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Abstract: Shale oil in China is widely distributed and has enormous resource potential. The pores of
shale are at the nanoscale, and traditional research methods encounter difficulty in accurately describ-
ing the fluid flow mechanism, which has become a bottleneck restricting the industrial development
of shale oil in China. To clarify the distribution and migration laws of fluid microstructure in shale
nanopores, we constructed a heterogeneous inorganic composite shale model and explored the fluid
behavior in different regions of heterogeneous surfaces. The results revealed the adsorption capacity
for alkanes in the quartz region was stronger than that in the illite region. When the aperture was
small, solid–liquid interactions dominated; as the aperture increased, the bulk fluid achieved a more
uniform and higher flow rate. Under conditions of small aperture/low temperature/low pressure
gradient, the quartz region maintained a negative slip boundary. Illite was more hydrophilic than
quartz; when the water content was low, water molecules formed a “liquid film” on the illite surface,
and the oil flux percentages in the illite and quartz regions were 87% and 99%, respectively. At 50%
water content, the adsorbed water in the illite region reached saturation, the quartz region remained
unsaturated, and the difference in the oil flux percentage of the two regions decreased. At 70% water
content, the adsorbed water in the two regions reached a fully saturated state, and a layered structure
of “water–two-phase region–water” was formed in the heterogeneous nanopore. This study is of
great significance for understanding the occurrence characteristics and flow mechanism of shale oil
within inorganic nanopores.

Keywords: heterogeneous shale; molecular dynamics; oil–water two-phase region; fluid behavior;
interaction energy

1. Introduction

Global energy transition trends have emerged in various countries [1], but there is
still significant uncertainty and multi-selectivity in the path and pace of transformation.
According to the prediction of the International Energy Agency (IEA) and OPEC in 2020,
the world’s oil demand will not be less than 100 million barrels per day by 2040 and will
remain stable for a long period of time. Therefore, it remains challenging to fully replace
the demand for oil. Moreover, oil and natural gas will still play an important role in
transforming from fossil fuels to clean energy systems. As an important alternative energy,
shale oil possesses enormous resources. The resource evaluation results of 157 shale oil
enrichment formations in 116 basins worldwide reveal that the technically recoverable
resources of shale oil are about 251.2 billion tons. Among them, the technically recoverable
resources of low-maturity and medium- to high-maturity shale oil are 209.9 billion tons and
41.3 billion tons, respectively. The United States is the first country to realize the commercial
development of shale oil, and its marine shale oil features excellent continuity, relatively
greater thickness, and a higher reservoir pressure coefficient. The shale oil resources of
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Argentina rank fourth in the world, which belong to marine shale. The thickness of typical
shale oil reservoirs in Argentina is greater than that of most oil and gas development
areas in the United States. China’s shale oil is a typical lacustrine deposit with enormous
potential in medium- and low-maturity resources [2,3]. It is estimated that the economically
recoverable resource is 20–25 billion tons under the Brent oil price of USD 60–65 per barrel.
Shale is characterized by low brittleness, challenging fracturing, a well-developed fracture
network [4], strong heterogeneity, and a high clay mineral content [5]. Scanning electron
microscopy (SEM) has confirmed the presence of organic pores, inorganic pores, and
fractures in shale reservoirs, and the kerogen organic pores range from 2 to 100 nm. The
pore size distribution results of the Wufeng–Longmaxi Formation shale in the Fuling area,
Sichuan Basin, showed that the organic pores mainly distribute between 2 and 50 nm, and
inorganic pores range from 4.03 to 500 nm, with the majority of inorganic pores ranging
from 2 to 50 nm. Curtis et al. [6] used high-resolution EMG to scan the shale clay pores, and
the results showed that the pores within the clay exhibit a “slit-like” shape, with a width
mainly ranging from 3 to 20 nm. Loucks et al. [7] observed a variety of nanopores with
pore sizes ranging from 5 to 750 nm in the Barnett shale, and the statistical results showed
that pores at 5–15 nm dominate the frequency of pore size distribution.

It is difficult to describe the fluid behavior in such small pores, especially inorganic
and clay pores. Currently, the study methods for nanoscale fluid behavior can be divided
into experiments, theoretical models, and molecular simulations. A laboratory experiment
is a reliable technology for studying fluid behavior; microfluidic and nanofluidic devices
are used as visualization models of complex porous media. Wang et al. [8–10] studied
alkanes, alkane mixtures, multi-phase flow, and phase behavior in microchannels and
nanochannels. Zhang et al. [11] fabricated a dual-scale microfluidic/nanofluidic channel
with a depth of 250 nm to study the multi-phase flow in “shale-like” unconventional
dual-porosity tight porous media. Low-field nuclear magnetic resonance (NMR) is a rapid
non-destructive detection technique for investigating hydrogen-bearing fluid phases (e.g.,
water and methane) in porous media [12]. It is widely used in the reservoir characterization
and fluid (oil and water) saturation measurement. Liu et al. [13] used NMR for the first time
to investigate the changes in adsorbed and non-adsorbed methane during the injection of
CO2, which is of great significance for evaluating the potential of CO2 injection to enhance
the recovery of adsorbed gas in a shale gas reservoir. Zhu et al. [14] carried out NMR-
based CO2 miscible displacement experiments on oil-saturated shale and sandstone; the
recovery of shale oil under different occurrence states was obtained. In addition, Javadpour
et al. [15] measured the slip length of liquid flow on the shale surface using atomic force
microscopy (AFM). Most of those experiments use artificial porous materials (such as glass,
silicone, polydimethylsiloxane, etc.) and mainly rely on hypothetical models. For example,
microfluidic chips have only one dimension of nanopores, which differ tremendously from
the real shale surfaces in physical and chemical properties. Moreover, experimental samples
are commonly prepared and measured at room temperature (25 ◦C, 30 ◦C) [16,17], which
causes difficulty in reflecting the actual formation conditions. Furthermore, it is difficult to
observe fluid transport and adsorption within shale micropores (less than 2 nm) effectively
using current laboratory techniques [18,19].

