [21]. The closely related and largely employed 2,2′-bipyridine
(2,2′-bipy) was also tested as a cheap Cu(I) ligand. Actually, CPME is industrially produced
from non-renewable sources with a 100% atom-economical and high-yield process by
Zeon Corporation [22]. Its chemical–physical properties, such as a wide liquidity range,
hydrophobicity, low heat of vaporization, chemical stability, and resistance to peroxide
formation, make it a safer and low-environmental-impact solvent [23,24]. One key advan-
tage of CPME is its low energy consumption during the recovery phase. Furthermore,
CPME is not mutagenic or genotoxic and shows low acute and subchronic toxicity [25].
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Its use has increased in both academia and industry in recent years; this could make it
economically competitive, which is one of the few factors negatively affecting its sustain-
ability [24]. Among other applications, CPME has been extensively employed in transition
metal-catalyzed cross-coupling reactions [24], although, to the best of our knowledge, it
has never been employed under Cu/L-catalysis.

This work based on Cu-catalyzed C(sp2)-S cross-coupling reactions is focused on
improvements in cost efficiency and environmental impact and exploring their versatility
in multistep synthesis.

2. Results and Discussion

We began our investigations on the C(sp2)-S coupling of (hetero)aryl halides with
AcSK in CPME by employing phenyl iodide and phenyl bromide as substrates and CuI
as a pre-catalyst along with 1,10-phenantroline (phen), 2,2′-bipy, or DABCO as nitrogen
bidentate ligands. In the first reaction, iodobenzene 1 reacted, under argon atmosphere,
with 1.5 eq. of AcSK in the presence of 0.1 eq. of the [Cu(I)/(phen)2]+ complex in CPME for
24 h at 100 ◦C to afford the corresponding thioacetate derivative 4 in an almost quantitative
yield (Table 1, entry 1). Lower yields were achieved by either reducing the catalyst loading
(Table 1, entry 2) or reducing the reaction time (Table 1, entry 3). Under the same conditions,
no reaction was observed with bromobenzene 2 (Table 1, entry 4), revealing the complete
selectivity of the reaction for aryl iodides in accordance with observations from other
groups [19,26]; this finding agrees with oxidative addition as a rate-determining step, since
C−Br bond breaking involves higher activation energy.

Table 1. The screening of ligands and substrates for the Cu/L-catalyzed coupling of AcSK with
haloaryls in CPME 1.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 12 
 

 

reactions [21]. The closely related and largely employed 2,2′-bipyridine (2,2′-bipy) was 

also tested as a cheap Cu(I) ligand. Actually, CPME is industrially produced from non-

renewable sources with a 100% atom-economical and high-yield process by Zeon Corpo-

ration [22]. Its chemical–physical properties, such as a wide liquidity range, hydrophobi-

city, low heat of vaporization, chemical stability, and resistance to peroxide formation, 

make it a safer and low-environmental-impact solvent [23,24]. One key advantage of 

CPME is its low energy consumption during the recovery phase. Furthermore, CPME is 

not mutagenic or genotoxic and shows low acute and subchronic toxicity [25]. Its use has 

increased in both academia and industry in recent years; this could make it economically 

competitive, which is one of the few factors negatively affecting its sustainability [24]. 

Among other applications, CPME has been extensively employed in transition metal-cat-

alyzed cross-coupling reactions [24], although, to the best of our knowledge, it has never 

been employed under Cu/L-catalysis. 

This work based on Cu-catalyzed C(sp2)-S cross-coupling reactions is focused on im-

provements in cost efficiency and environmental impact and exploring their versatility in 

multistep synthesis. 