Several theoretical models have been developed to describe the fluid behavior in
shale nanopores. It is common to describe the transport of shale oil in nanopores with a
flow enhancement model considering the slip length [20]. The flow enhancement formula
integrates the influence of solid–liquid interaction on adhesion and surface diffusion. Mattia
et al. [21] derived a model for the slip velocity of water flow in carbon nanotubes (CNTs)
and thus obtained a flow enhancement model that considers the surface roughness and
mixed wettability on the flow, but the fitting accuracy of the model is relatively low and
does not consider adsorption. Moreover, the application of Mattia’s model in studying
the oil flow in CNTs has not been validated until now. Cui et al. [22] proposed a flow
enhancement model that incorporated boundary slip and adsorption of organic matter
nanopores, in which the adsorbed oil and bulk oil were considered, respectively. The
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interface properties among organic and inorganic nanopores are different, resulting in
different wall–fluid interactions. Zhang et al. [23] proposed an apparent permeability
model based on flow enhancement to describe the oil transport in organic and inorganic
nanopores. The results showed that the oil velocity in inorganic pores is much higher
than that in organic nanopores. Based on the relationship of the slip length and contact
angle. Wu et al. [24] obtained a generalized formula for the water phase slip length–contact
angle and calculated the contact angle range from 0◦to 150◦ and the slip length range from
0.1 to 22.8 nm. However, theoretical models sometimes have overly ideal simplification
conditions, resulting in significant deviations from actual shale samples; the parameters in
the model are difficult to obtain, and the accuracy of the model has not been fully verified.

Molecular dynamics simulation (MDS) is based on classical Newtonian mechanics,
which calculates the motion coordinates of each particle in the system at each time step,
optimizes the total energy of the molecule, and obtains the stable configuration and ther-
modynamic properties of the system [25]. Holt et al. [26] reported the flows of gas and
water in CNT with a diameter less than 2 nm and found that the measured water flow rate
was comparable to the flow rates inferred from MDS. In recent years, MDS has played a
significant role in studying fluid behavior in shale pores. Sun et al. [27], Nan et al. [28],
and Zhang et al. [29] listed the molecular dynamics studies of fluid behavior in different
pores using various force fields. Figure 1 clearly presents the common physical mod-
els of shale and fluids. The organic matter in shale is kerogen, which is divided into
three types according to the atomic (H/C) vs. (O/C) diagram, and kerogen in different
shale plays may have different elemental ratios and functional groups. Ungerer et al. [30]
created representative kerogen models using MDS based on the experimental results re-
ported by Kelemen et al. [31]. Tesson et al. [32], Lukas et al. [33], Wu et al. [34], and Pan
et al. [35] analyzed the adsorption and diffusion of CH4 and CO2 in kerogen, as well as the
expansion of kerogen based on these models. Kerogen is usually regarded as an inelastic
and rigid matrix, but it is essentially flexible. Firoozabadi et al. [32,36] confirmed that the
flexibility of kerogen has a significant impact on gas adsorption and kerogen expansion;
they found that gas adsorption in the flexible kerogen matrix is higher than that in the rigid
kerogen matrix. Various force fields are used to describe kerogen, including classical CVFF,
PCFF+, and COMPASS [37–39], as well as ReaxFF [40], that consider chemical reactions.
Due to the complexity of the real molecular models of the shale organic matter, graphene
and CNT are often selected as initial models for kerogens; the force field CVFF [41] and
OPLS-AA [42] are usually used to describe the adsorption of alkanes on graphene surfaces.

The main inorganic matter of shale includes quartz, calcite, and clay minerals, and
the clay minerals mainly include illite, montmorillonite (MMT), kaolinite, etc. [43,44].
Zheng et al. [45] studied the oil transportation under the influence of surface roughness and
electrostatic interaction in quartz nanopores. Spera and Franco [46] focused on the diffusion
for methane–ethane mixtures within calcite nanopores and found that the presence of
ethane changed the self-diffusion of methane. In most plays, clay nanopores account for
more than 50% of the volume of shale matrix [47]. In the Songliao Basin of China, the clay
mineral content is 35–55%, and in the Sichuan Basin, the average clay mineral content is
42.1%. Clay minerals are prone to hydration expansion when encountering water, which
may be the fundamental reason why hydraulic fracturing is not always effective. Clay
minerals in shale are mainly illite and MMT [48–50]. Xiong et al. [51] and Liu et al. [52]
investigated the formation of water bridges in illite nanopores and its impact on fluid
transport. Chen et al. [53,54] studied the adsorption mechanism of CH4 and CO2 in K-illite
slit pores. Wang et al. [55,56] and Yang et al. [57] studied the adsorption behavior of pure
CO2, CH4, and CO2/CH4 mixture gases and the shale oil diffusion in MMT nanopores.
The commonly used force fields for inorganic materials are CLAYFF, UFF, COMPASS, etc.
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Figure 1. Summary schematic diagram of molecular dynamics studies on fluid behavior in different
nanopores using various force fields.

It can be concluded that most of the research on shale focuses on its organic or
inorganic matrix, with a primary emphasis on the shale gas. The main investigations
revolve around the adsorption and diffusion of shale gas, as well as the influence of
temperature, pressure, and other factors. There is comparatively less research on shale oil.
However, shale formation is a heterogeneous system consisting of complex composition
and is essentially composed of several mixed wetting pores [58,59]. Given the prevalence
of mixed wetting pore systems in shales, Hantal et al. [60,61] utilized the ReaxFF force
field to study the influence of the interface bond formation reaction of organic porous
carbon–inorganic matter (quartz and clay) on the interface, as well as the mechanism of
interface failure, but did not describe the solid–fluid interaction. Lee et al. [62] constructed
a composite membrane containing hydrophilic quartz and hydrophobic CNT and studied
the activated desorption of hydrocarbon; the results indicated that the interfacial effects on
wet kerogen surface hindered the recovery. According to the energy barrier results, CO2
or propane can replace water and effectively displace methane within the pores as there
is no energy barrier inhibiting extraction in this case. Li et al. [63] built three composite
shale models of kaolinite–kerogen IID, MMT–kerogen IID, and calcite–kerogen IID and
explored the adsorption among CH4 and injection gases (CO2/N2) in various composite
shale materials. They found that organic matter is the decisive factor of shale adsorption.
Chen et al. [64] proposed a graphene–MMT pore as a shale matrix and investigated the
adsorption characteristics of CH4/CO2. They confirmed that the graphene surface exhibits
a significantly stronger adsorption capacity than MMT, especially for the adsorption of
CO2. In addition, Yang et al. [65] and Dawass et al. [66] constructed kerogen–kaolinite
composite pores to predict the adsorption of shale oil and gas, respectively.

Therefore, the current research on mixed wetting and heterogeneity mainly focused
on organic–inorganic composite walls. As the main component of shale, inorganic matters
possess a relatively high specific surface, Figure 2a shows the intergranular pores of
clay, which can be seen to have a relatively high specific surface area. Figure 2b shows
the inorganic pores of shale, with green marked inorganic pores in the shape of narrow
slits, which may affect fluid transport in shale reservoirs. Various inorganic materials
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exhibit notable differences in structure and thermodynamic properties, resulting in surface
heterogeneity impacting the fluid flow in nanopores significantly. Therefore, based on
a previous study by the research group (XRD results), we combined quartz and illite
into inorganic composite shale, explored the fluid transportation in different regions of
heterogeneous shale pores, and revealed the influence of various factors on fluid flow in
heterogeneous shale pores.
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2. Results and Discussion
2.1. Fluid Distribution and Transportation in Heterogeneous Shale Pores

Figure 3 shows the last snapshot of n-octane after the equilibrium in the heterogeneous
pore (width of 5 nm at 360 K, 30 MPa, and 0.002 Kcal/(mol·Å)) with the mass density
and velocity distribution in the Z direction. When calculating the mass density, the unit
length of the Z direction was 0.08 nm, which was significantly smaller than the diameter
of the n-C8 H18 molecule (0.63 nm). Octane molecules exhibited non-uniform distribution
in the heterogeneous inorganic pore. Due to the interaction with the pore surfaces, the
density fluctuation of octane molecules was higher in the near-wall region, decreased in
the far-wall region, and remained almost unchanged at the center of the pore. The average
density was 0.680 g/cm3, calculated by taking the arithmetic average of the density between
z = −0.50 nm and z = 0.50 nm, which was basically consistent with the experimental results
(0.67996 g/cm3) published by the National Institute of Standards and Technology (NIST).
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The one-dimensional density curve of octane was axisymmetric. The first, second,
third, and fourth adsorption layers were located from the surface to the center of the pore,
with peak densities of 1.10 g/cm3, 0.79 g/cm3, 0.71 g/cm3, and 0.69 g/cm3, respectively.
The thickness of each adsorption layer was approximately 4.5 Å, which was close to the
width of the octane molecules. The two-dimensional density showed the octane distri-
bution in different regions of the shale surface. Although there were four symmetrical
adsorption layers in the quartz and illite regions, the adsorption layer density of octane
in the quartz region was higher than that in the illite region, which was essentially due
to the varying adsorption capacities of quartz and illite for octane molecules. To clar-
ify the distribution characteristics of octane in homogeneous and heterogeneous shale
nanopores, 5 nm pure quartz and illite slits were constructed, respectively. The model
dimensions and fluid molecules numbers were consistent with the 5 nm heterogeneous
model. The unit length in the z-direction (∆Z) was also 0.08 nm. The density distribu-
tions in the pure quartz and illite nanopores were calculated as shown in Figure 4. In
the pure illite pores, the density curve exhibited a symmetrical distribution with four
adsorption layers, and the peak densities were 1.185 g/cm3, 0.875 g/cm3, 0.765 g/cm3, and
0.735 g/cm3. In the heterogeneous shale nanopore, the peak densities of the four adsorption
layers in region I were 1.055 g/cm3, 0.795 g/cm3, 0.725 g/cm3, and 0.695 g/cm3. In pure
quartz pores, the peak densities of the four adsorption layers of octane were 1.355 g/cm3,
0.945 g/cm3, 0.775 g/cm3, and 0.725 g/cm3. In the heterogeneous shale nanopore, the
adsorption layer peak densities of region Q were 1.195 g/cm3, 0.835 g/cm3, 0.725 g/cm3,
and 0.705 g/cm3. This implied that the peak densities of each adsorption layer in both
region I and region Q were lower than that in the homogeneous nanopores, which could be
attributed to the competitive adsorption of quartz and illite in heterogeneous pores. The
interaction between the two mineral surfaces resulted in lower adsorption phase densities
in the heterogeneous nanopore compared with the homogeneous nanopore. Therefore,
the current calculations of hydrocarbon adsorption based on homogeneous pores might
overestimate the adsorption capacity.
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From Figure 3, the velocity distribution of octane shows a parabolic shape; this was
because the adsorption effect was stronger in the near-wall region, resulting in a lower
flow rate than at the center of the pore. The two-dimensional velocity distribution revealed
that the octane velocities in the two minerals’ surfaces were different, with flow rates of
0.51 × 10−3 Å/fs and 0 × 10−3 Å/fs at the boundary of the illite region and quartz region,
respectively. Additionally, the high-velocity area in the illite region was larger than that in
the quartz region. The flow rate at the center of the two regions was similar because the
bulk fluid was only affected by internal friction.

Figure 5 shows the IED between the C atom (octane) and the surfaces of heterogeneous
shale. Figure 5a,d represent the two-dimensional potential energy distributions when
the C atom was located at heights of 2.25 Å and 6.75 Å from the surface, respectively.
These heights corresponded to the positions of the density peaks for the first and second
adsorption layers in the 5 nm slit. In Figure 5, negative and positive interaction energy
represent attraction and repulsion, respectively [68]. There was a significant gap in the IED
between region Q (right) and region I (left). From Figure 5a, there is a strong repulsive
interaction between the K+ (illite surface) and the alkane molecules in the first adsorption
layer, with interaction energies reaching above 60.0 kcal/mol. Apart from the K+, all
other positions in region I showed attractive interactions with the octane molecules, with
interaction energies being less than −10.0 kcal/mol. The interaction energy between octane
and the hydroxyl (quartz surface) was approximately 6.5 kcal/mol, while the interaction
energy with the rest of the surface was about −3.0 kcal/mol. This indicated that hydroxyl
exhibited a repulsive interaction with octane molecules, while the rest of the surface showed
attractive interactions, and both the repulsive and attractive forces were weaker than those
on the illite surface. Overall, the alkane adsorption was influenced by the collective effect of
repulsive and attractive forces from the surface. Compared with the quartz surface, the K+

on the illite surface was distributed intensively, and the repulsion of K+ on octane molecules
was very obvious, resulting in the stronger adsorption capacity of alkane in region Q than
in region I. From Figure 5d, when octane molecules were located at the second adsorption
layer, the repulsive effects of K+ and hydroxyl groups were weakened due to the greater
distance to the surfaces. Additionally, the attractive forces from other positions on the
surface also decreased as the distance increased, but the reduction in attractive forces was
much smaller than that in repulsive forces. Both regions of the heterogeneous shale surface
still exhibited attractive interactions with alkane molecules, especially region Q. Therefore,
the adsorption capacity for alkanes of region Q was stronger than that of region I.