2. Results and Discussion 

We began our investigations on the C(sp2)-S coupling of (hetero)aryl halides with 

AcSK in CPME by employing phenyl iodide and phenyl bromide as substrates and CuI as 

a pre-catalyst along with 1,10-phenantroline (phen), 2,2′-bipy, or DABCO as nitrogen bi-

dentate ligands. In the first reaction, iodobenzene 1 reacted, under argon atmosphere, 

with 1.5 eq. of AcSK in the presence of 0.1 eq. of the [Cu(I)/(phen)2]+ complex in CPME for 

24 h at 100 °C to afford the corresponding thioacetate derivative 4 in an almost quantitative 

yield (Table 1, entry 1). Lower yields were achieved by either reducing the catalyst loading 

(Table 1, entry 2) or reducing the reaction time (Table 1, entry 3). Under the same condi-

tions, no reaction was observed with bromobenzene 2 (Table 1, entry 4), revealing the 

complete selectivity of the reaction for aryl iodides in accordance with observations from 

other groups [19,26]; this finding agrees with oxidative addition as a rate-determining 

step, since C−Br bond breaking involves higher activation energy. 

Table 1. The screening of ligands and substrates for the Cu/L-catalyzed coupling of AcSK with 

haloaryls in CPME1. 

 

Entry 1 Ar-X Ligand Product Yield (%) 2 

1 Ph-I (1) 1,10-phen 4 98 

2 Ph-I (1) 1,10-phen 4 30 3 

3 Ph-I (1) 1,10-phen 4 56 4 

4 Ph-Br (2) 1,10-phen - - 

5 m-I2C6H4 (3) 1,10-phen 5 87 5 

6 Ph-I (1) DABCO 4 15 

7 Ph-Br (2) DABCO - - 

8 Ph-I (1) 2,2′-Bipy 4 10 

9 Ph-Br (2) 2,2′-Bipy - - 
1 Reaction conditions: Ar−X (2 mmol), potassium thioacetate (3 mmol), CuI (0.2 mmol), ligand (0.4 

mmol), CPME (8 mL) 100 °C, 24 h under argon. 2 Isolated yields. 3 Reaction performed with 0.05 eq 

of CuI and 0.1 eq of ligand. 4 Reaction performed for 12 h. 5 Reaction performed with double 

amounts of reagents; 10% of 3-iodophenyl thioacetate was also obtained. 

Entry 1 Ar-X Ligand Product Yield (%) 2

1 Ph-I (1) 1,10-phen 4 98
2 Ph-I (1) 1,10-phen 4 30 3

3 Ph-I (1) 1,10-phen 4 56 4

4 Ph-Br (2) 1,10-phen - -
5 m-I2C6H4 (3) 1,10-phen 5 87 5

6 Ph-I (1) DABCO 4 15
7 Ph-Br (2) DABCO - -
8 Ph-I (1) 2,2′-Bipy 4 10
9 Ph-Br (2) 2,2′-Bipy - -

1 Reaction conditions: Ar−X (2 mmol), potassium thioacetate (3 mmol), CuI (0.2 mmol), ligand (0.4 mmol), CPME
(8 mL) 100 ◦C, 24 h under argon. 2 Isolated yields. 3 Reaction performed with 0.05 eq of CuI and 0.1 eq of ligand.
4 Reaction performed for 12 h. 5 Reaction performed with double amounts of reagents; 10% of 3-iodophenyl
thioacetate was also obtained.

The reaction carried out using bromobenzene did not lead to the formation of the
desired product even with an extended reaction time of 48 h, under reflux conditions, or
when the quantity of catalyst and ligand was doubled. Furthermore, when CPME was sub-
stituted with more polar solvents like dimethylformamide or acetonitrile, bromobenzene
did not undergo the desired reaction.

Despite a narrower substrate scope, selectivity for aryl iodides can be advantageous
for further synthetic transformations [27].

To improve the cost efficiency of the reaction, N,N-bidentate ligands DABCO and
2,2′-bipy were used, but both led to low yields with phenyl iodide 1 (Table 1, entries 6
and 8) and no reaction with the Br-derivative 2 (Table 1, entry 7 and 9). To assess the
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versatility of the reaction toward polyfunctional molecules, we performed the reaction on
the diiodo-derivative 3, obtaining the double functionalization in the presence of doubled
amounts of reagents (Table 1, entry 5) in excellent yield. Lower yields were observed if the
reactions were carried out in air atmosphere or reducing temperature.