Figure 5b,c,e,f represent the interactions between the C atom (octane) and the shale
surfaces at the first and second adsorption layers on pure quartz and illite surfaces. In
the first adsorption layer, the hydroxyl on the pure quartz surface exhibited repulsive
forces with alkane molecules, while all other positions showed strong attractive forces
with interaction energies of approximately −23.5 kcal/mol. In contrast, the pure illite
surface showed attractive forces, with interaction energies ranging from −1.55 kcal/mol
to −4.5 kcal/mol, which were obviously weaker than those of quartz surface. Therefore,
the density of the adsorption phase in region Q was higher than that in region I. At
the second adsorption layer, the alkane molecules were farther away from the surfaces,
resulting in a significant decrease in the interaction energies between the quartz surface
and alkane, showing weaker attractive forces. The influence of K+ on the surface–octane
interaction reduced, and the illite–octane interaction was slightly lower than the quartz–
octane interaction. As a result, the adsorption phase density of the second adsorption layer
in region Q remained relatively high. However, the difference in adsorption phase density
between the two regions was smaller than that observed at the first adsorption layer.
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Figure 5. IED between C atom and heterogeneous shale surfaces (5 nm). (a) IED of the first adsorption
layer. (b) IED of the first adsorption layer on the pure quartz surface. (c) IED of the first adsorption
layer on the pure illite surface. (d) IED of the second adsorption layer. (e) IED of the second adsorption
layer on the pure quartz surface. (f) IED of the second adsorption layer on the pure illite surface.

2.2. Effect of Pore Size on the Hydrocarbon Transportation in Heterogeneous Shale Pores

Figure 6a,c,e show that when the pore width was 3 nm, the velocity distribution in
different regions showed heterogeneity. The high-velocity area in region Q was smaller,
while the high-velocity area in region I was larger. In the near-wall region, the flow rate
in region I was higher than that in region Q. This was because the fluid in region Q was
adsorbed on the surface, leading to a decrease in flow capacity. In the 5 nm pore, the flow
rate distribution became more uniform, with an increase in the high-velocity area. However,
there were still velocity differences between the two sides in the near-wall region. In the
8 nm pore, the flow rate distribution showed a distinct interface, with a further increase
in the high-velocity area. The velocity in the bulk region was uniformly continuous. The
low-velocity area in region Q was still larger than that in region I. It is worth noting that in
the 5 nm and 8 nm pores, there coexisted adsorbed and bulk fluid, while in the 3 nm pore,
only adsorbed fluid was present, and there was no bulk fluid.

Figure 7 shows the fluids distribution and force analysis within different apertures.
The forces acting on fluid molecules can be classified into three categories: the interaction
between fluid and near-wall (INW), the interaction between fluid and far-wall (IFW), and
the interaction between fluid molecules (IFF). In smaller pores, as depicted in Figure 7a,
fluid molecules were subject to opposing force from INW and IFW, which partially cancelled
out the INW force. Moreover, the solid–liquid interaction was stronger than the liquid–
liquid interaction, resulting in a denser arrangement of fluid molecules. All fluid molecules
adhered at the pore surfaces, and there was no bulk fluid. As the aperture increased, the
alkane molecules in the center of the pore became farther away from the surface, and the
force exerted by the surface on the fluid gradually weakened or even disappeared, as shown
in Figure 7b. Free oil appeared in the center of the pore. The bulk fluid was only affected by
the intermolecular force, with a density of 0.68 g/cm³, which was in good agreement with
National Institute of Standards and Technology (NIST) predictions. Additionally, the bulk
fluid prevented the adsorbate fluid from being influenced by the far-wall and enhancing
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the near-wall forces. Therefore, when the aperture exceeded 5 nm, the peak density and
the number of adsorption layers were higher than those at 3 nm; 3 nm corresponded to the
lower limit of movable oil within the pore.
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Figure 6. Velocity distribution of octane in different apertures: (a) two-dimensional velocity dis-
tribution in the 3 nm aperture, (b) velocity distribution of different regions in the 3 nm aperture,
(c) two-dimensional velocity distribution in the 5 nm aperture, (d) velocity distribution of different
regions in the 5 nm aperture, (e) two-dimensional velocity distribution in the 8 nm aperture, and
(f) velocity distribution of different regions in the 8 nm aperture.
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Figure 6b,d,f depict that in the 3 nm pore, the flow rate of octane molecules in re-
gion I was higher than that in region Q. The peak velocities were 0.32 × 10−3 Å/fs and
0.26 × 10−3 Å/fs. At the boundaries, the velocity of region I was greater than 0, while there
was a sticky layer in region Q. This was because all alkane molecules in both regions of the
3 nm slit were affected by the surface. Additionally, quartz had a higher adsorption ca-
pacity for alkane, resulting in a stronger restriction on the octane flow in region Q. In the
5 nm and 8 nm pores, the bulk fluid was not influenced by the surfaces and was only
subjected to internal friction forces. Therefore, the flow rate of bulk fluid in both regions
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remained consistent. In the 5 nm pore, the flow rates at the boundaries of region I and
region Q were 0.51 × 10−3 Å/fs and 0, respectively. In the 8 nm pore, the flow rates were
3.20 × 10−3 Å/fs and 2.03 × 10−3 Å/fs. That is to say, as the pore size increased, the
velocities at the boundaries increased. When the pore size expanded to 8 nm, the sticky
layer in region Q disappeared, and all fluid participated in the flow. Therefore, the flow
rate was stronger in large pores than that in smaller pores.

From Figure 8, the fluid slip lengths of region Q in the 3 nm, 5 nm, and 8 nm pores were
−0.43 nm, −0.17 nm, and 0.2 nm, respectively. The slip lengths in region I were 0.11 nm,
0.25 nm, and 0.5 nm. As the pore size increased, the boundary of region I always exhibited
“positive slip”, while the boundary of region Q gradually transitioned from “negative slip”
to “positive slip”. The slip lengths in both regions increased, with the slip length in region
Q remaining smaller than that in region I. From Figure 9, in the 3 nm pore, there was a
significant difference in the viscosity of bulk fluid (ηcenter) between the two regions. In
the 5 nm and 8 nm pores, the average viscosity (ηeff) was similar. This was because in the
5 nm and 8 nm pores, the ηcenter was the fitting result of the bulk fluid velocity, which was
almost unaffected by the surfaces. Comparing the ηeff of the two regions for different pore
sizes, it was found that the ηeff of region Q was greater than that of region I. This may be
due to the stronger adsorption capability of quartz more significantly restricting the octane
flow, weakening the shear of the fluid in that region and thus increasing the viscosity.
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2.3. Effect of Temperature on the Hydrocarbon Transportation in Heterogeneous Shale Pores

Figure 10a,c,e show that with increasing temperature, the thermal motion of fluid
molecules intensified, the flow rate in both regions increased, and the velocity distribution
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at the center of the pore became more uniform. The high-velocity areas expanded, and the
low-velocity areas in the near-wall region reduced. Compared with 360 K, the low-velocity
area in region I significantly reduced at 380 K, and the sticky layer disappeared in region Q.
At 400 K, the velocity further increased, and there were only a few low-velocity areas near
the boundary in region I. The flow rate at the boundary of region Q remained relatively
unchanged. It was possible that factors such as pore size and pressure gradient, in addition
to temperature, were influencing the fluid flow within this region. Figure 10b,d, and f
illustrates that the flow rates at the boundary of region I at 360 K, 380 K, and 400 K were
0.50 × 10−3 Å/fs, 0.73 × 10−3 Å/fs, and 1.35 × 10−3 Å/fs, respectively. The flow rates in
region Q were 0 Å/fs, 0 Å/fs, and 0.27 × 10−3 Å/fs. This indicated that the slip velocity
increased as the temperature rose. The boundary of region I always exhibited “positive
slip”, while the boundary of region Q transitioned from “negative slip” to “positive slip”.
The velocities at the boundary of region Q were consistently lower than those in region I,
which was due to the stronger adsorption of alkane molecules by quartz. The temperature
could not shield the difference in adsorption capacity.
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velocity distribution at 400 K, and (f) velocity distribution in different regions at 400 K.

In Figure 11, the slip lengths of region Q and region I are −0.17 nm and 0.25 nm at
360 K, −0.1 nm and 0.29 nm at 380 K, and 0.17 nm and 0.4 nm at 400 K. The slip lengths
increased with the temperature rises. The boundary of region I maintained “positive slip”.
The boundary of region Q exhibited “negative slip” below 380 K and turned to “posi-
tive slip” above 380 K. In Figure 12, the ηcenter of region Q at 360 K, 380 K, and 400 K is
0.35 mPa·s, 0.33 mPa·s, and 0.29 mPa·s, respectively, with the ηeff of 0.319 mPa·s,
0.30 mPa·s, and 0.28 mPa·s, respectively. In region I, the ηcenter is 0.34 mPa·s, 0.35 mPa·s,
and 0.29 mPa·s, respectively. The ηeff is 0.28 mPa·s, 0.26 mPa·s, and 0.24 mPa·s. Thus, the
viscosity of octane in both regions decreased with increasing temperature, and the ηcenter
in region Q and region I remained the same due to the bulk fluid not being influenced by
the surfaces.
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2.4. Effect of Pressure Gradient on the Hydrocarbon Transportation in Heterogeneous Shale Pores

Figure 13a,c,e show that as the pressure gradient increased, the high-velocity areas
in the center of the pore expanded, while the low-velocity area in the near-wall region
reduced. When the pressure gradient was 0.002 Kcal/(mol·Å), the low-velocity area in
region Q was significantly greater than that in region I. When the pressure gradient was
0.003 Kcal/(mol·Å), the heterogeneity of the velocity distribution decreased. Figure 13b,d,f
showed that at 0.002 Kcal/(mol·Å), there was a significant difference in the velocity dis-
tribution between the two regions. Region Q exhibited a sticky layer, and the flow rate
of octane at the boundary of region I was 0.51 × 10−3 Å/fs. At 0.0025 Kcal/(mol·Å),
the octane velocities at the boundary of region Q and region I were 0.12 × 10−3 Å/fs and
0.52 × 10−3 Å/fs, respectively. This implied that there was a significant velocity variation at
the boundary of the quartz region. When the pressure gradient reached 0.003 Kcal/(mol·Å),
the octane velocities at the boundary of region Q and region I were 0.3 × 10−3 Å/fs and
0.89 × 10−3 Å/fs, respectively. The boundary flow rate significantly increased at both
regions. Additionally, the velocity distribution curves of the two regions almost overlapped
at 0.003 Kcal/(mol·Å), which could have been due to the dominant factor being the pressure
gradient at this stage; the effects of other factors such as temperature and pore size became
much smaller compared with the pressure gradient.
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Figure 13. Velocity distribution of octane in different pressure gradients for 5 nm pore: (a) two-
dimensional velocity distribution at 0.002 Kcal/(mol·Å), (b) velocity distribution in different regions
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distribution in different regions at 0.0025 Kcal/(mol·Å), (e) two-dimensional velocity distribution at
0.003 Kcal/(mol·Å), and (f) velocity distribution in different regions at 0.003 Kcal/(mol·Å).

As shown in Figure 14, the slip lengths of octane in region Q under various pressure
gradients were −0.17 nm, 0.1 nm, and 0.17 nm, respectively. In region I, the slip lengths
were 0.25 nm, 0.3 nm, and 0.35 nm. Therefore, as the pressure gradient increased, the slip
lengths in region I exhibited a linear increase. The slip lengths in region Q initially increased
sharply, transforming from “negative slip” to “positive slip”. From Figure 15, the viscosity
of bulk fluid in both regions remained around 0.35 mPa·s and showed little variation with
the pressure gradient. At lower pressure gradients, the viscosity of octane in region Q
was higher than that in region I. As the pressure gradient increased, the average viscosity
in both regions tended to become similar. This phenomenon occurred because when the
pressure gradient reached 0.003 Kcal/(mol·Å), the low-velocity areas at the boundaries
reduced, and the influence of the surface on the hydrocarbon flow became much smaller
compared with the pressure gradient. As a result, the velocity distributions of octane in
both regions became almost identical.
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2.5. Hydrocarbon Transportation in Heterogeneous Shale Pores under Aqueous Conditions
2.5.1. Micro-Distribution of Oil–Water Two-Phase Region in Heterogeneous Shale Pores