The efficiency of the reaction was therefore evaluated by extending the procedure
to different (hetero)aryl iodides (Table 2), by using the [Cu(I)/(phen)2]+ complex as a
catalyst. Based on the previously described mechanism, we explored the effect of the
substrates’ electronic properties on the reactivity. As already reported, Cu-catalyzed cross-
coupling reactions between aryl iodides and potassium thioacetate are seriously affected
by the solvent employed. In detail, the reaction which successfully runs in toluene seems
to be negatively affected by the use of polar solvents, both in terms of reactivity and
chemoselectivity [19]. To address this issue, an investigation was conducted to assess the
outcome of these reactions using CPME, which was still characterized by low polarity
but was slightly higher compared to toluene. Additionally, the investigation explored
the use of conventional heating or possibly microwave irradiation (reported in the row
below in Table 2) as alternative reaction conditions. These different heating methods can
further affect the reaction kinetics and potentially enhance the efficiency of Cu-catalyzed
cross-coupling reactions.

Table 2. Electronic effects in C(Het)Ar-S cross-coupling reactions catalyzed by Cu(I)/(1,10-phen)2

complex.
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The data in Table 2 show that using CPME as a solvent, despite its higher polarity than
toluene, preserves the reactivity and chemoselectivity of the reaction [19]. Like iodobenzene
1a, all the electron-neutral derivatives led exclusively to the formation of the corresponding
thioacetyl derivatives. The 4-thioacetyl-derivative of 1,1′-biphenyl (4b, Table 2, entry 2)
was obtained in an almost quantitative yield, while lower yields were obtained with the
sterically hindered derivatives 1c (64%) and 1d (40%) (Table 2, entries 3 and 4). On the
contrary, 4-chloroiodobenzene 1e, besides disclosing complete chemoselectivity for iodide
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over chloride, provided the expected product with almost quantitative conversion (Table 2,
entry 5). Even in the absence of steric effects, the electron-rich substrate 1f did not react
quantitatively but led to the exclusive formation of the desired product (Table 2, entry 6).
The most electron-poor substrates 1g–1k showed greater reactivity but lower chemose-
lectivity compared to the electron-rich ones; indeed, in addition to the desired products
4g–4k, the formation of small amounts of the corresponding diaryl sulfides 6g–6k was
also obtained (Table 2, entries 7–11). Noteworthily, the chemoselectivity appeared to be
correlated with the electron density of the aromatic ring. Indeed, substrates bearing more
electron-withdrawing substituents led to the formation of a greater amount of the corre-
sponding by-product 6, while substrates with moderate electron-withdrawing substituents,
such as 1e and 1l, exhibited high selectivity and led exclusively to the formation of the
desired products (Table 2, entries 5 and 12). Finally, the reactivity of some heteroaromatic
iodides was also investigated (Table 2, entries 13–15). 2-Iodothiophene 1m and the corre-
sponding 3-substituted isomer 1n reacted chemoselectively, leading to the corresponding
thioacetyl derivative 4m and 4n with good yields (Table 2, entries 13 and 14). These results
are consistent with the electron-rich nature of the thiophenic ring and show a very small
difference in the electron density of positions 2 and 3 of the heteroaromatic ring.

The unexpected result observed in the case of 2-iodopyridine 1o (Table 2, entry 15)
deserves a separate comment. The pyridinic ring is an electron-deficient heteroaromatic,
and, based on the previous results, one might have expected high conversion and low
chemoselectivity. However, as previously described in the literature [28], in the Cu(I)-
catalyzed coupling of aryl halides with sulfur-based nucleophiles, pyridinic derivatives
can compete with 1,10-phen as ligands. This competition between ligands can affect the
outcome of the reaction, influencing factors such as reaction rate, selectivity, and the stability
of the formed complexes.