Shale reservoirs contain original irreducible water, and fracturing fluid is also in-
jected into the formation during the hydraulic fracturing, leading to shale reservoirs being
commonly situated in aqueous conditions. Water molecules will seriously affect the fluid
flow characteristics. Oil–water two-phase models are established within the shale pores at
different water contents. The shale surface model refers to Section 2.1, and the equilibrium
configuration and two-dimensional densities of the oil–water two-phase region in the
heterogeneous shale pore are shown in Figure 16.
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When the water content was 10%, the near-wall region was a two-phase (oil–water)
region, oil molecules were distributed throughout the pores, and both oil and water phases
exhibited two distinct adsorption layers. However, the adsorbed water phases in these
two regions did not saturate completely, and water molecules spread out on the surface
of region I in the manner of “liquid film”, while there were only a small number of water
molecules on the surface of region Q. This may be attributed to the stronger hydrophilicity
of illite, which exhibited a distinct advantage in the competitive adsorption for water
molecules. The oil phase exhibited the opposite behavior, with high-density areas mostly
concentrated on the surface of region Q and low-density areas distributed on region I.
Compared with the surface of illite, quartz exhibited an “oil-wet” property. When the water
content was 50%, water molecule accumulation was more pronounced in region I, with its
surface being entirely enveloped by water molecules, and the remaining water molecules
were insufficient to saturate the quartz surfaces; octane molecules were also adsorbed on
the quartz surfaces, leading to an oil–water two-phase region in the near-wall region of
quartz surfaces. The numbers of adsorption water layers increased compared with that
at 10% water content, resulting in an enlargement of the oil–water two-phase region. At
70% water content, the near-wall region of regions I and Q was completely occupied by
water molecules. Unlike the case of 50% water content, at 70% water content, there was
a small amount of water at the center of the pore. This was because the adsorbed water
phase reached saturation, there were still remaining water molecules that coexisted with
the oil phase in a free state in the center of the pore, and the fluids were distributed in a
layered structure of “water–two-phase region (oil and water)–water”. The density of the
adsorbed water phase in region I remained higher than that in region Q, further confirming
that illite exhibited stronger hydrophilic ability.

2.5.2. Oil–Water Transportation in Heterogeneous Shale Pores

Based on the non-equilibrium MDS method, the velocity distribution curves of oil and
water were calculated under the water contents of 0%, 10%, 50%, and 70%. As shown in
Figure 17, the dashed line represents the density, the solid line represents the velocity, the
pink represents the oil-water two phase, the blue represents the water phase, the yellow
represents the oil phase, and the gray represents the shale surface. Figure 17 illustrates that
at a low water content, the velocity distribution of the oil phase was parabolic, and the
peak velocity was 3.372 × 10−3 Å/fs, which was significantly higher than the velocity at
0% water content (1.782 × 10−3 Å/fs). This was because the shale surface was hydrophilic,
where water molecules aggregated at the pore surface, weakening the alkane–surface
interaction. As a result, the flow resistance of octane molecules was reduced, and the flow
rate was increased. The velocity of the water phase was 0 Å/fs at the boundary and reached
its peak velocity at a distance of 10 Å from the surface, then gradually decreased, and at a
distance of 15 Å from the surface, the velocity decreased to 0 Å/fs. At 50% water content,
the water phase velocity at the wall was 0 Å/fs, and a sticky layer with a thickness of 2.5 Å
was formed in the near-wall region, which restricted the movement of water molecules.
Since there were only a few water molecules present at the center of the pore, the water
velocity distribution curve showed a decreasing funnel shape. The oil velocity distribution
still followed a parabolic shape, with the velocity at the boundary being 0 Å/fs, but there
was no sticky layer. Compared with 10% water content, the oil velocity was lower at 50%
water content. This was because the oil–water two-phase region was larger, and the oil
flow was significantly affected by the water. At high water content (70%), the thickness of
the sticky layer increased to 4 Å, and there was a smaller amount of free water molecules
appearing in the center of the pore. At a distance of 7.2 Å from the wall, the water molecules
reached an adsorbed saturated state, completely shielding the octane–surface interaction,
resulting in the absence of the oil phase. Due to the large water phase region, the oil velocity
in the oil–water two-phase region was lower than the water velocity.
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From Figure 18a, when the water content was 10%, the high-velocity area of the oil
phase was mainly distributed in the center of the pore. Compared with 0% water content,
the oil flow rate difference in region I and Q was significantly smaller, and the velocity
distribution of oil was more uniform. This was because the water molecules adsorbed
on the surfaces exerted a certain balancing effect on the alkane–surface interactions. The
low-velocity area of the oil phase was distributed in the near-wall region, showing clear
heterogeneity. According to Figure 18b, the water phase was mainly concentrated on the
surfaces of region I, with only a few water molecules in region Q. The strong adsorption of
water molecules by the surface resulted in a lower water flow rate.

Figure 18c,d show that in the near-wall region, the velocity distributions of water and
oil molecules in region I were similar, while the velocity of water was lower than that of oil
in region Q. At the boundary, the velocities of octane molecules in regions I and Q were 0
and 1.10 × 10−3 Å/fs, respectively. This indicated that at lower water content, the presence
of water phase in heterogeneous inorganic nanopores would limit the oil flow in region I
but promoted the oil flow in region Q. This was because the fluid in the near-wall region
of region I was mixed distributed, leading to a decrease in the oil flow rate influenced by
water molecules. Although the quartz surface was also water-wet, the hydrophilic ability of
quartz was lower than that of illite, and only a small number of water molecules gathered
on the surface of region Q. However, the water molecule–quartz interaction weakened the
adsorption for octane molecules. Therefore, compared with the case of 0% water content,
the flow rate of octane at the boundary in region Q was significantly higher.

From Figure 19a,b, when the water content was 50%, the oil flow rate at the center of
the pore was significantly reduced, and the heterogeneity of the flow rate at the boundaries
in both regions became more pronounced. In region I, the low-velocity area of the oil phase
in the near-wall region increased, and the velocity distribution of the water phase showed
a regular layered structure. In region Q, the low-velocity area of oil phase on the left was
larger than that on the right, and the distribution of water phase on the left was relatively
regular compared with that on the right. Based on the results of Section 2.5.1, it can be
inferred that at 50% water content, the adsorption of the water phase on the surface of
region Q had not reached saturation, leading to an uneven distribution of oil and water on
the surface of region Q.
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rate in region I increased significantly, while the oil flow rate decreased. Because of the 
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Figure 19. Velocity distribution of oil and water at 50% water content: (a) two-dimensional velocity
distribution of octane, (b) two-dimensional velocity distribution of water, (c) oil and water velocity
distribution in region I, and (d) oil and water velocity distribution in region Q.

Figure 19c,d show that the peak velocities of water and oil in region I were
2.16 × 10−3 Å/fs and 2.82 × 10−3 Å/fs, respectively. Compared with 10% water con-
tent, the water flow rate in region I increased significantly, while the oil flow rate decreased.
Because of the water content increases, the oil–water two-phase region expanded, and the
flow rates of oil and water mutually influenced each other and tended to become similar.
Due to the strong adsorption of illite on water molecules, a non-flowing sticky water layer
began to appear at the boundary of region I. However, there was no sticky water layer
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at the boundary in region Q; because the water phase had not reached saturation in this
region, and the water distribution was uneven in the near-wall region, the range of the oil
phase was larger, resulting in the water flow rate being lower than that in region I.

From Figure 20a,b, the velocity distributions in regions I and Q were almost identical,
and the layered structure of oil–water velocities was more distinct. The oil phase was
only present at the center of the pore, with a lower velocity compared with 50% water
content. From Figure 20c,d, the peak velocities of the water and oil were 2.16 × 10−3 Å/fs
and 2.28 × 10−3 Å/fs, respectively. Compared with the case of 50% water content, the
water velocity increased, while the oil velocity decreased. This was because as the water
content increased, the adsorbed water layer became thicker, and the interaction between
water molecules and far-wall was weaker, resulting in a higher flow rate. Additionally, the
adsorbed water layers in both regions were sufficiently thick because the adsorbed water
phases had reached a saturated state. The interaction between the pore surface and the
octane molecules weakened. The oil flow was only influenced by the driving force and the
intermolecular forces. The friction between the water layer and the oil layer caused the
flow rates of the oil and water to be similar.
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Figure 20. Velocity distribution of oil and water at 70% water content: (a) two-dimensional velocity
distribution of octane, (b) two-dimensional velocity distribution of water, (c) oil and water velocity
distribution in region I, and (d) oil and water velocity distribution in region Q.

Based on the velocity distribution of oil and water under different water contents, the
volumetric fluxes in each region and volumetric flux percentage of oil are calculated by
Equations (1) and (2):

Q =
∫

vds (1)

where Q is the flux, v is the flow rate, and s is the cross-sectional area of the pore.

N =
Qo

(Qo + Qw)
(2)

where N is the volumetric flux percentage of oil, and Qo and Qw are the volumetric fluxes
of oil and water, respectively.

As shown in Figure 21a, when the water content was low, the water flux in region I
was higher than that in region Q, and the oil flux was lower than that in region Q. As the
water content increased, the difference in oil and water fluxes between the two regions
became smaller. When the water content was 70%, both quartz and illite regions were all
saturated with water; therefore, the oil–water flow fluxes in both regions were consistent.
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From Figure 21b, at 10% water content, the oil flux percentages in regions I and Q were
87% and 99%, respectively. At 50% water content, the flux percentages in regions I and Q
were 59% and 64%, respectively, showing a downward trend, and the difference between
the two regions was narrowing. This was because the adsorbed water layer weakened the
alkane–surface interaction but was not sufficient to completely shield the interaction until
the water content reached 70%; the oil flux percentages in both regions were all 44%.
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3. Models and Methods
3.1. Modeling

Inorganic minerals are important components of shale matrix, including quartz, calcite,
and clay minerals [27]. Among the clay minerals, illite, MMT, and interstratified illite/MMT
are the predominant constituents, with a small proportion of interstratified chlorite/MMT.
According to the previous study of the research group [69], the whole rock analysis and clay
mineral analysis were performed on rock samples of Member Qing 1 in the Songliao Basin
using XRD. The results indicated that the primary components of inorganic matter were
quartz and clay minerals. The average contents of clay and quartz minerals were 37.7% and
36.12%, respectively. Illite accounted for the most significant proportion of clay minerals,
with a 74.1% average content. Therefore, it was considered that quartz and illite were the
main components of inorganic materials in shale. Quartz primarily exists in the form of
α-SiO2 in nature, which is an important diagenetic mineral in tight, sedimentary, and meta-
morphic rocks. The α-SiO2 is a three-dimensional structure composed of SiO2 tetrahedrons
connected by common vertices. Silicon atoms are located in the center of the tetrahedron;
1 silicon atom bonds with 4 oxygen atoms, while 1 oxygen atom bonds with 2 silicon atoms,
and oxygen atoms are on the common vertices of the silicon oxygen tetrahedron [70]. Illite
is a potassium-rich silicate mica clay mineral, which is a 2:1 clay mineral composed of
an Al-O octahedral layer between two Si-O tetrahedra centered on a silicon atom. We
constructed the illite model based on the formula of Kx[Si(8-x)Alx](Al4)O20(OH)4(x = 1) [71],
and K+ is randomly distributed among the illite layers. The atomic coordinates and cell
parameters of α-SiO2 and illite were from the American Mineralogist Crystal Structure
Database (http://rruff.geo.arizona.edu/AMS/amcsd.php). The (0 0 1) plane was the most
representative crystal plane of illite, which could be used to investigate the interaction
between the external environment and the crystal plane. In addition, Chilukoti et al. [70]
found that liquid alkane was more inclined to adsorb on the (1 0 0) crystal plane of α-SiO2;
it was used as the representative plane of silica in this paper. There are various types of
pore shapes in shale reservoirs; slit-shaped pores are the most common in clay. This paper
studied the adsorption, diffusion, and transport of hydrocarbons based on the slit-shaped
pores used by Rao et al. [72], Sun et al. [73], Underwood et al. [74], and Hao et al. [75].

http://rruff.geo.arizona.edu/AMS/amcsd.php


Molecules 2024, 29, 1763 20 of 26

(1) Shale surface model

The quartz and illite were cut, then the hydroxylate the quartz, and the hydroxylated
quartz and illite were extended to the dimensions 2.73 nm × 2.09 nm × 1.12 nm and
2.89 nm × 3.01 nm × 1.12 nm, respectively. Finally, we combined them to form a heteroge-
neous inorganic pore surface. The simulated box size was 2.87 nm × 5.30 nm × 1.12 nm.
We marked the quartz and illite regions in the heterogeneous shale as “region Q” and
“region I”, respectively.