Under microwave irradiation, an important kinetic effect was observed in CPME
(Table 2, entries 1, 6, 8–10), regardless of the electronic properties of the substrates, com-
parable to what has been previously reported for reactions carried out in toluene [19].
However, this did not significantly affect the conversion or selectivity of the reactions.

Taken together, these findings support the previously proposed mechanism where
the rate-determining step, an oxidative addition to give a Cu(III) intermediate, can be
promoted by electron-poor (hetero)aryl halides [20]. Furthermore, electron-deficient sub-
strates, besides showing greater reactivity, lead to the formation of the corresponding diaryl
sulfides as by-products of the reactions (Table 2, entries 7–11 and 13). The competitive
Cu-catalyzed cross-coupling reaction between aryl iodides 1 and aryl thiolates already
described in the literature [26,29–31] probably takes place as the concentration of the aryl
thiolate increases in the reaction medium, which occurs selectively with the aryl thioac-
etates, whose aryl thiolate is stabilized by electronic effects. Probably, as already observed
for the ammonolysis of aryl thioacetates [32], the electron-poor aryl thioesters undergo
faster deacetylation at the sulfur atom, thus generating the aryl thiolates, being able to
compete with the AcS− anion in the catalytic cycle [33]. The overall reactivity observed
can be explained by proposing that, for electron-rich or electron-neutral compounds, the
previously described catalytic cycle operates [20], whereas for electron-poor substrates,
there is competition with a secondary catalytic cycle. This secondary cycle involves the
formation of the Cu(I)−phen−SAr complex, which undergoes the oxidative addition of
the substrate and the reductive elimination of the symmetrical diaryl sulfide, as reported
in Scheme 1. Unfortunately, this side reaction could be promoted by the excess of AcSK
necessary for the successful outcome of the reaction within a reasonable time.
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Scheme 1. Plausible reaction mechanism for the CuI−phen-catalyzed Ar−SAc coupling (a); plausible
reaction mechanism for the CuI−phen-catalyzed Ar−S−Ar coupling (b).

In addition to those reported in Table 2, a further substrate was taken into consid-
eration, 4-iodopyrazole 1p. Under our reaction conditions, this substrate underwent a
transformation which involved not coupling with the heteroaryl iodide function, but rather
the nucleophilic nitrogen atom, as reported in Scheme 2. Probably, the nitrogen nucleophilic-
ity promotes acyl transfer from the catalytically active complex Cu(I)/phen/thioacetate
and inhibits the cross-coupling reaction on the heteroaryl iodide.
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Scheme 2. Acyl transfer on the heteroaryl iodides 1p.

Even if the reaction is performed in the presence of an excess of AcSK (three equiva-
lents), the selective formation of the N-acylation product was observed. However, in this
case, the reaction proceeded with a lower conversion yield, leading to a mixture of the
N-acylated derivative, heteroaryl iodide, and free 1,10-phenanthroline.

To improve the sustainability of the process, we also optimized the workup procedure.
Indeed, after the reaction, products and possibly the substrates or diaryl sulphides (depend-
ing on the reactivity and chemoselectivity) were dissolved in CPME, while the Cu−phen
catalytic complex and KI were insoluble. Therefore, the simple filtration of the reaction
mixture allowed us to isolate the products which, if necessary, could be further purified by
flash chromatography. Thus, the recovery of the reaction solvent, the only one used in the
procedure, became almost quantitative. A further step toward the sustainability of the pro-
cess includes the recovery of the catalytic system, which is easily recoverable and recyclable,
as already reported [34]. In our experimental conditions, the catalytic complex was isolated
through straightforward filtration, dried, and reused without additional processing. De-
spite containing the by-product KI, the resulting complex was reused three times without
the significant loss of catalytic activity. However, it should be noted that normally, the
synthesis of thioacetates is functional to the generation of precursors of molecules bearing
the arylthiolic group, which can be released in situ during the final transformation [35].
This last step can be carried out under extremely mild basic conditions [36] and leads
to the formation of the corresponding aryl thiolates, which can be trapped in situ with
electrophilic reagents [19].

The methodology has been successfully applied to the synthesis of the acetyl-protected
3,3′-(perfluorocyclopent-1-ene-1,2-diyl)bis(2-methylbenzo[b]thiophene-6-thiol) 13, a pho-
tochromic thienyl-type diarylethene with interesting applications in molecular electron-
ics [37,38]. Despite its photochemical properties, the selective synthesis of this molecule
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has never been reported. Indeed, in 2008, Irie and colleagues, studying photoswitch-
ing behavior on the conductance of diarylethene units linked to gold [37] and silver [38]
nanoparticles, synthetized the trimethylsilylethyl-protected photochromic dithienylethene
11, starting from the diiododerivative 10 [39] with low selectivity and under harsh condi-
tions (Scheme 3). With our methodology, we performed Ar−S coupling starting from the
same substrate, obtaining the acetyl-protected derivative 13 with high yield and selectivity
under mild reaction conditions (Scheme 3).
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3. Materials and Methods
3.1. Materials

All the reactions were carried out under the inert atmosphere of argon. CPME was
distilled over Na/benzophenone under argon. Chemicals were obtained from commercial
suppliers and used without further purification. Column chromatography was performed
on silica gel (pore size 60 Å, 32–63 nm particle size), and reactions were monitored by
thin-layer chromatography (TLC) analysis using Merck (Macherey-Nagel, Dueren, Ger-
many) Kieselgel 60 F254 plates, and visualization was achieved under UV light at 254 nm.
Solutions were evaporated under reduced pressure with a rotary evaporator.

The 1H NMR and 13C NMR spectra (500 MHz and 125 MHz, respectively) were
recorded on a Bruker Avance 500 Ultrashield spectrometer (Bruker, Ettlingen, Germany) at
297 K, using CDCl3 signals as an internal standard. Chemical shifts are reported in parts per
million (ppm, δ), calibrated using residual non-deuterated solvent as an internal reference
(CHCl3 at δ 7.26 ppm (1HNMR) and at δ 77.16 ppm (13CNMR)). The peak patterns are
indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet; dd, doublet
of doublets; br, broad. The coupling constants, J, are reported in Hertz (Hz). In nearly
all cases, the full and unambiguous assignment of all resonances was performed by the
combined application of standard NMR techniques, such as 1HNMR, 13CNMR, 13C-APT,
HSQC, and 19FNMR experiments. Mass spectra were obtained on a Bruker maXis 4G
instrument (ESI-TOF, HRMS) (Bruker, Bremen, Germany). The microwave reactions were
carried out by using an MC8S-3 microwave instrument.

3.2. General Procedure for the Synthesis of the Substrates 4a–4o, 5, and 9

The reactions were carried out in a 25 mL two-necked flask, equipped with a magnetic
stirrer, a condenser, and an argon inlet.

To a stirring solution of ArI (0.5 mmol; 1 eq) in CPME (2 mL) the following were
added in the following order: CuI (0.01 g; 0.05 mmol, 0.1 eq), ligand (0.1 mmol, 0.2 eq,
1,10-phenanthroline, 0.02 g; DABCO, 0.012 g; or 2,2′-bipyridine, 0.016 g) and potassium
thioacetate (0.09 g, 0.75 mmol, 1.5 eq). The reaction mixture was warmed to 100 ◦C and
stirred at this temperature for 24 h under argon before being cooled to room temperature.
The catalytic complex was separated by filtration, dried under reduced pressure, and
reused without further elaboration. The solvent was evaporated under reduced pressure
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from the filtered CPME solution containing the reaction mixture and recycled. If necessary,
the chromatographic purification of the product was performed.

3.3. General Procedure for the Synthesis of Substrates 4a, 4f, and 4h–4j under Microwave Irradiation

The same reactions were carried out in a 10 mL microwave tube under argon atmo-
sphere and irradiated (starting output power: 300 W) whilst stirring at 100 ◦C for 2 h
(1 cycle).