(2) Fluid molecules model

The chemical composition of shale oil is complex, including a large number of n-
alkanes, branched alkanes, cycloalkanes, aromatic hydrocarbons and bitumen, etc. Wang
et al. [76] studied the physical properties of fluids in different shales, and the results showed
that the properties of the alkane mixture composed of n-CH4, n-C5H12, and n-C8H18 are
almost the same as those of the single component n-C8H18. Therefore, n-C8H18 (octane)
was selected as the shale oil model. OA, OB, and OC correspond to the lengths in the X,
Y, and Z directions of the system, respectively. The OA–OB surface is the contact surface
between the fluid and the shale surface. To prevent stretching or compression during the
combination of the fluid and the wall, the lengths of OA and OB were consistent with the
shale surface model. Therefore, the length of the fluid model OC was the pore size. We
reserved a 2Å vacuum regions at both ends of the OC direction to shield periodic boundary
effects and added 164, 273, and 436 octane molecules in the pores of 3 nm, 5 nm, and 8 nm,
respectively; the corresponding fluid model is shown in Figure 22.
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(3) Pore model

The system energy was minimized by conjugating the gradient algorithm to avoid the
atoms overlapping in pores or atomic distances being too close at the boundaries, and the
positions of all atoms were adjusted to obtain a stable initial configuration. The fluid model
was combined with the shale surface model for different pore sizes, and 1 nm vacuum
region was added at both ends of the wall; the nanopore, the shale surface, and fluid model
are shown in Figure 23.
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3.2. Methodology

MD simulations were conducted using LAMMPS software (Version 3 Mar 2020). The
simulation details, including structure optimization, temperature, pressure control, and
force field description, are shown in Table 1.

Table 1. The description of the simulation details.

Simulation Details Description or Method (Precision)

Unit Real
Long-range electrostatic interactions Ewald summation method (10−4)

Short-range non-bonded interactions Lennard–Jones (12–6)
Particle mesh interactions PPPM (10−6)

Boundary condition P P P
Cutoff radius 12 Å

Energy minimization Conjugate gradient method
Temperature control Nose Hoover thermostat

Pressure control Parrinello–Rahman Voltage stabilizer
Relaxation ensemble NVT + NPT

Dynamic simulation ensemble NPT
Interactions between surface atoms ClayFF [77]

Interactions between alkane molecules OPLS-AA [78]
Water molecule SPC/E [79]

Single-phase oil behavior simulation: The three-dimensional periodic boundary condi-
tions were applied to the initial model. The model structure was optimized, the optimized
model was relaxed for 5 ns under the NVT ensemble until the temperature reached 360 K,
followed by NPT relaxation with volume fluctuations only in the Z-direction; the pressure
was controlled by the Parrinello–Rahman (30 MPa). A 1.0 fs time step was set, and the
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last 5000 ps of data were selected as atomic trajectories, density distributions, diffusion
coefficients, etc. Probe atoms were used to obtain information on different regions of
heterogeneous shale, where carbon atoms and oxygen atoms represented alkane molecules
and water molecules, respectively. When the probe atoms moved in the Y direction, the
region from 0 Å to 24 Å represented the illite region (region I), and the region from 24 Å to
50 Å represented the quartz region (region Q).

Oil–water two-phase behavior simulation: Oil–water two-phase systems were built
with different water saturations (10%, 50%, and 70%). The SHAKE algorithm was applied to
maintain the rigidity of two hydrogen–oxygen bonds and one hydrogen–oxygen–hydrogen
angle [80]. The terminate tolerances of energy and force were set to 1.0 × 10−15 kcal/
(mol·Å) for energy minimization of the initial model, and the maximum iterations were
1000. The optimized model was relaxed for 5 ns under the NVT ensemble, followed by
NPT relaxation for 5 ns. Equilibrium molecular dynamics information was collected for the
system using the last 1 ns of data. We studied the two-phase transport mechanism based
on the non-equilibrium molecular dynamics. An external force of 0.002 Kcal/(mol·Å) was
applied to the fluid (n-C8H18, water) along the X direction, which simulated the oil–water
flow in the nanopores. The model was relaxed for 10 ns under the NVT ensemble, and the
last 1 ns of data were selected as the atomic trajectory and velocity distribution. Detailed
parameters of the force field can be found in the references in Table 1. The van der Waals
forces between different atoms were calculated using the Lorentz–Berthelot mixing rule,
and the simulation flow chart is shown in Figure 24.
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Interaction energy: To clarify the interaction between the hydrocarbon and the shale
surface, we tested the interaction energy distribution (IED) between the shale surface
and fluid molecules by the directional movement of probe atoms on the slit surface. We
set the probe atom speed as 1 Å/fs; it moved uniformly above the surface along the Y
direction. When the probe atom reached the boundary, it moved 1 Å along the X direction
and then moved uniformly along the opposite direction of the Y; the motion was repeated
until the probe atom scanned the entire surface. The atomic coordinates and energy were
recorded with intervals of 1.0 fs, and the IED was calculated between the surface and the
fluid molecules.
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4. Conclusions

(1) Fluid (octane) molecules exhibited non-uniform distribution in heterogeneous in-
organic nanopores, and the adsorption capacity for alkanes in quartz region was
stronger than the illite region, leading to the density of the adsorbed phase in the illite
region being lower than that in the quartz region. The flow rates at the boundaries of
the illite and quartz region were 0.51 × 10−3 Å/fs and 0, respectively.

(2) In smaller heterogeneous inorganic pores (3 nm), fluid molecules were subjected to the
force from both sides of the walls in opposite directions, resulting in the fluid being
completely adsorbed on the wall without any bulk fluid. As the aperture increased,
the bulk fluid shielded the forces from the far-wall region, the bulk fluid flowed
at higher velocities, and the velocity distributions in the two regions became more
uniform. The low-velocity area on the quartz region was still larger than that on the
illite region.

(3) The transportation characteristics of octane in heterogeneous inorganic nanopores
were significantly influenced by the temperature and pressure gradient. The quartz
region was more sensitive to temperature. As the pore size, temperature, and pressure
gradient increased, the boundary in the quartz region could transform “negative slip”
to “positive slip”.

(4) The illite region exhibited stronger hydrophilicity than the quartz region. When the
water content was low, water molecules preferentially formed a “liquid film” on the
illite surface, promoting the oil flow in the quartz region. At 50% water content, the
adsorption of the water phase reached saturation in the illite region, and the quartz
region remained unsaturated, causing the distribution of water near the wall to be
uneven. At 70% water content, the adsorbed water phases in the two regions reached
a saturated state. The interaction between the wall and the octane was completely
shielded, the oil flux percentages in both regions were all 44%, and a layered structure
of “water–two-phase region–water” was formed.
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