3.4. Synthesis of 3,3′-(Perfluorocyclopent-1-ene-1,2-diyl)bis(2-methyl-6-(acetylthio)-benzo[b]thiophene) 13

A 100 mL two-necked Schlenk tube, equipped with an argon gas inlet, a condenser,
and a magnetic stirrer, was dried under vacuum, filled with argon, and then charged with
dried cyclopentyl methyl ether (CPME) (20 mL). 1,2-Bis(6-iodo-2-methyl-1-benzothiophen-
3-yl)hexafluorocyclopentene 10 (1.08 g, 1.45 mmol), CuI (10 mol%), 1,10-phenanthroline
(20 mol%), and finally, potassium thioacetate (2.17 mmol, 1.5 eq.) were added under
argon and stirred at 100 ◦C for 18 h, monitored by TLC (cyclohexane/AcOEt = 9:1,
Rf = 0.153). The reaction mixture was cooled to room temperature and quenched with
water (20 mL). The organic layer was separated and the aqueous layer was extracted
with CPME (3 × 20 mL). The combined organic extracts were dried over CaCl2, and the
crude reaction mixture was purified by silica gel column chromatography (gradient 100%
cyclohexane–cyclohexane/AcOEt = 8.5:1.5), giving 0.68 g of 3,3′-(perfluorocyclopent-1-
ene-1,2-diyl)bis(2-methyl-6-(acetylthio)benzo[b]thiophene) 13 (1.10 mmol, yield 76%) as a
mixture of conformational isomers (parallel/antiparallel = 35:65).

4. Conclusions

An eco-friendly, efficient methodology was developed for C(sp2)−S coupling in CPME
under conventional heating or microwave irradiation, promoted by the in situ generated
[Cu/(1,10-phen)2] as a cheap and easily recyclable catalyst. Under our reaction conditions,
complete selectivity was observed for Ar−I with respect to Ar−Cl and Ar−Br, thus allow-
ing further synthetic transformations. According to the proposed mechanism, both steric
and electronic effects dominated the reaction. Excellent reactivity and selectivity were ex-
clusively observed with electron-neutral substrates, while electron-poor substrates, though
highly reactive, showed poor chemoselectivity. On the other hand, electron-rich substrates,
while less reactive, produced the desired products with complete selectivity. The overall
reactivity is explained by a secondary catalytic cycle that involves the formation of the
Cu(I)−phen−SAr complex, specifically active with electron-poor substrates. Remarkably,
this rationalization allows for the prediction of the reaction outcomes beforehand. The
tolerance to functional groups is limited by the presence of strongly nucleophilic functional
groups in the substrates, which can promote an acyl transfer process, compromising the
cross-coupling reaction. To enhance the sustainability of the synthetic methodology, a
non-aqueous workup was developed, enabling the recycling of the catalytic complex and
quantitative recovery of the solvent.

Lastly, the efficiency and versatility toward polyfunctional molecules were demon-
strated by the selective and high-yielding synthesis of 3,3′-(perfluorocyclopent-1-ene-1,2-
diyl)bis(2-methylbenzo[b]thiophene-6-thiol) acyl-protected 13, a photochromic thienyl-type
diarylethene with interesting applications in molecular electronics.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29081714/s1, General information; General proce-
dure for the synthesis of the substrates 4a–4o, 5 and 9; General procedure for the synthesis of
the substrates 4a, 4f, and 4h–4j under microwave irradiation; Characterization data: Product 4a–
4o, 5, and 9; Synthesis of 1,2-Bis(6-iodo-2-methyl-1-benzothiophen-3-yl)hexafluorocyclopentene 10;
Characterization data: Product 10; Synthesis of 3,3′-(perfluorocyclopent-1-ene-1,2-diyl)bis(2-methyl-
6-(acetylthio)benzo[b]thiophene) 13; Characterization data: Product 13. Refs. [40–44] have been cited
in Supplementary Materials.
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